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Abstract. Perfect imaging with Maxwell’s fish eye opens the exciting prospect
of passive imaging systems with a resolution no longer limited by the wave
nature of light. But it also challenges some of the accepted wisdom of super-
resolution imaging and therefore has been subject to controversy and discussion.
Here we describe an idea for even simpler perfect-imaging systems based on
geometrical optics and prove by experiment that it works.

5 Author to whom any correspondence should be addressed.

New Journal of Physics 14 (2012) 025001
1367-2630/12/025001+14$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:ulf@st-andrews.ac.uk
http://www.njp.org/


2

Contents

1. Introduction 2
2. Theory 3
3. Design 6

3.1. Luneburg’s design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Maxwell’s fish eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3. Modified fish-eye mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4. Index profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Experiment 10
4.1. Microwave device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. Summary 13
Acknowledgments 13
References 14

1. Introduction

The archetype of perfect imaging with positive refraction is Maxwell’s fish eye [1–6]. It is easy
to understand why Maxwell’s device may focus light with unlimited precision if we consider the
fact [2] that it represents the geometry of a virtual sphere—in physical space, light propagates
in a medium with Maxwell’s profile as if it were confined to the surface of a sphere6 in virtual
space [4]. Imagine light emission on the virtual sphere. A wave emitted at a point source on the
sphere must converge with point-like precision at the antipodal point, simply due to the perfect
symmetry of the sphere. The sphere thus turns the wave expanding from the point of emission
into a converging wave at the image point.

It is also easy to understand why perfect imaging is possible in this case, using an
argument by Feynman [8] that goes as follows [9]. Maxwell’s equations of light propagation are
completely time-reversible. Therefore the emission process at a point source can be completely
reversed at the image, provided one crucial element is present, a source run in reverse—a drain.
Otherwise the absorption at the image would not be the exact time reverse of the emission at the
source. The drain at the image point is also something natural in imaging where one wishes to
detect an image, for example by photochemical reactions or in a charge coupled device array.
The drain represents a detector7. The crucial point of perfect imaging is that, given a choice of
detectors in the image area, the light localizes at the correct ones.

The fact that the correct light localization naturally happens in Maxwell’s fish eye is also
understandable if we imagine the absorption in an array of detectors as the time reverse of
the emission by a collection of point sources. Given perfect time symmetry, the light must
settle down at the image points that correspond to the actual source points and avoid the ones

6 One can also confine light on the surface of a real sphere; see the beautiful experiment reported in [7].
7 The localization of a wave by a time-reversed emission process was beautifully demonstrated with sound waves
using an active drain [10]. Note that an active drain is not necessary: in our previous microwave experiment [11] we
used a passive drain—the drain only responded to the incident radiation—and obtained subwavelength resolution.

New Journal of Physics 14 (2012) 025001 (http://www.njp.org/)

http://www.njp.org/


3

corresponding to potential source points that did not emit. In this way, a sharp image is formed
with a resolution given by the cross section of the detectors and not by the wave nature of light.

Despite the simplicity and generality of these ideas and arguments, they stirred up
controversy [12–23], because they challenge some of the accepted wisdom of super-resolution
imaging [24]. It has been an often unquestioned mantra that perfect imaging is only possible if
evanescent waves are amplified in some way. It has been firmly accepted that evanescent waves
are the carriers of subwavelength details and that the near-field information is lost in the far
field, as evanescent waves exponentially decay away. However, this belief is in contradiction
with Feynman’s general argument based on the time-reversal symmetry of Maxwell’s equations
[8, 9]. The near field of a point source is not lost in the far field, but rather constitutes a natural
part of the emission process. If the emission is reversed in a point detector the near field naturally
arises. The precise information about the point of emission is not gone; it is carried by the light
wave; yet to retrieve it requires unusual imaging systems [25].

In a previous paper [11], we implemented Maxwell’s fish eye for microwaves and observed
subwavelength imaging. In this paper, we demonstrate an idea [25] for a modified fish-eye
mirror that requires, in principle, an arbitrarily low index contrast. Such a device can be
made with conventional graded-index materials. In our case, however, we used a microwave
metamaterial, because of its low cost. We have demonstrated subwavelength imaging for
microwaves, because microwave technology gives us a degree of detail and precision that is
currently impossible in the optical range of the spectrum. In addition to demonstrating an idea
for reducing the demands on the materials required for perfect-imaging systems, our experiment
illustrates two fundamental points that may also become important in practice.

