Guide How to use:

shellspecl7genl.f90

(© 2015 Klara Sejnova

The goal of this work is to find out the characterisitics of a disk around the star, this is called
inverse problem. An inverse problem is a general framework that is used to convert observed
measurements into information about a physical object or system that we are interested in.
For this problem we use Shellspec code. I present here description of the modification of
the Shellspec code. I nicely ask user to read original manual of the Shellspec code at first.
User can find it at Budaj & Richards (2004). To understand modification more it is also
necessary to know something about genetic algorithms.

1 Current modification

Firstly we translated the code into programing language Fortran 90 (Metcalf et al. 2004)
which improved the readability and usability of the code and made it more effective in
combination with genetic algorithm subroutine PIKATA (explained below). This translation
also enable the code to be more efficient in the respect of the upgrading the compilators which
still count with the programming language Fortran 90 unlike Fortran 77. Modified code
follows simple computational scheme Fig.1. Namely in the initial run we have population
of n; individuals with randomly generated set of parameters (genome). For every individual
from population we calculate normalized synthetic spectrum Fyyne, using modified Shellspec
code and compare it with normalized observed spectrum Fgp,s. As a measure of the quality
of the fit we define fitness function

1
— _ 1
fﬁt 1 + X27 ()
based on the x? merit function
N 2
[Fobs(xi) - Fs nth(aji; A)]
() = o el = B @it 7 2)
P synth(xzv)
where Fops(;) is the flux of the observed spectrum at the wavelength z; and A(aq,...,a;)

is set of free input parameters like inner(outer) disk radius, density of the disk, opening
angle or inclination. For determination of merit function (2) it was necessary to interpolate
calculated synthetic spectrum to the same wavelengths as the observed spectrum.

In the next step, input parameters describing the geometry and the physics of the prob-
lem are optimized via genetic algorithms PIKATA. Namely, all individuals (every individual
represents different combination of parameters) from the given population were sorted ac-
cording to their value of fitness fuction (Eq. (1)) from the best to the worst individual.
Only the best inividuals survive and generate new population via mutation and crossover
operations and thus generated the new sets of paramateres. Loop continue until the best
match is found. Values of the estimated free parameters and x? are saved to the output file.
Number of individuals in the population n; and number of generation n, which are driving
behavior of PIKATA genetic algorithm must be defined before calculation and are stored in
the control vector ctrl. Users can also define boundaries for their own free parameters if it
is neccessary.

As it is clear from the above, to use our modified code user needs to have observed
spectrum of the studied star. Shellspec code itself has not needed it before but the modified
code uses the observed spectrum as an input.

1.1 More detailed description

The original program code was transformed into function which is contained in module called
shellgen, this module is used by the program shellspec17geni which is the main program

Observed spectrum

—— e e — o

Calculation for all individuals |

:
| |
| in population v :

. PIKAIA Cycle: [!

Generation of Yy | g . |

—————— thet t

initial population > 1= 1t0ngen —r SHELLSPEC - YHVASHC spectium :

| |
|
if i > ngen : l :
|

|
Rin: Rou‘m p, a1 ifi < Ngen PIKATA : Fitness :
* - - Condition : % |
T : & :

PIKAIA PIKATA PIKATA

Mutation] Crossover il Selection

Figure 1: Layout chart of the code: 1. Creation of the initial population (generation zero) of ni individuals with the different set of parameters. 2. Starting
of the gemeration cycle 3. For every individuals we calculate synthetic spectrum using modified SHELLSPEC 4. This synthetic spectrum is compared
with the observed spectrum using fitness function 5. Selection of the best individuals using fitness values. 6. Reproduction for the mew generation using
crossover applied on the best individuals. 7. Mutation applied on the individuals from the new generation. 8. If the number of the generation is greater
than ng then cycle will end else cycle will continue.

after modification. The module shellgen includes function shell_calculation which calculates
normalized synthetic spectrum.

We also changed some of the subroutine (instead shellspec.in we defined module initsh. 90
- the concept of the new file is the same as before, only the definition and values of parameters
are in the same folder, so it is more clear), we also put some subroutine into the module
(raphson.f90, shellfunc.f90, statfun.f90) and made it more systematic.

