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Abstract. We analyse frequency spectra of absolute optical instruments and
show that they have very specific properties: the eigenfrequencies form tight
groups that are almost equidistantly spaced. We prove this by theoretical
analysis and demonstrate by numerically calculated spectra of various examples
of absolute instruments. We also show that in rotationally and spherically
symmetric absolute instruments a source, its image and the centre of the device
must lie on a straight line.
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1. Introduction

It is well known that the properties of the semiclassical energy spectrum of a quantum-
mechanical system are closely related to the behaviour of the corresponding classical system
described by the same Hamiltonian. One example is classical billiard problems (infinite
potential wells with various shapes) that exhibit chaotic behaviour in some part of the phase
space and regular behaviour in another part. The spectra of quantum versions of these systems
have a typical structure consisting of independent sequences of levels, some of which corre-
spond to the chaotic orbits and some to the regular ones. These properties have been investigated
in great detail using the theory of Green’s functions [1, 2] and asymptotics [3].

The situation in optics is similar. Consider electromagnetic waves in a two-dimensional
(2D) optical metallic cavity polarized such that the electric field is perpendicular to the plane
of the cavity. Such waves can be described by a scalar wave equation, and the eigenvalue
problem for the wavenumber k = ω/c is completely equivalent to the eigenvalue problem for the
energy E of a quantum particle in an infinite potential well of the same shape, with the relation
k2

= 2m E/h̄2 between E and k. Therefore a similar relationship as in the billiard problem must
hold between classical ray propagation in the cavity and the frequency spectrum of its modes.

In optics there exists an additional interesting class of systems possessing a unique property
that is rare in mechanics. These devices are called absolute optical instruments (AIs) [4, 5] with
the property that the rays in them form closed trajectories for various ray parameters, and often
closed paths are formed by all rays. An archetype of an absolute instrument is Maxwell’s fish
eye, discovered in 1854 by Maxwell [6]. Recently, it has been shown both theoretically [7] and
experimentally [8] that this device has the ability to provide subwavelength imaging, beating
the diffraction limit. This might open the way to important applications of absolute instruments
in microscopy or nanolithography, and the investigation of their wave properties is therefore
very desirable. Since in the mechanical problem closed trajectories have a strong influence on
the spectrum [2], we can surmise that the spectrum of absolute instruments may also have some
interesting general features. In addition, the spectrum can provide much, albeit not all [9, 10],

New Journal of Physics 14 (2012) 085023 (http://www.njp.org/)

http://www.njp.org/


3

information about the system. For these reasons, it is of great interest to investigate spectra of
absolute instruments and find out whether they share some general properties.

This is the purpose of this paper. Our analysis shows that the eigenfrequency spectra of
absolute instruments tend to be composed of regularly spaced groups of densely packed levels.
Our results are derived by a different method than was employed for quantum systems [1–3],
by investigating pulse propagation in absolute instruments. We confirm our theoretical analysis
by numerical calculations of the spectra for several examples of absolute instruments.

The paper is organized as follows. In section 2, we recall properties of absolute instruments
and define several types of them; in section 3, we discuss the Green’s function of absolute
instruments essential for deriving the subsequent results. In section 4, we analyse the emission
and absorption of a pulse at the same point and in section 5 at different points, from which
we derive a theorem restricting the mutual position of a source and its image. In section 6 we
discuss the spectrum of one type of absolute instrument, in section 7 we analyse the emission
and absorption of a pulse in arbitrary cavities and in section 8 present the conclusions.

2. Absolute optical instruments

In this section, we recall some properties of AIs. For a more detailed analysis of their general
properties and examples, see [4, 5]. We will also make several additional definitions that will be
needed for the derivation of the subsequent results.

An AI is a device that images stigmatically (sharply) a 3D region of space within
geometrical optics [4]. A stigmatic image of a point A is a point B through which an infinity of
rays emerging from A pass. In [5], we have introduced two types of stigmatic images: a strong
image that is formed at B by all rays emerging from A into some nonzero solid angle and a
weak image formed at B by an infinity of rays emerging from A that constitute, however, a zero
solid angle (e.g. they all lie in a plane as in imaging by a stigmatic cylindrical lens).

