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Abstract: Conformal transformation optics provides a simple scheme for manipulating light 
rays with inhomogeneous isotropic dielectrics. However, there is usually discontinuity for 
refractive index profile at branch cuts of different virtual Riemann sheets, hence 
compromising the functionalities. To deal with that, we present a special method for 
conformal transformation optics based on geodesic lenses with special closed surfaces. The 
requirement is a continuous refractive index profile of dielectrics, which shows the almost 
perfect performance of designed devices. We demonstrate such a proposal by achieving 
conformal transparency (invisibility without cloaking region) and reflection. We can further 
achieve conformal invisible cloaks by two methods with perfect conductors. The conformal 
transformation optics method based on geodesic lenses may also find applications in other 
waves that obey the Helmholtz wave equation in two dimensions. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Based on the form invariance of Maxwell’s equations and multi-linear electromagnetic 
constitutive equations, the optical property of virtual space and physical space could be 
connected by a coordinate mapping [1]. In 2006, Leonhardt [2] presented that a conformal 
coordinate mapping between two complex planes could be performed for the scalar field of 
the refractive index of dielectrics such that light rays could be manipulated freely. 
Coincidentally, Pendry et al [3] provided a general method for controlling the electromagnetic 
field in space of three dimensions. These two seminal papers launched a new research field 
named transformation optics (TO) [4–7], which mainly focused on optical invisibility. After 
that, a lot of optical designs based on TO were proposed, such as carpet cloak [8], illusion 
optics devices [9], field rotator [10] and so on. With the development of metamaterials, 
several proof-of-principle experiments have been achieved, like the reduced cloak in two 
dimensions [11], carpet cloaks [12,13], field rotator [14] and concentrator [15]. Besides 
metamaterials, structured materials like photonic crystals [16] and waveguides [17], could 
also serve for designing transformation materials, which provide different platforms. More 
recently, the optical cavities in visible region based on TO have attracted a lot of attention, 
such as mimicking the gravitational lens [18] and Einstein’s ring [19]. In addition, the idea of 
TO has also been extended to other waves, such as acoustics [20], plasmonics [21] and 
thermodynamics [22]. 

From the geometrical perspective, TO has been established for the connection between 
curved space-time and the multi-linear electromagnetic response of structured materials, 
which gives a blueprint to control light propagation. Despite these versatile design proposals 
and proof-of-principle experiments, TO still encounter challenges in practical engineering 
because of the complexity of the required materials. Take the design of invisibility for 
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example, the required tensor fields of permittivity and permeability have infinity values at 
some points [3]. At the same time, conformal transformation optics (CTO) (in two-
dimensional space) was proposed by Leonhardt [2] as a simpler scheme for manipulating 
light rays by using dielectrics with inhomogeneous isotropic refractive index profile, which is 
a scalar field. After that, lots of designs with CTO have been proposed, like conformal 
invisible cloaks [23–25], conformal transparency devices [26], conformal illusion devices 
[27] and conformal Talbot devices [28]. Recently, some interesting devices are proposed by 
merging geometric optical design with CTO, such as bidirectional focusing [29]. Though 
some experiments [28,30,31] have also demonstrated the principle of CTO [2,32], there is 
still a need to optimize the design procedure, so that a feasible scalar field of refractive index 
can be obtained for practical applications. Moreover, in several proposals of CTO [2,24,25], 
there is a discontinuity of refractive index profile along the branch cut of the conformal 
mapping, which might have some unwanted influence on the performance of CTO in turn. 

In this paper, to solve the problems caused by discontinuity of refractive index profile, we 
propose a special kind of CTO based on geodesic lenses [33–36]. The mapping of such 
method is a composite mapping of the geodesic mapping and the analytical conformal 
mapping, which could map an artificial Riemann surface (virtual space) with homogeneous 
refractive index profile to a plane (physical space) with inhomogeneous refractive index 
profile. The requirement of inhomogeneous refractive index is a continuous scalar field. We 
demonstrate our method by achieving optical transparency and wave reflection. To obtain 
invisible cloaks, we develop two methods with perfect electric conductors (PECs). Moreover, 
we explain that our method can work not only in the geometric-optical limit but also be 
extended to wave regime at a discrete series of frequencies. 

