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Abstract. Transformation optics has demonstrated its ability to design various
novel devices, for example, to change objects’ sizes, positions or even shapes.
This time we come to another magical manipulation: to change the numbers
of sources. In this paper, we will design a new class of gradient index lenses
from multivalued optical conformal mapping. We shall call them the conformal
lenses. Such lenses can make one active source appear omnidirectionally as two
(or many) in-phase sources, each interfering with others. As a self-interference
phenomenon, this has not been discussed before. Meanwhile, they can transform
multiple in-phase sources into one. Other intriguing illusion effects are also
demonstrated. Based on the Riemann sheet analysis, the physics mechanism
of such effects are well explained. Finally, we apply transmutation methods to
design lenses without any singular material parameters.
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1. Introduction

Gradient index lenses [1], such as the Maxwell fish-eye lens [2], the Luneburg lens [3]
and the Eaton lens [4] have recently drawn much attention because of their utility for
designing invisibility cloaks [5], omnidirectional retroreflectors [6] and various imaging
functionalities [7–12] including the perfect imaging [13–15]. Transformation optics [5, 16],
as a newly versatile tool, have also succeeded in designing various novel devices [17, 18],
including invisibility cloaks [19–26]. Generally, materials designed by transformation optics are
inhomogeneous and anisotropic. In particular, such anisotropic materials are often of magnetic
response, leading to challenges in implementation. Optical conformal mapping [5] however,
can be applied to obtain isotropic and non-magnetic response materials, thereby facilitating the
implementation. There have been some optical conformal devices proposed, such as a beam
collimator [27–29] and beam bend [30]. In this paper, we will design a new class of gradient
index lenses based on a simple optical conformal mapping. Such lenses can transform one active
source into two and two into one. They can also create other illusion effects, such as obtaining
a rotated image for one current sheet like the field rotator does [31], or transforming a ‘+’ sign
into a ‘−’ sign and vice versa. By analyzing the Riemann sheet, we found the intrinsic physics
mechanism of the illusion effects. In addition, we can even remove the singular values of the
material parameters using the transmutation methods [32, 33]. Finally, we suggest a group of
multivalued conformal mappings to design lenses that can transform one source into many, and
vice versa. Note that the functionality of transforming two sources into one has been proposed
based on the overlapped illusion optics [34], yet requiring negative index materials.

2. Mapping of w2 = z2 − 1

We will start the story from the conformal mapping

w2
= z2

− 1, (1)

which maps w-space (w = u + iv) into z-space (z = x + iy, two values of w are mapped into two
values of z).
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From the theory of optical conformal mapping [5], we should have the relationship of the
refractive indexes in w-space (nw) and z-space (nz),

nz = nw

∣∣∣∣dw

dz

∣∣∣∣ , (2)

by keeping the optical path unchanged during the mapping. In this case, if we suppose nw = 1
(vacuum in w-space), the refractive index in z-space should be

nz =
|z|√

|z2 − 1|
=

√
x2 + y2√

(x2 − y2 − 1)2 + 4x2 y2
. (3)

Writing in bipolar coordinates, we have

nz =

√
cosh τ + cos σ

2
, (4)

where x =
sinh τ

cosh τ−cos σ
and y =

sin σ

cosh τ−cos σ
. We will find that it is hopeful to write in this form

in the later sections, e.g. section 6. From equations (3) and (4), it is clear that three singular
points can be found, i.e. when z = 0, nz = 0, when z = ±1, nz = +∞. There are two kinds
of special mappings here. One is that z = 0 is mapped to w = ±i (one point mapped to two
points). The other is that z = ±1 are mapped to w = 0 (two points mapped to one point).
These two properties would be used to demonstrate the following important functionalities,
i.e. transforming one source into two, and two into one. The transformation media described in
equations (3) and (4) are called the conformal lenses, which can work for active sources in both
the wave optics realm and the geometric optics limit.

It is important to note that optical conformal mapping usually requires materials to be filled
in the whole space. However, for the mapping in equation (1), when z → ∞, w → z, we can
introduce a cut-off radius rc so that

nz =

{
1, |z| > rc,
|z|√
|z2−1|

, |z|6 rc,
(5)

indicating that the lens here is of finite size, with almost the same properties reserved as the full
one in equations (3) and (4) if rc is large enough. We will use this finite-size lens to demonstrate
the intriguing wave functionality by performing the numerical simulations below.