Since we want to cover both the 2D and 3D situations, we will also generalize the name
‘absolute instrument’ to the case of 2D light propagation in a plane where, of course, no imaging
of 3D regions would make sense. In this situation, an AI is a device that images stigmatically
a 2D region of the plane within geometrical optics, and an image formed by all rays emerging
into a nonzero angle will be called strong.

We will also define two specific types of AIs. If a point A has a strong image B that is
formed by all the rays emerging from A (i.e. rays emerging into the full angle 2π rad in the 2D
case or the full solid angle of 4π srad in the 3D case), we will call B a full image of A. If a
point A has a strong image B that is not full, we will call that image partial. A device in which
any point has a full image will be called an AI of the first type. A device in which just points
from some region (not everywhere) have full images will be called an AI of the second type. We
term the region of points having full images as Region I and the region of points having partial
images as Region II. Of course, there exist absolute instruments that are neither of the first nor
of the second type; we will not consider them in this paper.

The archetype of absolute instruments, Maxwell’s fish eye [6] mentioned in the
introduction, has a spherically symmetric (or, in the 2D case, radially symmetric) refractive
index profile n(r)= 2/(1 + r 2/a2), where r is the radial coordinate and a a length parameter.
This device is an AI of the first type as it creates a full image of the whole space, see figure 1(a).
By adding a spherical (or, in 2D, a circular) mirror at radius a, one gets a device called
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(a) (b)

(c) (d)

Figure 1. Examples of absolute instruments: (a) Maxwell’s fish eye,
(b) Maxwell’s fish eye mirror, (c) Miñano lens and (d) modified Maxwell’s fish
eye mirror. The black circles mark the radius a, where in panels (b) and (d)
a mirror is placed. The medium in all plots is shown in blue; in panel (d) it
occupies Region I only while the refractive index in Region II (white) is unity;
the radius of Region I in this particular example is R = 0.75 a. Points in Region I
have full images, whereas points in Region II have just partial images since
some rays (here shown in green) from the source miss the image as well as the
medium.

Maxwell’s fish eye mirror [7], which is also an AI of the first type, see figure 1(b). Another
interesting example is the Miñano lens [5, 11] with a homogeneous region of refractive index
n(r)= 1 for r 6 a and n(r)=

√
2a/r − 1 for a 6 r 6 2a, see figure 1(c). Recently, a general

method for designing AIs with spherical symmetry has been developed that can be used to
produce infinitely many different AIs of the first type [5].
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An example of an AI of the second type is the modified Maxwell’s fish eye mirror [12, 13],
see figure 1(d). There, Region I is a full sphere (or, in 2D, a disc) of radius R < a and the rest
of the device is occupied by Region II with unit refractive index.

3. Green’s function

We will consider waves in a medium with a spatially variable refractive index n(r), and assume
throughout this paper that the waves are confined in some way and cannot leak out of the
device. This makes the frequency spectrum of the modes discrete. We can achieve this in several
ways—by encapsulating the device in a spherical mirror, by employing an imaginary refractive
index, which forces the field to be evanescent beyond some radius, or by letting the refractive
index go to zero sufficiently fast for r → ∞ (this is the case of Maxwell’s fish eye [14]).

For simplicity, we will consider scalar waves governed by the wave equation

19 −
n2

c2

∂29

∂t2
= q(Er , t), (1)

where c is the speed of light in vacuum and q(Er , t) is a function describing the sources of
the waves. In the absence of sources (q = 0) and for harmonic dependence of 9 on time,
9(Er , t)= ψ(Er) exp(−iωt), we obtain for ψ the Helmholtz equation with a variable refractive
index

1ψ + k2n2ψ = 0, (2)

where k = ω/c. The solution to equation (2) is given by a discrete set of mode functions ψi(Er)
with the corresponding wavenumbers ki = xi/c. It is easy to show that the mode functions
corresponding to different frequencies are orthogonal with respect to the weight function n2(Er).
If we normalize them with respect to this weight function, we obtain a complete orthonormal
basis of functions∫

V
n2(Er)ψ∗

i (Er)ψ j(Er) dEr = δi j , (3)

where V denotes the volume of the device.
The retarded Green’s function for the wave equation (1) can be found by standard

techniques described, for example, in [15] for the case of the scalar wave equation with a
constant wave speed. The result is

