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Abstract
We analyse the resolution of Maxwellʼs fisheye in terms of the efficiency with
which a pulse emitted from one point (source) can be absorbed at another point
(drain) that is slightly displaced from the position of the image of the source. The
drain is active and is designed to absorb the maximum possible amount of
energy emitted by the source. Based on the size of the area where the energy can
be absorbed efficiently, we address the question of whether such an active drain
can provide subwavelength resolution and show that the answer is negative
because this area is diffraction limited. We support our theoretical results with
numerical simulations.

S Online supplementary data available from stacks.iop.org/njp/16/063001/
mmedia
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1. Introduction

Maxwellʼs fisheye (MFE) [1] and Maxwellʼs fisheye mirror [2–4] are absolute optical
instruments [5] where all light rays form circular trajectories and where every point in space is
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stigmatically imaged. In 2009 Leonhardt hypothesised [3] that this imaging can be perfect even
for waves and is not limited by diffraction, enabling in principle super-resolution imaging. This
result started a hot scientific debate and opened a rich area of research exploration, with many
theoretical and experimental results both supporting [6–10] and opposing [9, 11–14] the claim.
During the discussion it turned out that a central notion in answering the question of whether
one can achieve super-resolution with MFE and other absolute instruments, is the need for a
drain (outlet) for the radiation [3, 15, 16] within the lens. Without the drain, imaging is
diffraction limited due to the interference of incoming converging waves and outgoing waves
[13, 17] at the image point. The question that stands now is how such a drain could be
practically employed to achieve super-resolution in microscopy, nanolithography, etc.

To say that something has perfect resolution, it is a necessary condition that one be able to
resolve two closely spaced point sources in the image, even if the separation of the sources is
much smaller than the wavelength. Is this possible for MFE? The unique property of MFE (as
well as many other absolute instruments) is that all rays emerging from a point necessarily pass
stigmatically through its corresponding image point. This means that power released from a
point can only be fully absorbed at its image point, suggesting that imaging by MFE should be
perfect. If one were to have a ‘perfect drain’ which could be scanned across the image space of
the fisheye without prior knowledge of the location of a single source, there would be only a
single point where all the power would flow continuously into the drain. For all other points,
some power would not be absorbed and excess energy would remain in the device, which could
then disclose that the position of the drain is ‘wrong’. One could then hope that this information
would provide an unlimited resolution of the location of the source.

It has turned out that it is not easy to construct such an ideal passive drain, either
theoretically or practically. One option could be artificial black holes [18], but this would
require rather extreme optical media; another option would be a drain adapted to a particular
position within MFE [15]. Because of the general difficulty of designing a passive drain which
could be used to test the MFE in all circumstances, however, we sidestep the issues of
constructing a perfect passive drain and instead construct a theoretically perfect active drain.
This will be accomplished by physically placing an active infinitesimal dipole antenna at the
drain point and determining the theoretically most perfect antenna current to absorb the
maximum power, for any given time-dependent current at the source(s). A passive drain would
do no better than this in terms of absorption or resolution, since it would have to interact with
the same set of modes of the fisheye as an active drain. Then, with our theoretically perfect
drain, we will examine what happens when it is misplaced from the image point in terms of
residual power in the fisheye. Based on this, we will make a conclusion about perfect imaging
in the MFE with such an active drain that, most likely, applies to passive drains as well.

The paper is organised as follows: in the next section we demonstrate the well-known
equivalence of waves in MFE and on a 2D sphere. In section 3 we discuss expansion of a wave
on the sphere into modes and the energy in the wave; in section 4 we propose the optimal active
drain. In section 5 we analyse the resolution that can be achieved with this drain theoretically
and in section 6 by wave simulations. We conclude in section 7.
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2. Equivalence of 2D MFE and an optically homogeneous sphere

In the following we will consider a two-dimensional Maxwellʼs fisheye of unit radius. Its
refractive index depends only on the distance r from the origin and is given by the well-known
formula

=
+

( )n r
r

2

1
. (1)MFE 2

It has been shown by Luneburg [19] that within geometrical optics, the ray propagation in this
device is equivalent to ray propagation on a homogeneous sphere with unit radius and unit
refractive index. Ray trajectories in the plane of MFE are obtained by mapping the ray
trajectories on the sphere, the great circles, via the stereographic projection [20]. This beautiful
relationship between wave propagation in a 2D MFE and wave propagation on a sphere can be
regarded as a precursor of transformation optics.