3. ‘1 to 2’ and ‘2 to 1’

We will only consider the transverse electric polarized waves (i.e. εz = n2
z , µ = 1) and the line

current sources. For the transverse magnetic polarized waves, if we choose µz = n2
z and ε = 1,

the effects will be the same. Here we assign rc = 5 and the wavelength λ = 2 (arbitrary units).
Figure 1(a) shows the electric field distribution when there is one current source (with a ‘1 A’
current) located at the position z = 0 in the conformal lens described by equation (5). The far
field distribution (in the region r > rc) appears to be that of two line current sources (each
with a ‘1/2 A’ current) located at w = ±i in vacuum, which is illustrated in figure 1(b). In other
words, one source is transformed into two. Figure 1(c) shows the electric field distribution when
there are two line current sources located at the positions z = ±1 in the lens. Each one carries
‘1 A’ current. The far field distribution appears to be that of only one line current source with
a ‘2 A’ current in vacuum, which is illustrated in figure 1(d). In other words, two sources are
transformed into one.
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Figure 1. The electric field distribution for (a), one line current source with a
‘1 A’ current in the conformal lens described by equation (5); (b), two line current
sources (each with a ‘1/2 A’ current) in vacuum; (c), two line current sources
(each with a ‘1 A’ current) in the lens; (d), one line current source with a ‘2 A’
current in vacuum.

4. Other illusion effects

In this section, we will introduce five additionally intriguing properties of the conformal lenses
for other active sources, such as current sheets. In the previous section, we mainly focused on
point-to-point mappings, while here we will work on line-to-line mappings.

First of all, let us consider the two mappings below. One is that one line (from z = −i to i)
is mapped into two lines (from w = −

√
2 i to i and from w = i to

√
2 i). The other is that two

lines (from z = −
√

2 to −1 and from z = 1 to
√

2) are mapped into one line (from w = −1 to 1).
Again, numerical simulations will be used in describing such properties. We assign rc = 5, the
wavelength λ = 2 and Ez = 1 V m−1 for each line boundary (the same applies in the following).
The resembling far-field patterns in figures 2(a) and (b) show that one current sheet appears to
be two, while those in figures 2(c) and (d) tell us that two current sheets are transformed into
one.

Next, we will consider another mapping, where a line (from z = −1 to 1) is mapped into
another (from w = −i to i). Figures 3(a) and (b) show almost identical far field distributions,
indicating that one current sheet has a 90◦ rotation image when embedded in the conformal lens.
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Figure 2. The electric field distribution for (a) one current sheet in the conformal
lens; (b) two current sheets in vacuum; (c) two current sheets in the lens; (d) one
current sheet in vacuum.

Figure 3. The electric field distribution for (a) one current sheet in the conformal
lens; (b) a rotated current sheet in vacuum.

Thirdly, let us come to another two interesting mappings. One is that two cross lines (one
is from z = −1 to 1, while the other is from z = −i to i) are mapped into one single line (from
w = −

√
2 i to

√
2 i). The other mapping is that a line (from z = −

√
2 to

√
2) is mapped into
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Figure 4. The electric field distribution for (a) two cross current sheets in the
conformal lens; (b) one current sheet in vacuum; (c) one current sheet in the
lens; (d) two cross current sheets in vacuum.

two cross lines (one is from w = −1 to 1, while the other is from w = −i to i). Figures 4(a) and
(b) show that the conformal lens can transform two cross current sheets into one current sheet
(i.e. a ‘+’ sign into a ‘−’ sign). Figures 4(c) and (d) show that a ‘−’ sign appears to be a ‘+’
sign if it is embedded in the lens. These illusion effects can be treated as combinations of the
above rotation effects and the effects of transforming one source into two and two into one. For
example, the combination of figures 2(a) and 3(a) becomes figure 4(a).

5. Riemann sheet analysis

As we have seen, the mapping w2
= z2

− 1 can effectively transform one source into two and
vice versa. To understand the mechanism beyond this in more detail, it is useful to look closer at
light propagation from a single point source in both electromagnetic and real spaces. Suppose
that the source is located at the point z0 of physical space with Re(z0) > 0. In virtual space

this point corresponds to the point w0 =

√
z2

0 − 1, where the branch of the square root is chosen
such that Re(w0) > 0. In terms of geometrical optics, the point source illuminates both Riemann
sheets of virtual space: the upper sheet is illuminated directly with the exception of the shadow
cast by the branch cut, and the lower sheet is illuminated by the rays that enter it from the upper
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Figure 5. Regions illuminated by a point source in virtual space (u–v space) and
physical space (x–y space). The source (yellow) is placed at w = 1 of virtual
space, which corresponds to z =

√
2 of physical space. The branch cuts are

shown by the red zigzag lines. (a) In virtual space, the source illuminates a part
of the upper Riemann sheet directly (shown in green), and a part of the lower
Riemann sheet via the branch cut (pink region). The borders of these regions
are marked by the thick black and gray lines. (b) In physical space, the two
corresponding regions partly overlap, which causes interference in the green-
pink region. The white region cannot be accessed by any ray from the source,
so it remains dark. The images of the thick (black and gray) lines on upper
and lower Riemann sheets of virtual space are shown by full and dashed style,
respectively.