G(Er , t |Er0, t0)= c22(t − t0)
∑

i

sin[ωi(t − t0)]

ωi
ψ∗

i (Er0)ψi(Er), (4)

where 2(t) is the Heaviside step function.
Suppose that there is no wave in the medium at t = −∞, so any wave present later is a

result of the action of a source function q(Er , t). The wave at time t can then be expressed in
terms of Green’s function (4) as

ψ(Er , t)=

∫
V

dEr0

∫ t

−∞

dt0 q(Er0, t0)G(Er , t |Er0, t0). (5)

Alternatively, at any time t the wave is completely and uniquely described by the
set of coefficients {ci(t), i = 1, 2, . . .} of its expansion in terms of mode functions,
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ψ(Er , t)=
∑

∞

i=1 ci(t)ψi(Er). Using equations (3), (4) and (5), we can express ci(t) as

ci(t)=

∫
V

dEr n2(Er)ψ∗

i (Er)ψ(Er , t)

=
c2

2iωi

[
eiωi t

∫ t

−∞

dt0 e−iωi t0

∫
V

dEr0ψ
∗

i (Er0)q(Er0, t0) (6)

− e−iωi t

∫ t

−∞

dt0 eiωi t0

∫
V

dEr0ψ
∗

i (Er0)q(Er0, t0)

]
.

This expression will be useful in the following.

4. Emission and re-absorption of a pulse at the same point

In this section, we derive some important properties of the frequency spectra of absolute
instruments of the first type. For this, we will employ the obvious fact that if a point A has
a full image at B, then the point B has a full image at A. This way, in any absolute instrument of
type 1 any point is a full image of itself: all rays emerging from A will return back to A. From
the point of view of wave optics, it should then be possible to emit a pulse at point A and later
absorb it at the same point. This way, the point A would serve as both the source of the wave
and its absorber (drain) at a later time.

We will consider the absorption to be active in the sense that the absorber does not just
respond passively to the field but emits a precisely tailored absorbing pulse to swallow all the
previously injected radiation. We will describe both the emission and absorption by a single
source function q(Er , t)= qA(Er , t)= δ(Er − ErA)h(t) that has a peak around the emission time and
another peak around the absorption time.

If the pulse is emitted and then re-absorbed, there should be no wave left in the medium for
t → ∞. Therefore all the coefficients ci(t) should turn to zero at t = ∞. Substituting for q(Er , t)
into equation (6), we get for each mode the condition∫

∞

−∞

h(t)e±iωi tdt = 0. (7)

We see that the Fourier components of the source functions at the resonant frequencies
(including their negative counterparts) should be zero. This is in fact quite a natural requirement:
after the source function qA dies out, no mode ψi should be left excited, which is ensured by the
vanishing of the Fourier components of the source function at the resonant frequencies ωi .

Condition (7) has important consequences for frequency spectra of absolute instruments of
the first type. We first give a heuristic argument for this and then proceed to a more rigorous
one.

In an AI of the first type, a short pulse emitted from any point A at time t = 0 comes
back to A from all directions after the time T corresponding to completing a round trip in the
instrument. It should therefore be possible to absorb the pulse at A by applying an absorbing
pulse at time t = T , and the corresponding source function h(t) is hence composed of two
wavelets centred around 0 and T . The Fourier transform h̃(ω) of such a function h will then
have oscillatory behaviour, reminiscent of beats when two tones of a similar frequency are
mixed, with the typical distance 1ω = 2π/T between zeros of h̃(ω). At the same time, we
know from equation (7) that h̃(ω) should have zeros at the resonant frequencies ωi . This implies
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that the frequencies ωi should be arranged almost equidistantly with a spacing of approximately
2π/T . However, since in 2D and 3D the density of states increases with increasing frequency,
it cannot be single eigenfrequencies but rather their groups that have to be arranged this way, so
the spectra can be expected to be highly degenerate, at least approximately.