Interestingly, the Luneburg relationship is valid not only for rays but also for waves in
MFE if the scalar wave equation is considered. It is a consequence of the fact that the
stereographic projection is a conformal mapping, and of the properties of the Laplace operator
in such a transformation. To show this, we write the wave equation for scalar waves in the 2D
MFE in the absence of sources

Δ − ∂
∂

=φ u n
u

t
0, (2)( )r, MFE

2
2

2

where Δ φ( )r, denotes the Laplace operator in polar coordinates φ( )r, . Here we are using units in

which the speed of the waves is equal to unity for n = 1. We now transform this equation to new
coordinates θ ϕ( ), parameterising a unit sphere which is stereographically projected onto the

plane φ( )r, . The relations between the coordinates θ ϕ( ), and φ( )r, are

θ φ ϕ= =r cot
2

, . (3)

Written in the new coordinates, equation (2) becomes
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u
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2

where

⎜ ⎟
⎛
⎝

⎞
⎠Δ

θ θ
θ

θ θ ϕ
= ∂

∂
∂
∂

+ ∂
∂θ ϕ

1
sin

sin
1

sin
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is the angular part of the Laplace operator in spherical coordinates. This way equation (4)
describes waves propagating on a unit sphere with a unit refractive index and hence also unit
speed. We will call the sphere ‘virtual space’ using terminology of transformation optics.

From now on we will consider only waves on the sphere. Thanks to its equivalence with
the 2D MFE, the results will apply to that case also.
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3. Mode expansion of a wave on the sphere

Any wave on the unit sphere (or in the equivalent MFE) at any moment of time can be
described by a superposition of eigenmodes. Separating the time variables in equation (4) in
terms of the factor ω±( )texp i , we arrive at the Helmholtz equation in spherical coordinates

θ φ( ), for the spatial part of u, whose solutions are the spherical harmonics

θ ϕ θ= = ± ±ϕ( ) ( )Y N P m l, e cos , 0, 1 ,..., , (6)lm lm
m

l
mi

where ( )P zl
m are associated Legendre polynomials and Nlm are normalisation factors. The

corresponding eigenfrequencies ω ω= = +( )l l 1lm l are degenerate with respect to m. This is

a consequence of the high symmetry of the sphere but is also a demonstration of the fact that
MFE is an absolute instrument [21, 22]. The modes in the corresponding MFE are obtained by
combining equations (6) and (3), i.e., by φ( )Y r2 arccot ,lm . Thanks to the degeneracy, the

choice of the modes (6) is not unique. We could use, for example, modes ′Ylm that would be
obtained from (6) by an arbitrary 3D rotation. The relation between the old and new modes
would then be given by the SU(2) Wigner rotation matrices ′dmm

l [23]. This way, a general wave
on the sphere can be expressed as a superposition

∑ ∑θ ϕ θ ϕ=
=

∞

=−

( ) ( ) ( )u t c t Y, , , . (7)
l m l

l

lm lm
0

In the absence of sources, each coefficient ( )c tlm simply oscillates at its frequency ωl. However,
we will be interested in a situation in which the wave is a result of an action of sources on the
sphere. Mathematically this corresponds to replacing the zero on the right-hand side of equation
(4) by a source function θ ϕ( )q t, , describing the action of the sources. In the situation in which
there is no wave on the sphere at time → − ∞t , i.e., the entire wave is a result of the action of
the sources, the coefficients clm can be expressed with the help of [21], equation (6) as

⎡⎣ ⎤⎦∫ ∫ω
ω Ω θ ϕ θ ϕ= ′ − ′ ′*

Ω−∞
( ) ( ) ( ) ( )c t t t t Y q t

1
d sin d , , , , (8)lm

l

t

l lm

where Ω and Ω θ θ ϕ=d sin d d denote the surface of the unit sphere and its differential,
respectively.