In shellgen module user can define free parameters and boundaries for parameters.
PIKATA subroutine then choose random number in interval of boundaries (for example
rinmax = 5.D0, rindc=rstar+xpar(1)*rinmax) and run original shellspec code. When
the run is over results are saved (for this moment we are interested in synthetic spectrum
(flux, wavelength) but user can choose different output if necessary), observed spectrum
is read and subroutine interpolace(nfreq,b,matice,inter) is done. To upload data for ob-
served spectrum we use command: open(unit=16, file=’name of the file with data
for observed spectrum’, status=’0ld’). Subroutine interpolace interpolates values of
the synthetic data so it could be possible to compare them with the observed data (we want
to know synthetic flux at observed wavelength)

(Fobsl - Fobs())

Fos :Fos
bs () bso T+ (21 — o)

(x — o) (3)
where Fops1, Fobso is synthetic flux, z1, xg synthetic wavelength and Fops(2z) flux at the
wavelength. The subroutine chii(matice,inter,chi2) determine value of the fitness for syn-
thetic and observed spectrum. The result of user-defined fitness function which PIKATA
seeks is 1/(1 + x2). This function is called shell_calculation. This procedure is done several
times (it depends how big number of generations user defines) and the result is the best fit.
All the preliminary results are saved into the file vysledky.dat. Again user can define what
should be saved here.

2 How to use the modified code

e In shellspecl7genl.f90 user can define number of the individuals in population ctrl(1)
and number of the generation ctrl(2). The meaning of the control vector can be found
in the manual for PIKATA. User can define other properties by this vector. The bigger
the number of the generation the longer the computing time. With increasing number
of the generation the fitness is getting better but it is not that much significant. In
our experience it is not necessary to have big number of the generation. User can also
define number of the free parameters by npar.

e In shellgen.f90 user defines free parameters. For example to define opening angle of
a disk we use

adisc=1.DO+xpar(4)* adiscmax,

where xpar() lies in the interval [0,1]. This also means that lower boundary for
opening angle is 1° and upper boundary is 1°4+adiscmax and adiscmax is defined by
user. Caution must be made when defining adicsmax. If the lower boundary is not
zero then the value for adicsmax does not mean upper boundary, the upper boundary
is lower boundary plus adiscmax. Number 4 in xpar(4) means that it is the fourth
free parameter, this information is useful for reading the results.

e In file initsh.f90 user defines values for the object to be study, usually parameters
which are known, values for free parameters do not have to be filled up.

e Example

The example is a model presented by a star with a disk, the properties of the primary
star are usually known unlike the properties of the disk. Thus the parameters of pri-
mary star are defined in file initsh.f90. And as the free parameters we choose inner,
outer radius of the disk, density, opening angle, microturbulent velocity which are de-
fined in module shellgen. The boundaries of some of these parameters were found in
different articles. User should find its own boundaries for different type of the model.
We have five free parameters in this example model = npar= 5. Number of the indi-
viduals is 100 = ctrl(1)= 100 and number of generations is 30 = ctrl(2)= 30. As
was mentioned before these free values can be defined in shellspec17genl.f90. Defini-
tion of the free parameters is in the beginning of the module shellgen.f90:

Normalization of free parameters for optimalization problem

rinmax = 5.D0
drmax = 12.DO0
densmax=1.D-10
adiscmax=45.D0
vtrbdcmax=150.D0

Definition of free parameters

rindc = rstar + xpar(1l)*rinmax
dr = 1.D0 + xpar(2)*drmax
routdc = rindc+dr
densdc=1.D-13+xpar (3) *densmax
adisc=1.DO+xpar(4)*adiscmax
vtrbdc=10.DO+xpar (5) *vtrbdcmax

e To run the code we have prepared Makefile with further instruction:

make clean

make mod

make shellspecgen
./shellspecgen

e Ifuser would like to save all the output from PIKATA then do command . /shellspecgen
> results.txt and the output will be saved to the file results.txt. To understand all
of the output from PIKATA please see Charbonneau & Knapp (1995) here we present
only the most important output. Example of the results.txt file follows:

k%

* PIKAIA Genetic Algorithm Report *
*k *k *k *k *k *k
Number of Generations evolving: 30
Individuals per generation: 100
Number of Chromosome segments: 5
Length of Chromosome segments: 6
Crossover probability: 0.8500
Initial mutation rate: 0.0500
Minimum mutation rate: 0.0005
Maximum mutation rate: 0.2500
Relative fitness differential: 1.0000
Mutation Mode:
Variable input and values of free parameters +

Reproduction Plan: |

Full generational replacement |
Parameters : 5 / 0.775036097 0.766041458 0.58724206__________ |