To derive this heuristic result more rigorously, we proceed in a different way and define
a function ω(ν) that characterizes the spectrum of such an AI and will be useful for further
calculations. To do this, we arrange the eigenfrequencies ωi in non-decreasing order (ω1 6
ω2 6 · · · ); an s times repeated value in the sequence corresponds to an s times degenerate level.
The function ω(ν) is then defined for positive integer values of ν simply by ω(ν)= ων . For
non-integer values ν > 1, it is defined by linear interpolation:

ω(ν)= ωi + (ν− i)(ωi+1 −ωi), (8)

where i is the integer part of ν. Note that the function ω(ν) is continuous and degenerate levels
correspond to intervals of constant ω(ν). We will also need to define ω(ν) for ν < 1. For that, we
define a sequence ω j with j = 0,−1,−2, . . . of negative counterparts of the eigenfrequencies
as follows. If the spectrum contains the zero eigenfrequency, i.e. if ω1 = 0 (such as in Maxwell’s
fish eye), we define ω j = −ω2− j ; if it does not (such as in Maxwell’s fish eye mirror), we put
ω j = −ω1− j . We then define ω(ν) for all ν < 1 by equation (8). This way, ω(ν) is defined for
all real ν. In the case of a non-degenerate spectrum, we can also define the inverse function ν(ω)
by inverting ω(ν). If the spectrum is degenerate, then ν(ω) is well defined except at the discrete
set of degenerate frequencies.

Equipped with the functions ω(ν) and ν(ω), we choose the source function as follows:

h(t)=
1

√
2π

∫
∞

−∞

F̃(ω)(1 − e2iπν(ω)) e−iωt dω, (9)

where F̃(ω) is some bounded function. The integral makes sense even for a degenerate spectrum
since the discrete set of frequencies for which ν(ω) is undefined has a zero measure. For the
Fourier transform h̃(ω) of h(t), it holds that

h̃(ω)≡
1

√
2π

∫
∞

−∞

h(t)eiωt dt = F̃(ω)(1 − e2iπν(ω)), (10)

which turns into zero for integer values of ν, i.e. exactly those for which ω corresponds to some
eigenfrequency ±ωi , just as required by equation (7). This justifies the particular choice (9) of
h(t): conditions (7) are satisfied automatically and it is therefore possible to add energy into the
system and then extract all of it again, all by the source function (9). In fact, equation (9) is the
most general form of the source function satisfying equation (7).

We will now express the function h(t) in a different way. Denoting the inverse Fourier
transform of F̃(ω) by F(t)= 1/

√
2π

∫
∞

−∞
F̃(ω)e−iωt dω and using the fact that a product turns

into a convolution when Fourier transformed, we can write equation (9) as

h(t)= F(t)−
1

√
2π

F(t) ∗
∫

∞

−∞

e2iπν(ω)−iωt dω, (11)

where the symbol ∗ denotes convolution, ( f ∗ g)(x)=
∫

∞

−∞
f (x − y)g(y) dy. Choosing the

function F(t) to be localized (say, around t = 0), the first term F(t) in equation (11) can be
interpreted as the emission pulse and the second term as the absorption pulse. For an AI of the
first type we can expect that the absorption pulse will be similarly sharp in time as the emission
pulse, because the absolute instrument brings the emitted pulse back to the source after the time
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(a) (b)

Figure 2. Emission and absorption of a pulse in Maxwell’s fish eye mirror
with unit radius (a = 1) for a Gaussian function F(t) used in equations (11)
and (16). In (a), the pulse is emitted and absorbed at the same point A at the
radial position r = 0.5, whereas in (b) it is emitted at A and absorbed at point B
opposite to A. The upper graphs show the real part of the source functions: in
(a), it is the function h(t) containing both the emission and absorption pulses; in
(b) the emission pulse hA(t) and absorption pulse hB(t) are shown by full and
dashed lines, respectively. The lower graphs show the energy in the device as a
function of time calculated via simulating the wave with the free software Meep.
We see that the pulse emitted using a short source function can be completely
absorbed by another short source function, which is a specific feature of absolute
instruments. Animations 1 and 2 in the supplementary data (available from
stacks.iop.org/NJP/14/085023/mmedia) show the corresponding time evolution
of the wave in the device.

T . Therefore the integral in equation (11) should be non-zero for a relatively sharp time interval
around t = T . This is illustrated in figure 2(a) and animations 1 and 2 in the supplementary data
(available from stacks.iop.org/NJP/14/085023/mmedia) with the example of Maxwell’s fish eye
mirror.