Firstly, we demonstrate that it is not necessary to detect the field with perfect efficiency.
The undetected part of the field does not localize at the detectors with subwavelength resolution,
but the detected part of the field finds its way into the right detectors. The subwavelength image
appears in the detectors, but not necessarily in the field around them. However, what counts in
practice is only the detected part of the field, which implies that the efficiency of the detectors
is less important than their resolution.

Secondly, for the perfect imaging of light waves, ray optics seems sufficient; we only
require that all light rays from any point of the source intersect at the corresponding image
point, which is the defining property of an absolute optical instrument [3]. Within geometrical
optics, all rays reach the image with the same phase [3], which seems to guarantee perfect
imaging also in wave optics.

2. Theory

It may be surprising that geometrical optics alone is able to predict the perfect imaging of waves.
Note, however, that geometrical optics goes beyond ray tracing: it is an approximative theory for
the propagation of electromagnetic waves. In geometrical optics, rays serve as guiding lines for
the propagation of the phase, the intensity follows their density and the polarization is parallel-
transported along them [6]. Rays rule the waves: they completely dominate their behaviour, as
long as geometrical optics is valid. The condition for the validity of geometrical optics is the
requirement that the optical properties of the material do not vary significantly on the scale of
the wavelength.

Consider the simplest nontrivial case for imaging: two-dimensional (2D) wave propagation
in a planar medium, which is also the case we investigate experimentally. The electromagnetic
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wave shall be polarized such that the electric field vector is orthogonal to the propagation plane.
In this case, the complex Fourier component E of the electric field strength obeys the Helmholtz
equation (

∇
2 + n2k2

)
E = 0, (1)

where n denotes the refractive-index profile, k = ω/c, with ω being the (angular) frequency, and
c is the speed of light in vacuum. The local wavelength is given by

λ =
2π

nk
. (2)

In geometrical optics, we represent the field in terms of the amplitude E and phase ϕ as

E = E eiϕ, (3)

where both E and ϕ are real. Substituting the ansatz (3) in the Helmholtz equation (1) gives

(∇ϕ)2
= n2k2, ∇ ·

(
E2

∇ϕ
)
= 0, (4)

where we ignored ∇
2E in the equation for (∇ϕ)2 on the grounds that the amplitude varies

less than the phase. This term becomes important in the regions where the field becomes very
strong, for instance near the source and image points. However, it turns out that it simply results
in a phase shift of the wave at the point where the field is concentrated, as we will show. The
relations (4) formulate the foundations of geometrical optics for our case, the 2D propagation of
electromagnetic waves in planar media8. They describe how the refractive-index profile moulds
the phase and how the phase gradient governs the transport of the field intensity. Light rays are
the lines orthogonal to the phase fronts; they follow ∇φ and obey Hamilton’s equations [6].
A criterion for the validity of geometrical optics is the requirement [26]

|∇λ| � 1, (5)

which means, according to definition (2), that the index profile ought to vary on larger scales
than the wavelength (the inverse of the relative gradient |∇n|/n should be much larger than λ).

Suppose that geometrical optics is valid and that all light rays from each point in the
emission region intersect at the corresponding imaging point (figure 1). As the rays carry
the complete wave, the field near the point of emission must reconstitute at the image point,
provided a drain is present there. We may see this from the following argument. Close to
the source point r0 and the drain at the image point r ′

0 the field intensity grows significantly
on a scale that is smaller than the wavelength and hence also smaller than the variation of
the material. Near r0 and r ′

0 we can thus regard the medium as being uniform, with constant
refractive index n0 and n′

0, respectively. Imagine first the emission at the source. The solution of
the Helmholtz equation is

E ∼ E0 H (1)

0 (n0k|r − r0|) (source), (6)

where H (1)

0 is a Hankel function (Bessel function of the third kind [27]). Near the source the
field is enhanced as [27]

E ∼ E0
2i

π
ln |r − r0| (near field), (7)