Another useful quantity that we will need is the total energy of the wave. It can be derived
by the standard method from the Lagrangian

∫ Ω= ˙ −
Ω

( )L
A

u u
2

d , (9)2 2

where A is a constant, that leads to the wave equation (4); the dot here denotes the partial time
derivative. The energy is then

∫ ∑ ∑Ω ω= ˙ + = ˙ +
Ω =

∞

=−
( ) ( )E

A
u u

A
c c

2
d

2
(10)

l m l

l

lm l lm
2 2

0

2 2 2

where we have used the expansion (7) and the orthonormality of the modes. Using equation (8),
we find after some algebra that
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∑ ∑ ω ω= + −
=

∞

=−
( )( ) ( ) ( )E t

A
Q t Q t

4
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lm l lm l
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where we have defined

∫ ∫ω Ω θ ϕ θ ϕ= ′ ′*ω

Ω−∞

′( ) ( ) ( )Q t t Y q t, d e d , , , . (12)lm

t
t

lm
i

4. Optimal active drain

We will now proceed to describing the emission of a wave on the sphere and its absorption by
an optimal active drain. Suppose a wave (typically a pulse) is emitted from a point A. We will
then design an active source at another point B that absorbs as much of the energy of the pulse
from A as possible. As we will see, it is only possible to absorb all the energy if B is an image
of A, i.e., if the points A and B either coincide or are placed opposite each other on the sphere.
At the same time, even if B is not an image of A, it is still possible to absorb some energy. How
this amount of maximally absorbed energy depends on the distance of B from the image of A
can provide a measure of spatial resolution of MFE: for example, if the amount of energy that
can be absorbed drops very quickly with the separation of B from the image point, it would
imply that the spatial resolution is very high, and vice versa.

We will describe the emission and absorption using the source function θ ϕ( )q t, , defined

in the previous section. The emission will correspond to a function δ θ ϕ( ) ( )h t,A A , where

δ θ ϕ( ),A denotes a spatial Dirac δ-function whose integral over the sphere is unity and that is

zero everywhere with the exception of the point A,3 and ( )h tA describes the temporal part of the
source action (for example, the current at point A as a function of time). Similarly, the full or
partial absorption of the wave at point B is achieved by a source function δ θ ϕ( ) ( )h t,B B on the
right-hand side of equation (4). Without loss of generality, we can assume that point B is
located at the north pole (θ ϕ= =0, 0) because the spherical coordinate system (and the
modes along with it) can always be rotated such that point B has this position. For the same
reason, we can assume that point A has coordinates θ θ ϕ= =( ), 0A , see figure 1(a).

Now, when a wave is emitted from point A, in principle all possible modes of the sphere
can be excited with the exception of the modes θ ϕ( )Y ,lm that have a node at A—for these latter
modes the integral over the sphere in equation (8) is zero and so are the corresponding
coefficients clm. Similarly, the active drain at point B can absorb the energy only from modes
that are nonzero at B. Since B is placed at the north pole where only the modes with m = 0 are
nonzero, it is the energy from only these modes that can be absorbed there; the energy in all the
remaining modes (those with ≠m 0) will stay in the device no matter what function ( )h tB we
may choose. This means that the largest amount of energy will be extracted if we choose the
function ( )h tB such that all coefficients ( )c tl0 go to zero for → ∞t . As we show in the
Appendix, this is indeed possible to achieve. This naturally leads to the definition of an optimal
active drain placed on the north pole (or the south pole) of the sphere: it is a drain that extracts
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all the energy from modes Yl0 and leaves the energy only in the modes Ylm with ≠m 0. An
optimal active drain placed at some general point C on the sphere would be defined in an
analogous way, but instead of Ylm, we would use the rotated modes ′Ylm mentioned in section 3
whose axis of symmetry passes through point C.