0.761822581 0.939142346 0.00000000 0.00000000 0.00000000 |

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

|
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 |
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 |
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 |
0.00000000 0.00000000 0.00000000 0.00000000 |
Test : 19.167677736282350 8.9751804828643795 5.8824206053462074E-011__________ |
35.282016754150391 150.87135314941406

Shellspec
INPUT:

shellspec.in - main input (geometry,objects...)
line.dat - atomic data for the lines
shellspec.mod - 3D model of the shell

(optional IF imodel=2)
abundances - abundances (optional IF ichemc=1)
phases - orbital phases (optional IF nphase=0)
starspecl - star spectrum (optional IF lunt1>0)
starspec2 - star spectrum (optional IF lunt2>0) + start of Shellspec
starspec3 - star spectrum (optional IF lunt3>0)
albedol - albedo (optional IF albst<0)
albedo2 - albedo (optional IF albcs<0)

OUTPUT:

shellspec.out - more detail output
fort.xx - 2D images at some frequency
shellspectrum - spectrum of the shell
lightcurve - LC or trailed spectrogram

nphase= 1
No. of sp. lines READ from line.dat= 1
nstari= 1 31006
i= 40.50 alpha= 0.00
chi2 38.263639636012677 0.960224926 —+ fitness of the syntetic
and observed spectrum
with wnput parameters
+ shellspec runs several times
656609 657335 636841
358352 354352 423062
12089 12089 110006
603457 808037 367174
403011 346258 408248
status: 0

x: 0.656608999 0.358352005 1.20890001E-02 0.603456974 0.403010994
£: 0.998377800 —+ this is the result with the value of the best

individual (z:) and tts fitness function (f:)

ctrl: 100.000000 30.000000 6.000000 0.850000 2.000000 0.050000
0.000500 0.250000 1.000000 1.000000 1.000000 3.000000
+these are just values for ctrl vector

e Values for the best individuals are saved into the file generace.dat. By plotting the first
and the fourth column of the file user will be able to see how the best individual for
each generation varies and getting better by each generation. This file is generated by
the write command in module pikaia.f90 (/home/shellspecf90/source). Example
of the generace.dat is below (in columns from the first: generation, individuals, initial
mutation rate, fitness of the first best, second best, and the average) and data of
the first and the fourth column (number of generation and fitness of the first best
individual for the generation) are plotted in the Fig. 1.

#generace.dat

1 99 0.0033333 0.3286170 0.3286168 0.0252947
2 99 0.0022222 0.3286170 0.1962448 0.0554000
3 99 0.0014815 0.3286170 0.3286168 0.0736583

4 99 0.0009877 0.4598798 0.3485152 0.0920731

0.99

0.98

0.97 e 4

0.96 | b

0.95 |- B

0.94 B

1(1+x?)

0.93 b

0.92 B

0.91 b

thq best +

Il Il
0 50 100 150 200 250
generation

,

0.9

Table 1: Evolution of the value for 1/(1 4 x?) for the best individuals for each generation

5 99 0.0006584 0.5018177 0.4845585 0.1004014

6 99 0.0005000 0.5018177 0.4845585 0.1254106

495 99 0.0432488 0.8062923 0.8056455 0.5158235
496 99 0.0432488 0.8062923 0.8062890 0.5158592
497 99 0.0432488 0.8062923 0.8062800 0.6942428
498 99 0.0432488 0.8063483 0.8063009 0.7174796
499 99 0.0648732 0.8063483 0.8063152 0.7344757

500 99 0.0648732 0.8063483 0.8062189 0.6891267

References

Budaj, J. & Richards, M. T. 2004, Contributions of the Astronomical Observatory Skalnate
Pleso, 34, 167

Charbonneau, P. & Knapp, B. 1995, A User’s Guide to PIKAIA 1.0, Tech. rep.
Metcalf, M., Reid, J., & Cohen, M. 2004, Fortran 95/2003 Explained

Sejnova, K., Votruba, V., & Koubsky, P. 2012a, in Astronomical Society of the Pacific
Conference Series, Vol. 464, Astronomical Society of the Pacific Conference Series, ed.
A. C. Carciofi & T. Rivinius, 219

Sejnové, K., Votruba, V., & Koubsky, P. 2012b, in IAU Symposium, Vol. 282, TAU Sympo-
sium, ed. M. T. Richards & I. Hubeny, 261-262

Sejnova, K. 2010, Master’s thesis, Masarykova Univerzita v Brné

