"-Laboratory Exercises in Astronomy —

The Rotation of Mercury

DARREL B. Horr, University of Northern lowa
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ETERMINING the planets’ sizes,
motions, and rotations is an impor-
qunt task for observational astronomy.
* guch information i; the first step toward a
. understanding of t_he solar system.
. gometimes direct observations suffice, but
- ij other cases they provide misleading an-
. ers or no answers at all. The rotation
of Mercury is one case of visual observa-
~ (ions giving entirely misleading results.
~ [n this laboratory exercise, we will cal-
- ulate Mercury’s rotation period from the
Doppler effect that the rotating planet
e produces upon radar signals reflected
" from it. A simple example of the Doppler
effect is provided by the optical spectrum
. of a star moving away from or toward the
observer; the wavelength (and frequency)
of each line in the star's spectrum is
hanged by an amount proportional to the
peed of approach or recession.
“Now imagine a single line in the optical
spectrum of a rotating planet. Since dif-
nt parts of the planet’s disk have dif-
nt speeds relative to the observer, they
mpart different Doppler shifts, and there-
ore the line is broadened.
‘The case is closely analogous for a radar
Ivation, where a pulse of electromag-
lic energy at one frequency is beamed
-'ﬂfd a rotating planet. The radar signal
hat is returned from the planet is spread
Lover a range of frequencies.

EARLY ATTEMPTS

itil about 1900, the only way to de-
e the length of a planet’s day was
Isually inspecting its disk for features.
SICUty is particularly hard to observe be-
it is so close to the sun, its disk is
® and the surface features have low
{3st. Using J. H. Schroeter's drawings
sereury, F. W. Bessel deduced a rota-
- Period of about 24 hours. It is in-
ling to note the supposed accuracy
L Which this period was known. One
,'a" astronomy text of the mid-1800's
jah Blntritt's Geography of the Heav-
AVE it as 24 hours 5 minutes 28
S. Until the 1880's, a value near 24
W3§ Senerally accepted.
e n 1889, G. v. Schiaparelli an-
that he haqg discovered certain
ent Markings on the surface of
-:“d that the planet rotated on its
Y once during its orbital period
5. This implied that Mercury
4Ce toward the sup just as the
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Two sketches of Mercury by E. M.

Antoniadi in 1924 and 1927 with a 33-

inch refractor show the visual appear-
ance under fine conditions.

val Lowell at Flagstaff, Arizona, appeared
to confirm these findings, and the 88-day
rotation period became generally accepted.

About 1900, a spectrographic method
for measuring planetary rotation became
available. It was first applied by J. E.
Keeler to the rings of Saturn. It was
known from theoretical considerations that
Saturn’s rings rotated as a swarm of small
bodies, rather than as a rigid unit, but
there was no observational proof until
1895. Keeler gave such a proof by show-
ing that the absorption lines from the
outer edge of the rings were less Doppler-
shifted than absorption lines from the
inner edge. This meant that the outer
edge was revolving at a slower speed than
the inner edge, just as should happen if
the rings consisted of independently orbit-
ing particles. (See “Laboratory Exercises
in Astronomy: Rotation of Saturn and Its
Rings,” Sky anp TELEscope Laboratory
Exercise LE03.)

The spectrographic method could be
applied directly to a planet by laying the
spectrograph slit across the planet's disk,
parallel to its equator, and observing that
lines from one edge were shifted redward,
from the opposite edge toward the violet.
Early this century, V. M. Slipher at Lowell
Observatory and C. E. St. John and S. B.
Nicholson at Mount Wilson tried this
method on Mercury and Venus. They
found that both planets’ rotation periods
were at least several days long, but could
not be more specific.

A much more powerful method became
feasible as a result of radar-reflection
studies of the planets. Radar signals were
tirst bounced from the moon in 1946,
from Venus in 1961, and from Mercury in

1963. In August, 1965, the analysis of
Doppler-broadened radar echoes finally
answered the question, “What is the rota-
tion period of Mercury?” To astronomers’
surprise, it was quite different from the
88-day value in every textbook.

In this exercise, we use the same data as
the original researchers. Only a millimeter
scale and a hand calculator are needed.

THE RADAR OBSERVATIONS

During August, 1965, R. B. Dyce, G.
H. Pettengill, and I. I. Shapiro used the
1,000-foot radio telescope at Arecibo,
Puerto Rico, to beam a series of 0.0005-
second and 0.0001-second radar pulses
toward Mercury at a frequency of 430
megahertz. Since the round-trip travel
time of the signals was much greater than
the pulse length, it was possible to see how
the pulses had been broadened in fre-
quency by reflection from a rotating plan-
et. Of course, frequency shifts can also
result from motion between the planets,
and from the antenna’s travel around the
earth’s axis. Most of these effects were
removed by careful timing and sampling
of pulses, and by computer compensation
in processing.