5. Resolution with the optimal active drain

As we have seen in the previous section, only the modes with m = 0 can be de-excited by a
drain B placed at the north pole. An important question is how much energy can be absorbed by
this optimal drain, and how this amount depends on the key parameter θA, i.e., on the offset of
the drain from the ‘correct’ image position of source A.

To answer this question, we have to calculate the total energy EA in the system as a result
of the action of the emission function hA only and compare it with its portion ′EA that can be
absorbed by the optimal drain. As we have seen, the latter energy corresponds only to the
modes with zero m. The energy EA can be calculated with the help of equations (11) and (12),

where we use the source function θ ϕ δ θ ϕ=( ) ( ) ( )q t h t, , ,A A and set → ∞t . We then get for

ω → ∞( )Q t,lm l

∫ω θ→ ∞ = ′ ′ω

−∞

∞
′( ) ( ) ( )Q t N P h t t, cos e d . (13)lm lm l

m t
A

i
A

If we denote the time integral by ω˜ ( )hA , the energy becomes

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ ∑ θ ω ω= ˜ + ˜ −
=

∞

=−

( ) ( ) ( )E
A

N P h h
4

cos . (14)
l m l

l

lm l
m

l lA
0

A

2

A
2

A
2

The energy ′EA would be described similarly as EA, but with the value of m fixed to zero for
each l.

We will now define a quantity η θ( )A as the ratio of the energy ′EA that can be extracted
from the system by the optimal drain and the energy EA that was input to the system by the
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Figure 1. (a) The position of the source A and the drain B on the sphere corresponding
to MFE. Only the cut with the plane ϕ ϕ π= =0, is shown. (b) The same for the
hemisphere corresponding to MFEM; the drain position is now mirror-imaged to the
South pole.



source:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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η θ
θ ω ω

θ ω ω
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∑ ˜ + ˜ −
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=
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( )
( ) ( ) ( )

( ) ( ) ( )
E

E

N P h h

N P h h

cos

cos
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2
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2
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A
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Apparently, η η π= =( ) ( )0 1 because the associated Legendre polynomials ±( )P 1l
m become

zero for ≠m 0. This expresses the fact that if the source is placed at either of the poles of the
sphere, the energy can be completely extracted by a drain placed at either pole as well. If,
however, θA differs from 0 or π, η θ( )A becomes smaller than one, so some energy is left in the
system. The key question is now how much energy can be absorbed in case of a subwavelength
displacement. The answer depends on how steeply η θ( )A changes with θA near 0 and π .
Figure 2 shows the function η θ( )A near θ π=A for a Gaussian emission pulse

⎡⎣ ⎤⎦ω ω ω Δω˜ = − − ( )( )( )h exp 2A 0

2 2 with a few combinations of mean frequency ω0 and

frequency width Δω. (Note that on the horizontal axis there is the difference π θ− A expressing
the offset of the drain from the right image position.) To judge whether the region where the
energy can be efficiently absorbed is diffraction limited or not, we compare the width of the
peak of η θ( )A with the width of the peak of the spherical harmonic Yl 00

with l0 chosen such that it

corresponds best to the mean frequency ω0 (i.e., l0 gives the best approximation of

ω ≈ +( )l l 10 0 0 ). The latter width determines the size of the diffraction limited spot of a

focused wave with frequency near ω0. For this purpose, in figure 2 we compare η θ( )A with the

function ⎡⎣ ⎤⎦θ θ≡( ) ( ) ( )y Y Y, 0 0, 0
l l lA 0 A 0

2

0 0 0
; the scaling factor ensures that π= =( ) ( )y y0 1

l l0 0
.

As figure 2 reveals, the functions η θ( )A and θ( )y
l A
0

are very close, almost identical near θ π=A

(and the same is true near θ = 0A ). This unfortunately means that the region of efficient

absorption is diffraction limited. In other words, to make η θ( )A significantly smaller than unity,
we must shift the drain from the image position by a distance comparable with a wavelength.
This means that the optimal active drain cannot resolve the position of the source with better
than diffraction-limited resolution.