To see the implications of this fact, we change the integration variable from ω to ν in the
integral in equation (11):

I (t)≡

∫
∞

−∞

e2iπν(ω)−iωt dω =

∫
∞

−∞

dω

dν
exp[−itω(ν)] exp(2iπν) dν. (12)

The expression (12) has a simple interpretation. It can be regarded as the Fourier component at
‘frequency’ 2π of the product dω/dν exp[−itω(ν)] with time t playing the role of a parameter.
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Now, if I (t) is non-zero only for a narrow interval of t around t = T , the function ω(ν) should
essentially be linear with the slope 2π/T .

On the other hand, the density of states in both 2D and 3D grows with frequency, so strictly
speaking, ω(ν) cannot simply be linear but must grow more slowly on average—for a 2D device
it grows on average as a square root and in 3D as a cubic root. The solution of this seeming
discrepancy lies in the term dω/dν. Imagine that ω(ν) is linear with the slope 2π/T on some
intervals of ν (bounded by integer values of ν) and constant on other intervals. Then the constant
intervals will not contribute to I (t) because dω/dν = 0 for them, and the remaining intervals of
linear dependence ω(ν) will ensure that I (t) is non-zero only for a narrow interval of t around
t = T . This means, as we have already shown heuristically, that the frequency spectrum of an
absolute instrument should be highly degenerate, with spaces of 2π/T between the groups.

However, an absolute instrument that behaves perfectly within geometrical optics may not
behave perfectly within wave optics, especially for low frequencies. Therefore the expected
degeneracy of frequency spectra will in general hold only asymptotically for high frequencies
as one approaches the geometrical optics limit. In other words, the spectrum of AIs of the first
type has to be only ‘approximately degenerate’—the frequencies ωi should form groups of
tightly packed levels with spaces of approximately 2π/T between the groups.

This general behaviour of the spectrum of AIs is demonstrated in three examples in
figures 3(a)–(c), and contrasted with a device that is not an AI—a square cavity with a constant
refractive index surrounded by perfect mirrors. The spectrum is represented by the function
ω(ν). The specific character of the spectra of AIs is obvious.

5. Emission and absorption of a pulse at different points

In this section, we will consider AIs where a pulse emitted from one point can be absorbed at
another point. Using similar considerations as in the previous section, this will allow us to derive
conditions for relative positions of a source and its image in spherically (in 3D) and rotationally
(in 2D) symmetric absolute instruments of the first type, and the spectral properties that follow
from that.

Let the pulse be emitted from point A (a source) and absorbed at another point B, which
serves as an active drain. We will describe the emission and absorption by source functions
qA(Er , t)= δ(Er − ErA)hA(t) and qB(Er , t)= δ(Er − ErB)hB(t), respectively. In a similar way as in
section 4, we find from the requirement that ci(t) should vanish for t → ∞ under the following
conditions: ∫

∞

−∞

[ψ∗

i (ErA)hA(t)+ψ∗

i (ErB)hB(t)] e±iωi t dt = 0. (13)

In the following, we will treat separately the cases of two and three dimensions.

5.1. Two-dimensional rotationally symmetric absolute instruments

Let us consider first the 2D situation. Due to the rotational symmetry of the device, the
generalized Helmholtz equation (2) can be separated into polar coordinates (r, ϕ) and each
mode can be expressed as eimϕR(r) with an integer m (we will call this number an angular
mode number) and a suitable function R(r). Let us take a pair of modes with the same R(r)
and opposite values of m, denote them by w± = e±i|m|ϕR(r) and their frequency by x. We also
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ω(ν)

ν

ω(ν)

ν

ω(ν)

ν

ω(ν)

ν

(a) (b)

(c) (d)

Figure 3. Comparison of spectra of 2D absolute instruments represented by the
function ω(ν) with the spectrum of a non-AI. In all cases the speed of the
waves and the radius a are equal to unity. (a) Maxwell’s fish eye, (b) Hooke
index profile n(r)=

√
2 − r 2 with concentric elliptical ray trajectories and (c)

Miñano lens. In (b) and (c), a region of purely imaginary index was added
beyond the radius