8 For the 3D case with arbitrary polarization, see [6].
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Figure 1. Geometrical optics. The picture illustrates the emission and absorption
of light in the archetype of a perfect-imaging device with positive refraction,
Maxwell’s fish eye [4]. The contour plots display the real part of the exact
solution of the Helmholtz equation, the light wave, whereas the red lines indicate
the light rays—they are orthogonal to the phase fronts of the wave. The left
figure shows how the rays rule the waves. The right figure focuses on the region
around the imaging point; it shows a magnified plot of the blue square of the
left figure. Here the light rays converge at the imaging point, but also the field
intensity diverges such that geometrical optics is no longer valid. Nevertheless,
the approximate solution from geometrical optics matches an exact solution
around the imaging point where the medium is assumed to be uniform. The
far field captured by geometrical optics seamlessly matches the near field at
the detector in the focus. Therefore, geometrical optics may be used to predict
perfect imaging.

but further away we see from the asymptotics of the Hankel function [27]

E ∼
E0

√
2

√
π |r − r0|

exp
(

in0k|r − r0| − i
π

4

)
(far field). (8)

One verifies that the asymptotic formula (8) is consistent with the relations (4) of geometrical
optics. Expression (6) thus describes how the near field (7) of the source is connected to the far
field (8). Comparing equations (8) and (7), we also see that the transition from the near field
to the far field comes with a phase shift of π/4. The field then propagates away as an outgoing
wave, following the laws of geometrical optics. If, as we have assumed, all light rays from r0

focus at the image point r ′

0, the phase must be uniform at the image where we can regard E as
the ingoing wave

E ∼
E ′

0

√
2√

π |r − r ′

0|
exp

(
−in′

0k|r − r ′

0| + i
π

4

)
(far field) (9)

with some complex constant E ′

0 that contains the amplitude and the phase of the wave
approaching the image point. If, as we have also assumed, a detector is placed at the image
point, the far field (9) goes over into the near field

E ∼ E ′

0

2i

π
ln |r − r ′

0| (near field) (10)
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of the wave at the image, because the asymptotic expressions (9) and (10) are consistent with
the exact solution of the Helmholtz equation (1)

E ∼ E ′

0 H (2)

0

(
n′

0k|r − r ′

0|
)

(image) (11)

for a uniform medium with index n′

0 close to the image point (figure 1). Here H (2)

0 is the
complex conjugate of H (1)

0 . In this way, the emission and absorption are seamlessly connected
to geometrical optics. Therefore, we can use geometrical optics for predicting the condition for
perfect imaging. Behind this reasoning lies the idea that the near field is simply a natural part of
the emission and absorption processes. Our experimental results turn out to be consistent with
this concept.

3. Design

The use of geometrical optics widens the design of perfect-imaging devices. Designing perfect
lenses with radial symmetry is an inverse scattering problem. This problem was probably first
solved by Luneburg in his 1944 lectures on optics at Brown University and was later published
in his posthumous book [2]. In 1953, Firsov [28] independently developed the same procedure
for the equivalent problem in classical mechanics [29]. Here we use the notation of [30] where
a visual interpretation of scattering tomography was developed; for more details, see section 8
of the textbook [6]. The only ingredient we are going to add to Luneburg’s case is a mirror.

3.1. Luneburg’s design problem

Consider a radially symmetric index profile n(r) that extends to the radius r0 (figure 2). We
require that all rays emitted from a point at radius r1 (with r1 > r0) are focused at an opposite
point at radius r2 (with r2 > r0 as well) as long as they hit the index profile. Consider a ray with
impact parameter b. The scattering angle between the two points is

χ = −α1 − α2, sin αi =
b

ri
, (12)

as long as b 6 r0; otherwise the scattering angle is zero, because the ray misses the focusing
index profile. The profile that implements these scattering data is given in implicit form by
[6, 30]

n(ρ) = exp

(
−

1

π

∫ r0

ρ

χ db√
b2 − ρ2

)
, (13)

where the turning parameter ρ is defined as

ρ = nr. (14)

The turning parameter ρ is the impact parameter b for which the trajectory has a radial turning
point at r . The reconstruction formula (13) is implicit, because n is not directly expressed as a
function of the radius, but in terms of the turning parameter. Not all scattering data are physically
allowed, because the function n(r) might be multi-valued (it may have several values of n for the
same radius r ). If n(r) is single-valued, Luneburg’s formulae (13) and (14) establish a refractive-
index profile that implements the scattering data χ(b).
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Figure 2. Luneburg’s design problem. Consider light rays (red) that may pass
through a spherically symmetric medium (grey). We require that all rays that
do pass through the medium from radius r1 arrive at radius r2 exactly opposite
to their starting point (meaning that the starting point and the end point lie
on a straight line through r = 0). We characterize the rays by their impact
parameters b. The impact parameter is proportional to the angular momentum
and is therefore a conserved quantity, as the figure indicates. The initial and final
segments of the trajectories are inclined by the angles α1 and α2. The drawing
shows that b = r1 sin α1 = r2 sin α2, which is all we need to know for solving
Luneburg’s design problem by tomography.