A similar behaviour in η θ( )A can be observed if we instead consider a quantity η θ( )l A

corresponding to the modes of one particular value of l (and hence one frequency) by omitting
the sums over l in equation (15):

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

η θ
θ

θ
=

∑ =−

( )
( )

( )
( )

( )

N P

N P

cos

cos
. (16)

l

l l

m l

l
lm l

m
A

0
0

A

2

A

2

This corresponds to the ratio of energies with and without the drain action, but just for the
modes with a given frequency ωl. It turns out that the function η θ( )l A is practically

indistinguishable from the function θ( )y
l A , which leads to the same conclusion about the

resolution with the optimal active drain as for Gaussian pulses.
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6. Wave simulations

To verify our theoretical results described above, we performed simulations of a Gaussian pulse
emission and absorption by the optimal drain. However, to make the medium finite, we used 2D
Maxwellʼs fisheye mirror (MFEM) [2–4] instead of 2D MFE. It has the same refractive index
(1) as MFE but the medium occupies just the unit disc instead of the whole plane and it is
surrounded by a mirror at r = 1. Virtual space for MFEM is the southern hemisphere
corresponding to the interval θ π π∈ [ ]2, with a mirror along the equator, see figure 1(b). The

modes in MFEM are the same as those in MFE, but only those combinations { }l m, for which
−l m is odd are allowed due to the boundary condition at the mirror. While in MFE the image
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Figure 2. The function η θ( )A for Gaussian source functions ( )h tA with several values of
the mean frequency ω0 and width Δω. On the horizontal axis there is the difference
π θ− A. For comparison, the dashed curves show the scaled square of the spherical

harmonic θ( )Y , 0l 0 A

2

0
with l0 being the integer that gives the best approximation

ω ≈ +( )l l 10 0 0 , and the scaling ensures that the value of the function is unity for

θ = 0A . The parameters are (a) ω = 40 , Δω = 2, (b) ω = 100 , Δω = 2, (c) ω = 250 ,
Δω = 2, and (d) ω = 100 , Δω = 5. We see that in all cases the width of the dip in the
function η θ( )A corresponds very well to the width of the maximum of the spherical
harmonic, showing that the absorption is efficient in the whole diffraction limited
region.



position is given by the inversion in the unit sphere, in MFEM a point at position ⃗r is imaged to
the point − ⃗r [2, 3].

In our simulations (see animations 1 and 2 in supplementary data), the source was placed

at the point θ φ= =( )[ ]r cot 2 , 0A that is imaged to the point θ φ π= =( )[ ]r cot 2 ,A ; the

drain was placed at the centre that corresponds to θ π=B . This way the displacement of the
drain from the right image position in virtual space is Δθ π θ= − A. For the purpose of the
animations, we calculated the drain pulse by the procedure shown in the Appendix, and then,
for a given moment in time, we calculated the coefficients of the individual modes using
equation (8), and the corresponding energy in the system. In figure 3 we show a particular
example of the source pulse, the corresponding optimal drain pulse and the energy as a function
of time for ω = 100 , Δω = 2 and Δθ λ= 10 (with λ π ω= 2 0). We see that after the drain pulse
is finished, most of the energy was absorbed even though the drain was displaced from the
correct position by λ 10. The ratio of the absorbed and injected energy obtained from the
simulation was 0.8061, which is in a good agreement with equation (15), which yields
η θ =( ) 0.8076A for the same situation. Animation 1 shows the evolution of the wave; the bar on
the right-hand side shows the actual energy in the system. Animation 2 shows the same, but for
a larger displacement Δθ λ= 5. In this case the optimal active drain absorbs approximately
40% of the injected energy.