sheet via the branch cut, see figure 5(a). Since both Riemann sheets of virtual space are mapped
to the same physical space, the images of their illuminated regions may overlap in general.
This indeed happens, as figure 5(b) reveals, and points of the green-pink region can be accessed
from the source by two different rays. In that region therefore interference fringes occur, see
figure 6(a). At the same time, some points in physical space can be reached from the source by
a single ray only (those in the green region in our example of figure 5(b)), and still others cannot
be reached by any ray (white region). If there is another source at z = −z0 with the same phase,
all the regions can be accessed from the sources by two different rays. Therefore the interference
fringes occur everywhere, see figure 6(b) where we set z0 =

√
2. The field pattern looks like that

when there are two sources at w = ±1 with the same phase in vacuum, as plot in figure 6(c)
for comparison.

Suppose now that the source is placed on the branch cut in physical space. Its image in
virtual space lies on the branch cut as well, i.e. on the imaginary axis between i and −i. Then,
apparently, both Riemann sheets are illuminated entirely, so the overlap region in physical
space is the whole z-plane. This way, interference fringes are observed in the whole plane,
and asymptotically they look the same as if they were created by a pair of sources in vacuum,
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Figure 6. (a) Wave from a single source as in figure 5(b) with the vacuum
wavelength λ = 0.4. The approximate boundary of the overlap region is shown
by the two black lines on the right, the approximate boundary of the shadow
region is shown by the two black lines on the left. Interference fringes in the
overlap region are clearly visible. (b) Wave from two sources at z = ±

√
2 with

the same phase and λ = 0.4. (c) Wave from two sources at w = ±1 with the
same phase in vacuum for comparison. (d) Wave from two sources at z = ±

√
2,

differing in phase by π , with λ = 1.

just as we have seen in figure 1(a) in section 3. Figure 7(a) shows the interference pattern for
the single source at z = 0 for the wavelength λ = 0.4.

Now consider a different situation. If the source in physical space is located at z = 1, the
overlap region will be the whole half-plane Re(z) > 0 while the shadow region will be the whole
half-plane Re(z) < 0; the roles of these half-planes will be reversed if the source is at z = −1
instead. Moreover, at both of these source positions the virtual space source position is the
origin, so the interference in the overlap region is always perfectly constructive. Further, when
there are both the sources at z = ±1, each of them radiates mainly into its corresponding half-
plane. If they are in phase, the wave in the half-plane Re(z) > 0 goes smoothly to the wave in
the half-plane Re(z) < 0, so the total field is smooth as we have seen in figure 1(c) in section 3.
However, if the phase of the two sources differs by π , then there will be a phase jump along the
imaginary axis, which will result in destructive interference there, as can be seen in figure 7(b).
Similar phenomenon occurs when the two sources with a π phase difference are located at
z = ±

√
2, see figure 6(d). In detail, the green regions in figure 5(b) have similar field patterns as
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Figure 7. Wave pattern for (a), a single source in physical space placed at z = 0
with λ = 0.4, and (b), two sources placed at z = ±1, differing in phase by π ,
with λ = 1.

those from two sources with a π phase difference at w = ±1 in vacuum, while the white region
and the green-pink region have similar field patterns as those from two sources with the same
phase at w = ±1 in vacuum. More complicated combinations of sources can be arranged to
have various illusion effects. However, careful analysis of different interference regions should
be made following the above scheme.

This way, it is the unusual properties of the two-to-two mapping w2
= z2

− 1 that cause one
source to look like two and vice versa. As we will see, the situation can be extended to higher
powers of w and z as well.

6. Transmutation of the singularities

As described previously, there are singular values among the permittivity distribution. However,
we find that near the singular points

nz ∝


r

−
1
2

+1 =

[√
(x − 1)2 + y2

]−
1
2
, z → +1,

r =
√

x2 + y2, z → 0,

r
−

1
2

−1 =

[√
(x + 1)2 + y2

]−
1
2
, z → −1,

(6)

whose singular values can then be transmuted using coordinate transformation [32]. For
example, we can perform the following transformation: ((r, θ, z) ⇔ (R, 2, Z)),

R =

{
r2

r0
, 06 r 6 r0,

r, r > r0,
2 = θ, Z = z (7)

to obtain the material parameters

µr = 2, µθ =
1

2
, εz =

1

2

b2√
(x2 − y2 − 1)2 + 4x2 y2

(8)
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Figure 8. The permittivity distribution for transmuted conformal lens.

inside the region 06 r 6 r0. During the simulation, we set r0 = 0.5. For the other two singular
points, it is more convenient to perform the transmutation in bipolar coordinate ((τ, σ, z) ⇔

(T, 6, Z)),

T =


1
2(τ + τ0), τ > τ0,

τ, −τ0 < τ < τ0,

1
2(τ − τ0), τ 6−τ0,

6 = σ, Z = z. (9)