3.2. Maxwell’s fish eye

In order to see how Luneburg’s theory works, consider the case of Maxwell’s fish eye. Here
the medium extends to the radius r2 that corresponds to the equator of the virtual sphere. Light
emitted at the equator should be focused on the opposite side of the equator. We thus require

r2 = r0, r2 = r1. (15)

In this case, α1 = α2 = arcsin(b/r0). We use the integral∫ r0

ρ

arcsin(b/r0)√
b2 − ρ2

db =
π

2
ln(1 +

√
1 − (ρ/r0)2) (16)

and obtain from the reconstruction formula (13) the index profile in terms of the turning
parameter:

n(ρ) = 1 +
√

1 − (ρ/r0)2. (17)
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Figure 3. Modified fish-eye mirror. Left: light emitted from a point outside the
focusing index profile. Not all rays are focused at the image point. Right: perfect
imaging within ray optics if the light is emitted inside the index profile.

We substitute this result in definition (14) of the turning parameter and solve the resulting
equation for ρ. We obtain Maxwell’s profile [1]:

n =
2

1 + (r/r0)2
. (18)

Maxwell’s fish eye may act as a perfect-imaging device if we take r from 0 to infinity or if we
terminate the refractive index profile at r0, as our design method suggests, and surround it by a
mirror there [4]. In this case, the refractive index ranges from 1 at r0 to 2 at the centre.

3.3. Modified fish-eye mirror

In the following, we are going to modify Maxwell’s fish eye such that the required range of
the refractive index profile is reduced. We will argue that the modified device still acts as an
absolute optical instrument [3] capable of perfect imaging if we surround it by a mirror.

Suppose that the two radii r1 and r2 in Luneburg’s design problem (figure 2) are the same,

r1 = r2, (19)

but r0 < r1, and we surround the device by a mirror at the radius r1. Light coming from a point P
on the mirror is focused on the other side and reflected, whereupon it goes through the focusing
medium once more and returns to P . Consequently, light rays form close loops, provided they
strike the focusing index profile. Suppose that we pick the point r inside the medium that lies
on a ray trajectory. As all light rays that strike the medium form closed loops, so must all rays
going through r . The radial symmetry of the device implies that all these rays must also go
through −r. Therefore, a source at r is perfectly imaged at −r (figure 3). However, if the source
is outside of the focusing profile, r > r0, not all ray trajectories are closed and the image is not
perfect (figure 3). In the case of the original fish-eye mirror [4], all ray trajectories are closed,
because r1 = r0, no rays lie outside of the focusing medium.

3.4. Index profile

What does it take to make a modified fish-eye mirror? We obtain from the reconstruction
formula (13) and relation (14) with the angles (12) and condition (19)

r(ρ) = ρ exp

(
−

2

π

∫ r0

ρ

arcsin(b/r1)√
b2 − ρ2

db

)
. (20)
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Figure 4. Maximal refractive index nmax required for a focusing medium with
radius r0 given in units of r1.

The radius is a monotonically increasing function of the turning parameter ρ (seen by
differentiation) and r 6 ρ. Consequently, ρ is a single-valued function of r : the index profile is
physically allowed. The function ρ(r) must be monotonically increasing as well. Furthermore,
the function n(ρ) is monotonically decreasing in ρ (seen by differentiation again) and,
consequently, n is monotonically decreasing in r : the highest index value is the value at the
origin with [31]

nmax = exp

(
2

π

∫ r0

0
arcsin(b/r1)

db

b

)
= exp

(
2

π

∫ r0/r1

0
arcsin ξ

dξ

ξ

)
. (21)

With the help of this formula, one can compute by a simple numerical integration the required
index range for the modified fish-eye mirror (figure 4). We see that nmax may be arbitrarily close
to 1 for sufficiently small radii r0.