7. Conclusion

We have analysed the absorption of a pulse in an absolute optical instrument, Maxwellʼs
fisheye, by an optimal active drain placed in a general position with respect to a source. We
have shown that even if the drain is placed at a ‘wrong’ place, a certain amount of energy can
still be extracted. For Gaussian or monochromatic pulses, the dependence of this energy on the
displacement very closely mimics the square of the absolute value of the spherical harmonic
describing the wave at the corresponding mean frequency, with the maximum at the actual
image point. This shows that the spot where the energy can efficiently be absorbed is diffraction
limited, and therefore in this configuration Maxwellʼs fisheye unfortunately cannot provide
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Figure 3. A Gaussian source pulse (blue, the first wave packet), the corresponding
optimal drain pulse (red, the second wave packet) and the energy in the system (dashed
black) as a function of time for the parameters ω = 100 , Δω = 2 and θ λ= 10A .
Although the drain is misplaced by Δθ λ= 10 from the image position, still most (over
80%) of the injected energy can be extracted.



super-resolution. Our results may contribute to the growing belief that subwavelength imaging
with absolute instruments will not be practically possible.
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Appendix

To express the coefficients clm in a situation where a pulse ( )h tA is emitted from point A and a

part of it is absorbed at point B via a drain pulse ( )h tB , we use the source function

θ ϕ δ θ ϕ δ θ ϕ= +( ) ( ) ( ) ( ) ( )q t h t h t, , , ,A A B B in equation (8). Employing the special choice of
the positions of the points A and B (in particular, θ ϕ ϕ= = =0, 0B A B

), and integrating over the
sphere Ω, we get

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ω
ω θ= − ′ ′ + ′ ′

−∞
( ) ( ) ( ) ( ) ( ) ( )c t

N
t t P h t P h t tsin cos 1 d (A1)lm

lm

l

t

l l
m

l
m

A A B

Taking into account that for ≠m 0 it holds that =( )P 1 0l
m , we see from equation (A1) that for

these modes the function ( )h tB indeed has no influence on ( )c tlm , and therefore no energy can
be extracted by the active (as well as passive, of course) drain from these modes.

To extract the energy from the modes with m = 0, we need to make sure that →( )c t 0l0 for

→ ∞t for all l. We see from equation (A1) that this will be true if the Fourier transform of the
brackets expressed at any of the eigenfrequencies ωl or their negative counterparts ω− l is zero.

Using the fact that =( )P 1 1l
0 for all l, we find that the condition =c 0l0 becomes

⎡⎣ ⎤⎦∫ θ + = =ω

−∞

∞
± ( ) ( ) ( )P h t h t t le cos d 0, 0, 1, 2, ... (A2)t

l
i

A A B
l

The function ( )h tA is given by the emission pulse, and the task is to find a function ( )h tB for
which the condition (A2) is satisfied. This function is not unique; in fact, there are infinitely
many such functions.

To find them, we introduce the Fourier transforms of the source and drain functions as
follows:

∫ ∫ω
π π

ω ω˜ = = ˜ω ω

−∞

∞

−∞

∞
−( ) ( ) ( ) ( )h h t t h t h

1

2
e d ,

1

2
e d (A3)t t

A,B
i

A,B A,B
i

A,B

For a given source pulse described by ( )h tA , or, equivalently, by ω˜ ( )hA , the most general form
of the drain pulse is
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ω
θ

ω ω˜ = − ˜ω

ω

ℓ

ℓ
( )

( )
( )

( ) ( )h
P

P
h f

cos

1
. (A4)

( )

( )
B

0
A

0 A

Here ω( )f is an arbitrary function that satisfies ω± =( )f 1l for all l and we have defined the

function ω ωℓ = + −( ) 1 4 1 22 ; for positive ω it is the inverse function of

ω ℓ = ℓ ℓ +( ) ( )1 that gives the eigenfrequencies of MFE for integers ℓ, and for negative

ω it is defined such that ω ωℓ = ℓ( ) ( ). This ensures that ωℓ ± =( ) ll , and it can be easily
verified by combining equations (A2), (A3) and (A4) that the drain pulse described by equation
(A4) really has the desired properties. The function ω( )f can be used to manipulate the shape

of the drain pulse. For example, using ω = π ωℓ( )f e ( )2i in case of a quasi-monochromatic
Gaussian pulse causes a shift of the drain pulse by π2 in time accompanied with a slight shape
change due to dispersion.
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