Supplemental Problem. The travel time
itself (in seconds) can be used with the
velocity of light (299,792.5 km/sec) to
calculate the distance of Mercury from the
earth in kilometers. Since we know the
planets’ distance in astronomical units at
any time (from Kepler's third law), we can
therefore calculate the number of kilome-
ters in one astronomical unit. This tech-
nique is far more accurate than any clas-
sical astronomical method.

At the time of the observations used
later in this exercise, Mercury’s center-to-
center distance from Earth was 0.617782
a.u. If the pulse two-way travel time was
616.125 seconds, how many kilometers are
there in 1 a.u.?

PROCEDURE

When a radar pulse is reflected from a
rotating spherical planet, the echo is
spread out in time as well as frequency.
The beginning of the echo is from the
nearest point (sub-radar point or disk cen-
ter) of the planet. After a small time
delay, the echo received is from a ring-
shaped area, centered on the sub-radar
point. The Arecibo radar can sample the
reflected pulse at various time delays.

Fig. 1 (reproduced on the next page)
shows the spectrum of the radar echoes re-
turned from Mercury for five different
delay times. Note that the longer the time
delay, the broader the return signal is in
frequency. Successive echoes return from
“rings" on Mercury farther and farther
from the sub-radar point. The portion of
the planet rotating toward the earth causes
the return signal to have an increase in
frequency (+) and the portion rotating
away has a decrease (—), as in Fig. 2.
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‘ The increase or decre
| known Doppler layw.
In_principle. it ought tq be easy
rerm'me-the rotational velocity
cury's limb and (knowing tha

circumference) to 8¢t the rotatjg

Atl=0 However, the echo weakens toware

edge of the disk, and the return frq
limb itself is useless, Hence, we yi
| . ‘ the echo from a ring intermediate b
‘ — reee====| the sub-radar point and the limb 19 ¢

f a line-of-sight component of Merc
| rotational velocity, and from this we
find the true rotational velocity,

To see how this is done, see Fig.

. Ati=120 call that in Fig. 1, each signal is [apg]
with its time delay in microseconds, g
easy to calculate the distance g that any
delayed beam has traveled beyond the gy
radar point, by multiplying half the d
time by the speed of the radas wa

- Step 1. Choose one of the time-delaye

signals in Fig. 1, and for it calculate -

d= Y%At
Atl= 210 Here At is the time delay expressed |

seconds (1 microsecond = 106 secon;

use 3% 10° meters per second for ¢, Th

result is in meters. :f
A/V Step 2. In Fig. 3, the lengths x and

are seen to be given by
x=R—d
y = (R?—x?)112
where R, the radius of Mercury, is 2.4;
10% meters.

Calculate x and y. The latter will
needed in Step 4.

Step 3. Using the previously select X
signal from Fig. 1, we wish to find Vo, th
observed line-of-sight component Bf—m

\/\ rotational velocity at the point indicated i
N— ) Fig. 3. _

The Doppler equation is generally stated

in terms of a change in wavelength relative

to the “rest” wavelength, but it can also
be stated in terms of frequency: ‘
Vo/e = Af/f (‘!)

where Af is the change in frequency;.fl:
— the frequency of the transmitted signa
465350 (430 m?:gaheitz =4.3x10° hertz); Vo ib
the observed velocity; and ¢ is the speed of -

/\/ the radar wave. e
\-\./\- Examine the selected radar signall in
—\/ Fig. 1, and mark with a pencil the points
to the right and left where the re]a.tlve.
power begins to drop down to the baseline. -
Read off, as accurately as you can,.lhe ;
-3 -2 -1 0 +1 +2 +3 frequency change at each of these points: = =
FREQUENCY CHANGE (Hertz) Disregarding algebraic signs, average the
results from the two shoulders. Th.e actu- 5
al Doppler frequency shift, Af, i half %
this value, as the signal is a reflection.
Calculate V in meters per second from

ase obeys

RELATIVE POWER

RELATIVE POWER

RELATIVE POWER

At/= 300

RELATIVE POWER

RELATIVE POWER

Fig. 1. The spectrum of a radar pulse returning from Mercury, sampled at five
different time delays, beginning with the echo from the center of the disk (sub-
radar point). The time delays (At) are given in microseconds (1 microsecond =
10°® second). The left edge of each spectrum, showing a shift to shorter fre-