Given the radii r0 and r1, the index profile itself is easily computed by storing a table
of (r, ρ) values. Here ρ ranges from 0 to r0 and r is numerically calculated according to
formula (20). Then an interpolating function ρ(r) is constructed from the calculated data and
the index profile is computed as

n =
ρ(r)

r
for 06 r 6 r0, and n = 1 for r > r0. (22)

Figure 5 shows the profiles of the modified fish-eye mirrors depending on the ratio between
the mirror radius r1 and the radius r2 of the material. They are modifications of Maxwell’s
profile (18) with n arbitrarily close to 1. We could multiply the profile by a constant n1 and
still have the same functionality, because the ray trajectories are unchanged. We thus find that
the index contrast, the relative difference between n at the centre and n1 at the rim of the
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Figure 5. Index profiles n(r) for focusing media with radii r0 and r in units
of r1.

material, may be arbitrarily low. Perfect imaging is possible with materials of arbitrarily low
index contrast.

4. Experiment

Our design facilitates the perfect focusing for light rays. In our theory, we use the approximation
of geometrical optics to conclude that waves should be perfectly imaged. Usually, it is the wave
nature of light that limits the resolution of optical instruments [3, 32]. It is therefore essential
to test whether our modified fish-eye mirror does indeed exhibit subwavelength resolution. We
test this on microwaves, because for microwaves we can make measurements of the field with a
precision currently impossible for visible light.

4.1. Microwave device

Figure 6 shows a picture of our device. We use it for microwave radiation of 30 mm free-space
wavelength (10 GHz frequency). The lens is placed inside a thin brass dish that acts as a circular
mirror from the sides and ground plate at the bottom. In our device, r0 = 50 mm and r1 = 65 mm.
It consists of 17 metamaterial rings with a height of 5 mm. The 15 inner rings are made of
Rogers Ultralam®3000 circuit board patterned with ‘I’ or square-shaped copper structures on
one side. The spacing between two neighbouring rings in the radial direction is 2.94 mm, and so
is the unit size of the cells on each ring—our structures are one order of magnitude smaller than
the wavelength. The two outer rings are simply made of a 0.1 mm thick mylar substrate. The
inset of figure 6 shows the theoretical (blue line) and simulated (red squares) values of ε = n2

for the rings of the lens. The simulated values are numerically retrieved from the scattering
parameters of a stack of planar metamaterial sheets with given patterns [33].

In our experiment, the lens is placed inside a parallel-plate waveguide mounted on a flat
stage driven by a computer-controlled xy step motor [11, 33, 34]. With the movable waveguide
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Figure 6. Microwave imaging device. The lens sits in a brass dish that serves both
as a circular mirror and a ground plate. The modified fish-eye profile is produced
by a microwave metamaterial made of patterned circuit board. The inset shows
the theoretical curve of ε = n2 versus the simulation results for the metamaterial
layers.

we can scan the field through a scanning cable. The scanning resolution is given by the step
size, 1 mm. For scanning we use a coaxial cable connected to a vector network analyser (HP
8722D) that also synthesizes the microwave radiation we inject into the chamber. As sources
and drains we use coaxial cables as well. All cables are Teflon-filled and have 1.68 mm outer
shell diameter and 0.5 mm inner core diameter. By adjusting the exposure of the inner core we
control the cross section of the cables; the scanning cable has zero exposure and the source and
drain cables have an exposure length of 4.8 mm.

We observed in our experiments that the cross section of the cables is important for the
detection in perfect imaging. We believe that this fact can be explained as follows. Due to the
granularity of our metamaterial, the electromagnetic wave cannot localize below a certain length
scale. If the cross section is smaller than this scale, as the cross section of the scanning cable
certainly is, one cannot extract sufficient radiation from the field for forming a subwavelength
image—the scanning cable simply scans the field and does not alter it significantly. The
exposure length of the sources and outlets was optimized for maximal field localization, which
probably means that it was optimized for reaching the cross section that matches the localization
length in our device.