√
2 and 2, respectively, that is inaccessible for light rays but

evanescent waves can be formed in it. (d) Spectrum of a unit square cavity
surrounded by perfect mirrors, which is not an AI. In (a)–(c), the period of
a pulse round trip is T = 2π ; therefore the spacing of the frequency groups
asymptotically approaches 1ω = 2π/T = 1. The spectra were calculated by
numerically solving the radial part of equation (2) after separating the angular
variable.

denote radial positions and polar angles of points A, B by (rA, ϕA) and (rB, ϕB), respectively.
We then write condition (13) for the mode ψ+, multiply it by the factor exp(i|m|ϕA) and subtract
it from the condition for the mode ψ− multiplied by the factor exp(−i|m|ϕA). As a result, terms
involving the function hA cancel and we are left with the condition

R∗(rB) sin[|m|(ϕB −ϕA)]
∫

∞

−∞

hB(t)e
±iωt dt = 0. (14)

This condition has important consequences. First of all, since the radial position rB can be
arbitrary, and we cannot assume anything particular about the function hB(t), then sin[|m|(ϕB −

ϕA)] must vanish for all m, which implies that either ϕB = ϕA or ϕB = ϕA ± p. This way, the
source, its image and the centre of symmetry of the lens must lie on a straight line. Remarkably,
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this feature of absolute instruments was proved in [5] by a completely different approach based
on geometrical optics.

To derive the properties of the spectrum, we will use a general property of AIs that holds
not only for AIs of the first or second type, but for all AIs that create strong images. In particular,
it was shown in [5] that the radial positions of the source and its image satisfy either the relation
rA = 1/rB or rA = rB. The first case corresponds to generalized Maxwell’s fish eyes and we will
not discuss it here.

We will focus on the second situation when rA = rB, which corresponds to a much
more general class of AIs [5], and discuss the two possibilities ϕB = ϕA and or ϕB = ϕA ±π

separately. The first case ϕB = ϕA implies A = B, which takes us back to the situation of emission
and re-absorption of the pulse at the same point discussed in the previous section. The second
case ϕB = ϕA ±π corresponds to the image located opposite the source, viewed from the centre
of the lens. Then it holds that ψ∗

i (ErA)= (−1)miψ∗

i (ErB), where mi denotes the angular mode
number corresponding to the i th mode. Inserting this into equation (13), we obtain the condition∫

∞

−∞

[hA(t)+ (−1)mi hB(t)] e±iωi t dt = 0. (15)

Using now the result from the previous section, namely that the frequency spectrum of an AI of
the first type is highly degenerate (at least approximately), we see that it is not possible to have
two modes i, j with almost the same frequency but with their angular mode numbers mi ,m j

of a different parity; otherwise the Fourier components at ωi of the functions hA(t) and hB(t)
would have to be zero separately, which we do not assume. Hence, we see that in AIs of the
first type where the source and its image are opposite across the centre, the (approximately)
degenerate groups of frequencies correspond to angular mode numbers of the same parity. This
causes a typical structure of the spectrum of 2D AIs of this type: the numbers of levels in the
(approximately) degenerate groups grow by one as they correspond to the following options for
m: (0), (−1, 1), (−2, 0, 2), (−3,−1, 1, 3) etc. This is illustrated in figures 3(b) and (c). On the
other hand, for AIs that do not have an image opposite the source, there is no restriction for
the angular mode numbers m related to the (approximately) degenerate levels. Hence, the level
scheme is (0), (−1, 0, 1), (−2,−1, 0, 1, 2) etc, and the numbers of levels in the groups hence
grow by two. This is illustrated in figure 3(a) for the example of Maxwell’s fish eye.

5.2. Three-dimensional spherically symmetric absolute instruments

For 3D spherically symmetric AIs, we can also prove that the source A, its image B and the lens
centre O must lie on a straight line; we proceed in a similar way as for the 2D situation. Modes
are now separable in spherical coordinates as Ylm(θ, ϕ)R(r)∝ Pm

l (cos θ) eimϕR(r) with Ylm and
Pm

l being the spherical harmonic and associated Legendre polynomial, respectively. We choose
the z-axis to be perpendicular to the plane OAB, which places the source and its image on the
equator. Applying then the same argumentation as above to the modes with the same parity of
l,m (the others vanish on the equator), in particular equation (14), we find that the points O, A
and B lie on a straight line.