-

PSR

quency, is from the portion of the planet rotating away from the observer, and eguation (4). ) c cight com:

the right side, showing a positive shift, is from the portion rotating toward him. Step 4. From the h“e',nt'Slgh un- P

This diagram has been adapted from one published by R. B. Dyce, G. H. Pet- ponent Vi, we wish to obtain V.. the - =

tengill, and I. I. Shapiro in Astronomical Journal, 72, 351, 1967. It is based foreshortened rotational velocity. lr':SPCIc :

upon observations made on August 17, 1965, with the 1,000-foot-diameter radio tion of Fig. 3 shows that the il‘l'f"’g”'
telescope at Arecibo, Puerto Rico. containing x, y, and R is geometricall)
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This composite map of Mercury was prepared in 1967 by
using the correct 39-day rotation period. South is up.

1
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Dale P. Cruikshank and Clark R. Chapman from 130 drawings,
The longitudes here are on an arbitrary system. Since 1970, the

prime meridian of Mercury has been officially defined as the meridian containing the subsolar point when Mercury was at

similar to the triangle containing V, and
V. Hence

V/Vo=R/y. (5)
Calculate V' from (5). The result is the
frue_rotational velocity, in meters per
second.

Calculate Mercury's rotation period in
seconds by dividing V into the circumfer-
ence of the planet, 1.520 % 107 meters.

Finally, convert this rotation period into
days (I day = 86,400 seconds). How does
your value compare with the 59+3 days
found by Dyce, Pettengill, and Shapiro
from the total of their observations?

Note that an independent value of the
fotation period can be derived from each
of the profiles in Fig. 1 (apart from the
one for zero delay time, of course). If you
have the time, repeat Steps 1-4 for the
thrce other signal profiles.

DISCUSSION

Later radar results have shown that the
fotation period of Mercury is 58.65 days,
with an uncertainty of +0.23 day. The
Mariner 10 spacecraft flew past Mercury
three times in 1974-75, obtaining high-
rL‘Sl‘)[thi{ln pictures from which the rotation
Period was very accurately determined by
K. P. Klaasen as 58.6461+0.005 days.

G. Colombo suspected as early as 1965
that Mercury's rotation period may be
Y two thirds of its 87.9693-day orbit-
al Period, or 58.6462 days. This anticipa-
i Strungly confirmed by the excellent
i :‘Icnt w1th ‘Klaasen's value. Mercury,
Stelore, exhibits 5 dynamical coupling of

I .
- SPln' fate and its orbita] rate.

o Me gyp
Mma

e AN lnterestinq

question is why expe-

Denced . F
e yigyq) observers of Mercury from

+ 3¢hi B . .
- Aparellg time until the 1960's were

Convine
: ficed thay Mercury rotated once in 88
¥s, 3]\\ ﬂ_} N

'S presenting the same face to
Urprisingly, about 20 detailed
constructed showing consistent
rkings, even though they were

perihelion on January 10, 1950.

This paradox has been explained by D.
P. Cruikshank and C. R. Chapman (Sky
AND TELEscoPE, July, 1967, page 24). In
352 days, Mercury completes six turns on
its axis and four revolutions around the
sun. This is twice the interval between
successive sunrises or sunsets at a fixed
point on the planet. It is only a few days
longer than three times Mercury’s synodic
period of 116 days (its cycle of phases).

Hence, after the lapse of about 350 days
— which is also the interval between suc-

Fig. 2. A planet’s rota-
tion changes the fre-
quency of a reflected
signal as shown here.
If the frequency re-
turned from the sub-
radar point is f, that
from the approaching
limb is increased to f +
Af, while that from
the receding limb is de-
creased to f - Af,

*--

To Earth

cessive favorable apparitions — the visual
observer will see the same face of the
planet at the same phase. The appear-
ances are indistinguishable from what a
spurious 88-day period would produce.
This situation resembles the stroboscopic
effect when rotating machinery is viewed
by intermittent lighting. After the true
period of rotation was established as 59
days, Cruikshank and Chapman were able
to combine many years of drawings and
photographs into a consistent map.

Approaching limb

Fig. 3. Mercury’s rota-
tional speed is calcu-

lated from these geo- int
metrical relationships. : po
R is the planet’s radius; -

Sub-radar

MERCURY

d, the delay distance;
Vo, observed radial
component of rotation-
al speed at a selected
point; and V, the de-
sired full rotational —

speed.
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