2. Analytical conformal mapping and geodesic mapping 

In traditional conformal transformation optics, we usually use analytical function ( )w f z=  to 

connect complex plane z  (physical space) with complex plane w  (virtual space). This 
analytical conformal mapping (ACM) preserves the angle of two intersecting lines because of 
Cauchy-Riemann conditions [37]. The refractive index profiles of two complex planes have 
the relation based on CTO [2,32], which is written as 

 ( ) ( ).n z dw dz n w′=  (1) 

In general, two-dimensional surfaces are all conformally flat (angle preserved, not the length, 
after a conformal mapping) and they differ by a curvature scalar field [38]. For light rays, 
such a curvature scalar field could be treated as the scalar field of refractive index profile. 
Hence light rays follow the geodesic equation of that surface. There is a kind of coordinate 
transformation from an inhomogeneous plane lens with rotationally symmetric refractive 
index profile ( )n r  to a surface of revolution with homogeneous refractive index profile 

( ) 1n h′ =  written as 

 = ( ) and = ( ) ,n r r dh n r drρ   (2) 

where ρ is the radial coordinate, and h  is the length measured along the meridian from 

North pole in the surface of revolution, as shown with examples in the left column of Fig. 1. 
The radial coordinate of the plane in the right column of Fig. 1 is denoted by r . And the 
azimuthal angle coordinate ϕ  is not changed under Eq. (2). In this paper, apart from the 

numerical simulation results, all other figures are plotted with the commercial software 
Mathematica according to the geometry. Light rays propagate along geodesics of the surfaces, 
which are the shortest optical paths. Therefore, the surface of revolution is usually called a 
geodesic lens [36]. Here we use geodesic mapping (GM) to denote the mapping of Eq. (2), 
which is different from ACM. GM can preserve the angle of two intersecting lines in the 
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curved surface when it is mapped to that in the plane. Moreover, the optical path will not 
change, namely, 2 2 2 2 2 2 2+ ( )dh d n dr r dρ ϕ ϕ= +  according to Eq. (2), which sets up the 

equivalence of the corresponding optical path elements [33,36]. GM was also used to deal 
with three-dimensional Luneburg inverse problem associated with spherical media [33,34]. 

 

Fig. 1. Geodesic lenses (left column) and corresponding plane lens with rotational symmetry 
(right column). In geodesic lenses, the rotational symmetrical axis is the line which connects 
the North (N) pole and the South (S) pole. ρ is the radial coordinate, and ( )h ρ  is the length 

measured along the meridian from N pole in the geodesic surface. Light rays starting from 
point A form closed trajectories shown in different colors. Those geodesic lenses are a sphere 
(a), truncated Tannery’s pear (c) and spindle (e). Their descriptions are shown in Table 1. 
Their corresponding inhomogeneous plane lenses are Maxwell’s fish-eye lens (b), inverse 
invisible lens (d) and generalized Maxwell’s fish-eye (f), respectively. Contour plots show 
refractive index profile of ( )n r  with rotational symmetry. Point S represents the origin of the 

plane, which mapped from S pole of geodesic lenses. The infinity corresponds to N pole. 
Colored light rays are mapped from those of geodesic lenses. Dashed black lines are places 
with the refractive index of unity at the radius of 0r . 

                                                                                          Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS 28724 



Table 1. Refractive index profiles of three absolute instruments and spectrum of the 
corresponding geodesic lens a 

Refractive index profile Geodesic 
lens 

Description of 
geodesic lens 

Spectrum 

Maxwell’s fish-eye lens 

2
0

2
( )

1 ( / )
n r

r r
=

+
 

Sphere ( ) arcsin( )h ρ ρ=  
0 / ( )( 1)

0.5,

r c N m N m

N m

ω = + + +
≈ + +

 

Inverse invisible lens 
3/2 1/2

0 0 0, ( / ) ( / ) 2;r r r r n r r n> + =

0 , 1r r n< = 0 , 1;r r n< =  

Truncated 
Tannery’s 
pear 

1( ) - +2arcsin( );h ρ ρ ρ=
 

2 ( ) 2+ -h ρ π ρ=  

0 / 0.5,r c N mω ≈ + +  

Generalized Maxwell’s fish-eye lens 
1/ 1

0
2/

0

2( / )
( ) ,

1 ( / )

M

M

r r
n r

r r

−

=
+

2,3,4...M =  

Spindle ( ) arcsin( ),h Mρ ρ=
2,3,4...M =  

0 / ( )( 1) /

( 0.5) / ,

r c N M m N M m M

N M m

ω = + ⋅ + ⋅ +
≈ + +
 

aThis spectrum is calculated by the numeric method in [39]. N  determines the number of zeros of eigen-functions in 
the latitude direction, while m  determines the phase change (in multiples of 2π ) when encircling the geodesic lens 
along a latitude line.