Regarding the level scheme for spherically symmetric AIs, we note that in all spherically
symmetric media there is a degeneracy with respect to the angular mode number m. This is
caused by the fact that Ylm(θ, ϕ) are eigenfunctions of the Laplacian with the eigenvalues l(l + 1)
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depending on l but not m. Our results derived above therefore mean that in 3D AIs of the first
type there is additionally a strong approximate degeneracy with respect to l.

5.3. The relation between hA(t) and hB(t)

What remains to be discussed is the relationship between the source functions hA(t) and hB(t)
in the case of emission and absorption of a pulse at different points A (source) and B (drain). As
we have seen, in this situation points A and B are opposite each other (with the exception of the
generalized Maxwell’s fish eye which we do not consider here). The functions hA(t) and hB(t)
then have to satisfy condition (15), which can be ensured by putting

hA(t)= F(t), hB(t)= −
1

√
2π

F(t) ∗
∫

∞

−∞

eiπ [2ν(ω)+M(ω)]−iωt dω. (16)

Here the function M(ω) is defined as follows. If ω lies within some of the groups of tightly
spaced frequency levels of the spectrum we have discussed, M(ω) takes an integer value of the
same parity as the parity of the angular mode numbers m corresponding to that group (as we
have seen, the parities of the numbers m are the same for all levels within the group). When
going from one group to the next, the value of M grows by unity. In the regions between the
groups, the value M(ω) is obtained by interpolation. It is not difficult to see that this choice of
functions hA(t) and hB(t) automatically satisfies condition (15) and therefore the pulse emitted
at A will be absorbed at B. At the same time, the function M(ω) will be close to linear because
of the general character of the spectra of AIs we have derived. This will then ensure that for a
short pulse hA(t) the pulse hB(t) will also be short. This situation is illustrated in figure 2(b) for
the example of Maxwell’s fish eye mirror.

6. Spectra of absolute optical instruments of the second type

In the previous sections, we have analysed spectra of absolute instruments of the first type.
Now we turn our attention to AIs of the second type. In them, for points A from Region I (see
section 2) all rays emerging from A reach its image B, but for points A from Region II some
rays emerging from A reach the image B and some do not. A typical example is a modified
Maxwell’s fish eye mirror discussed in section 2 and in detail in [12].

To derive the properties of the spectrum, we can proceed in exactly the same way as in
the two previous sections for points from Region I. However, for points from Region II we
can no longer claim that a pulse emitted from A can completely be absorbed at its image
B because some rays from A simply miss B. This means that modes that have a significant
contribution in Region I must follow the rules derived above, i.e. form tight groups with
approximately equidistant spacing. However, modes whose wavefunction ψi practically turns
to zero in Region I do not have to obey these rules because they simply cannot ‘spoil’
imaging of Region I. Therefore the spectrum will be composed of two sequences of levels: one
approximately degenerate and regularly spaced and the other one essentially random. This is
very similar behaviour to that of the levels of quantum billiards [1–3] where different sequences
of levels also coexist, some of which correspond to chaotic orbits and some to regular ones.

This typical behaviour is illustrated in figure 4 for the modified Maxwell’s fish eye mirror.
There the eigenfrequencies are shown as functions of the radius R of Region I with different
colours distinguishing different angular mode numbers m. The curve becomes dashed for such

New Journal of Physics 14 (2012) 085023 (http://www.njp.org/)

http://www.njp.org/


13

R

ω

Figure 4. Spectrum of AI of the second type—the 2D modified Maxwell’s fish
eye mirror of unit radius (a = 1) and different radii R of the medium. The radius
R is on the horizontal axis, the eigenfrequencies on the vertical axis and c is
set to unity. Different colours distinguish different angular mode numbers m.
The dashed parts of the lines mark the situation when the corresponding mode
has large enough angular momentum so as not to penetrate into Region I
(r< R); such modes are confined to the homogeneous Region II (R < r 6 1)
and therefore do not spoil the full imaging in Region I. The intersections of the
full lines with the lines of constant R have the character of the spectrum of AIs
of the first type. The spectrum is alternatively represented in animation 3 in the
supplementary data (available from stacks.iop.org/NJP/14/085023/mmedia).

an interval of R where its angular mode number m is larger than ωR/c; this condition guarantees
that the wave has large enough angular momentum so as not to penetrate into Region I (strictly
speaking, the wave does penetrate but it is evanescent in that region). The intersections of the
full lines with the lines of constant R show only the spectrum of those modes that penetrate into
Region I, and they therefore have the character of the spectra of AIs of the first type. Note also
that the dashed parts of the lines are almost horizontal. This is because when a mode does not
penetrate into Region I, it hardly gets shifted when the radius R of this region is changed.