The transformed parameters are

µτ =
1

2
, µσ = 2, εz =

(
cosh 1

2(τ + τ0) − cos σ
)2

(cosh τ − cos σ)2
(cosh τ + cos σ) (10)

for τ > τ0 (or inside the region (x − coth τ0)
2 + y2 6 csch2τ0) and

µτ =
1

2
, µσ = 2, εz =

(
cosh 1

2(τ − τ0) − cos σ
)2

(cosh τ − cos σ)2
(cosh τ + cos σ) (11)

for τ 6−τ0 (or inside the region (x + coth τ0)
2 + y2 6 csch2τ0). To avoid overlapping with the

region 06 r 6 r0, we assign τ0 = 1.2 for instance during the simulation. Figure 8 shows the
distribution of εz, which has no singular value now.

Figure 9(a) shows the electric field distribution when there is only one line current source
(with a ‘1 A’ current) located at the positions z = 0 in the transmuted conformal lens. The far
field distribution appears to be that of two line current sources (each with a ‘1/2 A’ current)
located at w = ±i in vacuum (see also in figure 1(b)). Figure 9(b) shows the electric field
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Figure 9. The electric field distribution for (a) one line current source with a ‘1 A’
current in the transmuted conformal lens; (b) two line current sources (each with
a ‘1 A’ current) in the transmuted lens.

distribution when there are two line current sources (each with a ‘1 A’ current) located at the
positions z = ±1 in the transmuted lens. The far field distribution appears to be that of only one
line current source with a ‘2 A’ current in vacuum (see also in figure 1(d)).

7. General mapping wN = zN − 1

Above we discuss how to transform one source into two and two into one. Now we will consider
a more general conformal mapping

wN
= zN

− 1, (12)

which maps w-space into z-space (N values of w are mapped into N values of z).
The transformed refractive index in z-space is

nz =
|z|N−1

|zN − 1|1−
1
N

(13)

if the refractive index in w-space is unity. There are N + 1 singular points, including z = 0
(where nz = 0) and z = e2iπ j

N ( j = 0, 1, . . . , N − 1) (where nz = +∞). Similar transmutation
methods can be applied for finite values of the electromagnetic parameters. There are two
kinds of special mappings. One is that z = 0 is mapped to N points (w = eiπ 2 j+1

N ( j = 0, 1, . . . ,

N − 1)). The other is that N singular points (z = e2iπ j
N ( j = 0, 1, . . . , N − 1)) are mapped

to w = 0. Such intriguing properties enable us to transform one active object into many and
many into one. For instance, we set N = 3, while keeping the cut-off radius at rc = 5 and the
wavelength λ = 2 during the simulations. Figure 10(a) shows the electric field distribution when
there is only one line current source with a ‘1 A’ current at z = 0 in the conformal lens described
by equation (13) (but with the cut-off radius introduced). The far field pattern appears to be that
of three line current sources (each with a ‘1/3 A’ current) at the positions w = ei π

3 , −1, ei 5π
3 in

vacuum, which is plotted in figure 10(b). Figure 10(c) plots the electric field distribution for
three line current sources (each with a ‘1 A’ current) located at the positions z = 1, ei 2π

3 , ei 4π
3
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Figure 10. The electric field distribution for (a) one line current source with a
‘1 A’ current in the conformal lens described by equation (13) (yet with a cut-off
radius); (b) three line current sources (each with a ‘1/3 A’ current) in vacuum;
(c) three line current sources (each with a ‘1 A’ current) in the lens; (d) one line
current source with a ‘3 A’ current in vacuum.

in the lens. It looks as if there is only one line current source with a ‘3 A’ current at w = 0 in
vacuum (see in figure 10(d)).

8. Conclusions

In conclusion, we have proposed a new class of lenses to transform one active object into many
and many into one using multivalued optical conformal mapping. To the best of our knowledge,
it is the first time that the effect of transforming one object into many has been discovered
outside of fiction4. For the purpose of transforming multiple active objects into one, applications
can be further developed in enhancing brightness for the lighting systems [34]. The conformal
lenses also possess some other interesting illusion properties, such as obtaining a rotated image
or changing a ‘+’ sign into a ‘−’ sign, etc. Riemann sheet analysis is used to explain the physics
mechanism behind. Transmutation methods are performed to adjust the lenses for non-singular

4 For example, in the famous Chinese novel, Journey to the West, by Wu Cheng En, the Monkey King can duplicate
himself into many.
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material parameters. Seeing the recent great progresses of the carpet cloaks [21, 23–26], as they
were derived from quasi-conformal mapping [21], which more or less resembles the optical
conformal mapping [35, 36], it is not difficult to foresee the future of the optical conformal
devices including the conformal lenses presented herein.
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