For the sake of later discussion, we list three typical geodesic lenses (sphere, truncated 
Tannery’s pear and spindle) and the corresponding inhomogeneous plane lenses (Maxwell’s 
fish-eye lens, inverse invisible lens and Generalized Maxwell’s fish-eye lens) with their 
properties summarized in Table 1 (for details, see in [39]). Tannery’s pear is a two-
dimensional compact surface and its geodesics are closed [40]. It turns out that geodesics of 
truncated Tannery’s pear are also closed [34,39]. The spindle is equivalent to a portion of 1/M 
of a sphere, which is glued along its boundary [33,34,39,41]. All light rays form closed 
trajectories in these geodesic lenses and the corresponding plane lenses as shown in Fig. 1. 
Moreover, these three plane lenses are also called absolute instruments, where closed light 
rays and perfect imaging could be achieved [33,42]. We will use these geodesic lenses for 
further work in the following sections. In the wave regime, these geodesic lenses and plane 
lenses have the spectrum shown in the last column of Table 1. It turns out that their spectra 
are highly degenerated [39]. This is vital for the wave performance of our design. 

3. Conformal transparency with geodesic lens 

Transformation optics shows us a heuristic method to understand the certain complex medium 
as curved space for light [38]. Therefore, we usually start from a simple space, namely flat 
Euclidean space, to design the transformation medium to achieve a certain property, like 
invisible cloak [3]. Sometimes, we could also start from a non-Euclidean space to make an 
optical design with a fancy functionality [43]. Similarly, by compositing a GM and an ACM, 
we could achieve a mapping from virtual non-Euclidean space with homogeneous refractive 
index profile to a plane physical space with an inhomogeneous refractive index profile. 
Hence, we can design optical devices with an inhomogeneous refractive index profile in two 
dimensions by using such a composite conformal mapping. It gives geometric intuition for us 
to deal with problems in virtual space embedding in three dimensions, rather than in physical 
space plane with a complicated scalar field. 

Let us start from a concrete example of conformal transparency to illustrate our method. 
Suppose that we have a non-Euclidean virtual space with a sphere and a meshed plane in Fig. 
2(a). The radius of the sphere is R. They are connected by a branch cut (a solid arc in purple). 
For light rays in the plane, they travel along straight lines. When parallel light rays shown in 
different colors propagate in the plane and meet the branch cut, they enter a sphere and form 
closed trajectories of great circles, which are geodesics on the sphere. After they come back 
to the branch cut again on the sphere, they return to the plane to continue their journey with 
their positions and directions preserved. Compared with parallel light rays not entering into 
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the sphere, they have an additional optical path on the sphere. But for observers far away, this 
sphere appears invisible in the limit of geometrical optics. 

 

Fig. 2. Conformal transparency design based on a sphere. Virtual space (a) consists of a 
complex plane and a sphere. They are sewed along with a branch cut (solid arc in purple), 
which belongs to geodesics of both parts, namely a straight line in the plane and a great circle 
in the sphere. Dashed arc in purple is the image of the branch cut. The colored light rays are 
paralleled in plane and form closed trajectories in the sphere. Light rays started from the 
branch cut cannot reach two yellow arcs. N and S denote the poles of the sphere. Using 
geodesic mapping, the sphere in (a) is mapped to Maxwell’s fish-eye lens (the vertical plane) 
in (b). The corresponding light rays also form closed trajectories. With a further exponential 
conformal mapping, Maxwell’s fish-eye lens in (b) is mapped to a cylindrical Mikealian lens 
shown in (c). Therefore by using an analytical conformal mapping, final physical space is 
obtained in (d), with contour plot of refractive index profile (dashed black lines are places with 
the refractive index of unity). Corresponding light rays are shown in colored curves in (a-d). 
Gaussian beam in (e) and plane wave in (f) impinge our design at the angle of –π/4 at an 
eigenfrequency corresponding to =40N m+  and =10N m+ , respectively. Here we set the 
radius of the sphere to be R = 2 and the length of the branch cut to be a quarter of a great circle 
for the illustration. The corresponding parameter a in an analytical conformal mapping is 
0.3125. 