Another useful aspect of figure 4 can be seen when looking at it without paying attention to
whether the lines are dashed or not. Then we see a smooth transition from the spectrum of an AI
at R = 1 (Maxwell’s fish eye mirror) to the spectrum of a non-AI at R = 0 (a homogeneous disc
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Figure 5. Emission and re-absorption of a pulse at the centre of a square cavity.
The upper graph shows the real part of the source function h(t) for a Gaussian
function F(t) from equation (11), the lower graph shows the energy in the device
as a function of time. Because of the irregular character of the spectrum, the
short emission pulse is followed by a very long absorbing tail (the graph shows
just a part of it); it therefore takes a long time to extract the energy from the
system, unlike in AIs. Animation 4 in the supplementary data (available from
stacks.iop.org/NJP/14/085023/mmedia) shows the corresponding time evolution
of the wave.

surrounded by a mirror). An animated illustration of the spectrum can be seen in animation 3 in
the supplementary data (available from stacks.iop.org/NJP/14/085023/mmedia).

7. Re-absorption of the pulse in arbitrary cavities

To see from a still different perspective the contrast between absolute instruments and devices
that are far from AIs, we will investigate the possibility of emission and re-absorption of a pulse
in a cavity that is not an absolute instrument. The results of section 4, in particular the form of
the source function (11), are still valid. The difference is that now a short pulse described by a
well-localized function F(t) becomes very wide when convoluted with the function I (t) from
equation (12). This is caused by the random character of the spectrum, in contrast to the regular
spectrum of AIs, which results in many different values of the slope of the function ω(ν) in the
exponent in equation (12) and thus to a wide character of the function I (t).

We demonstrate this with an example of a square cavity whose spectrum is shown in
figure 3(d). Figure 5 shows an example of the source function h(t) satisfying equation (7) and
corresponding to a sharp emission pulse F(t). We see that the absorption part of h(t) has a
very long tail and the absorption thus takes a very long time. Figure 5 also shows for this
particular h(t) the dependence of the total energy in the system as a function of time which
was calculated by running a finite different time domain (FDTD) simulation of the wave in the
cavity (performed with the free software Meep). We see that the energy increases quickly when
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the first peak corresponding to the function F(t) comes, and then gradually decreases with time
as the absorbing source function F(t) ∗ I (t) acts; the absorption takes a very long time now.
Animation 4 in the supplementary data (available from stacks.iop.org/NJP/14/085023/mmedia)
shows the evolution of the wave in the cavity in this situation as well as the gradually decreasing
energy in the system.

8. Conclusions

In this paper we have analysed properties of eigenfrequency spectra of AIs. By considering the
process of emission, propagation and absorption of a pulse, we have shown that the spectra
of AIs of the first type have a typical structure of approximately equidistantly spaced, tightly
packed groups of levels. For AIs of the second type, there exist additional levels that do not obey
this rule; they correspond to modes that do not penetrate to the region whose points have full
images. We have also derived in a different way the previously known result that in rotationally
and spherically symmetric media the source, its image and the centre of the device must lie on
a straight line.

Our research opens many questions to be answered. For example, it would be worth
exploring the asymptotic behaviour of the groups of levels for large frequencies, in particular
the extensions and spacings of the groups. Another interesting question is related to reshaping of
a pulse as a result of the Gouy phase, which occurs in 2D AIs and can most likely be explained
by the properties of their spectra in a similar way as described in [16] for a different system. It
would also be worth exploring how perturbations (imperfections of the refractive index profile
or of the shape of the mirrors, etc) would influence the spectrum and how this is related to the
corresponding ray-optical aberrations introduced this way.
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