4.2. Measurements

The resolution of imaging is best demonstrated by placing two sources in the device. If the
sources appear as separate peaks in the image we may claim to be able to resolve them.
Figure 7(a) shows the scheme of our experiment. On the yellow dashed circle we place two
sources a distance of 0.2λ apart, where λ is the local wavelength (2). Opposite to the sources we
insert nine outlet cables at 0.1λ distance from each other. We scan the field at the outlets. We
also measure the field going through the outlets as follows. All outlets but one are terminated by
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Figure 7. Imaging experiments. (a) Schematic diagram of the experiments. Two
sources are placed on the yellow dashed circle. The distance between the sources
is 0.2λ, where λ is the local wavelength. An ordinary instrument would not be
able to resolve the two sources, but here we image them with a modified fish-
eye mirror (figure 6). The image is detected by nine outlets also indicated on the
yellow dashed circle. We average over four runs of the experiments and obtain
statistical error bars. (b) Imaging outside of the lens, which corresponds to the
left picture of figure 3 where we do not expect perfect imaging. We record the
throughput through the outlets (black dots) and scan the field along them (grey
dots). Our measurements show that the two sources are not resolved. (c) Imaging
within the lens where perfect imaging is possible. The scanned field (grey dots)
does not exhibit marked peaks at the expected image points, but the throughput
(black dots) distinguishes the two sources, thus demonstrating subwavelength
imaging with a modified fish-eye mirror.

impedance-matched absorbers; the one outlet is connected to the detecting port of the vector
network analyser where the amplitude is measured. The throughput through each outlet is
measured one by one by repeating the experiment within the relevant outlet connected. In this
way we demonstrate the effect of a multiple-detector array with just one life detector at a time.
We repeat the entire experiment four times for reducing statistical fluctuations. We investigate
two cases: sources and detectors outside of the lens (for r0 < r < r1) and inside the lens (for
r < r0) that correspond to the ray trajectories illustrated in figure 3. Figure 7(b) shows the results
for the attempted imaging outside of the lens and figure 7(c) the results when the sources and
detectors are inside the lens area. In both cases the scanned field (grey dots) does not resolve
the two sources. However, when the imaging occurs inside the lens the measurements of the
throughput (black dots) resolve the sources, despite the fact that they are separated by the
fraction 0.2 of the local wavelength.

4.3. Discussion

In our previous demonstration of subwavelength imaging with Maxwell’s fish eye [11], we
clearly observed the localization of the field at the image outlets, but with the modified fish-
eye mirror we were not able to observe this effect. The subwavelength image appeared in
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the detected throughput; yet there it is also significantly less clear than in the original fish
eye [11]. These findings suggest that the modified fish eye depends in a more sensitive way
on inaccuracies in its implementation, in particular on the structure size of the material used
(2.94 mm in our case). One might expect that the less the demands on the index range become,
the higher the requirements on the accuracy of the profile. Graded refractive-index materials or
tapered waveguides [35, 36] instead of metamaterials might not suffer from problems caused by
the granularity of a metamaterial.

The fact that the subwavelength image appears in the detected intensity profile, despite
its absence in the field localization, is consistent with the idea that perfect imaging is not
sensitive to the detection efficiency but rather to the resolution of the detectors (and the structure
size of the material). If the detection is not perfect we can imagine the field as a mixture of
an undetected field and the field that has undergone detection. The undetected field does not
localize with subwavelength resolution and so does not form sharp spikes, but only the detected
field does. In our case we could not observe this feature with the fairly crude implementation of
a modified fish-eye mirror by a circuit-board metamaterial. However, in the detected intensity
the undetected field is missing—by definition—and so the image becomes sharper. This aspect
appears to have made it possible for us to resolve the two sources that were 0.2λ apart, despite
the limitations of our device. As the detection of an image is the very point of imaging, we can
claim to have observed subwavelength resolution.

Our measurements also show that subwavelength details only appear in the detected image
in the case when all the rays are focused, i.e. when the device acts as an absolute instrument [3].
They illustrate the two ingredients for perfect imaging with positive refraction—the perfect
focusing of light rays and the detection of the image.

5. Summary

Our theory suggests that absolute optical instruments [3] are possible with materials of
arbitrarily low index contrast. We argued that such devices image with a resolution no longer
limited by the wave nature of light. In practice, the resolution is rather limited by the cross
section of detectors and the granularity of the material used. We performed a microwave
experiment that supports these ideas, where we demonstrate the resolution of subwavelength
details with a device that has a lower index contrast than Maxwell’s fish eye. If these concepts
are indeed correct they may pave the way for practical perfect-imaging devices where imaging
matters most, for visible light.
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