After introducing a virtual space in Fig. 2(a), we perform a GM (written as Eq. (2)) of the 
sphere to obtain Maxwell’s fish-eye lens shown in the vertical plane in Fig. 2(b), which still 
connect the original plane along with the branch cut. The exponential mapping is an 
analytical function, which can map a plane to a ribbon region. Moreover, the ribbon region 
can be treated as a cylinder. Hence, we further obtain a cylindrical Mikealian lens with a 
period of 8π shown in Fig. 2(c) by using 2 1exp( )w w=  of Maxwell’s fish-eye lens [28]. 

Finally, we could map the whole space of Fig. 2(c) to physical space by an analytical 
conformal mapping, namely, 1 4 log( ) 4log( )w z z a z a= + − − +  [25], which results in a 

continuous refractive index profile shown in contour plot of Fig. 2(d). The analytical 
conformal mapping is carefully chosen such that the branch cut is a quarter of a great circle in 
virtual space. Correspondingly light rays are shown in colored curves in Figs. 2(a)−2(d). So 
far, we have achieved conformal optical transparency based on a sphere, where the mapping 
is a composition of one geodesic mapping and two analytical conformal mappings. However, 
these mappings are carefully chosen such that virtual space and physical space are matched 
very well. Note that this profile is similar to that in [26], however, the current interpretation is 
more intrinsic in geometric perspective, hence will induce several designs in the following 
sections. 
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4. Performance in wave-optical regime 

It turns out that conformal transformation optics not only work in geometrical optics but also 
at eigenfrequencies in wave regime [32,44]. Hence, light wave will accumulate multiple 
integer times of 2π  when it is in the geodesic lens. Only at those eigenfrequencies can our 
conformal optical devices work. Since CTO connects the virtual space and physical space, we 
can analyze problems in simpler virtual space instead of physical space with the complex 
medium. As shown in Table 1, the frequency spectrum of Helmholtz equation in sphere is 

0 / ( )( 1) 0.5,r c N m N m N mω = + + + ≈ + +  where the number m is an integer that expresses 

the dependence of the eigenmode on the azimuthal angle ϕ  as exp( )imϕ , and N  is a non-

negative integer expressing the number of nodes of the wave along the meridian between 
North and South poles. More details about spectrum could be found in [39, 45]. It means that 
light wave impinges in virtual space forms standing wave at those frequencies. As has been 
shown previously for related devices [46–48], there is almost perfect invisibility at the 
resonant frequencies of the non-Euclidean part of virtual space. For our case, this means 
illuminating the device by wave with a frequency corresponding to an integer l N m= + . To 
test this with our design, we set 0 =2r . Gaussian beam at eigenfrequency of =40N m+ reveals 

the trajectories of light rays of our design in geometrical optics, see Fig. 2(e). In Fig. 2(f), we 
also use plane wave at eigenfrequency of =10N m+  to show almost perfect transparency 
effect in wave regime. All numerical full wave simulations in this paper are calculated by the 
commercial software COMSOL MULTIPHYSICS. 

The main property of our design based on geodesic lenses is that the resulting refractive 
index profile is a continuous scalar field. We could carefully design virtual space to achieve 
more feasible parameters. For the design of conformal transparency, we should take care of 
two things. One is that the branch cut should be geodesic of both surfaces in virtual space. 
Otherwise, light rays would have a chance to cross the branch cut immediately once they have 
left it, which would compromise the effect of transparency. The other thing is that the length 
of the branch cut should not be larger than half of a great circle. Otherwise, some light rays 
entering the sphere through the branch cut could leave the sphere before completing the 
closed loop on it, which would also compromise the effect of transparency. Recently, by 
setting the length of branch cut half of the great circle, conformal transparency with an 
optimized refractive index profile ranging from 0 to 5.21 was achieved [26]. 

5. Other designs based on geodesic lenses 

5.1. Another design of conformal transparency 

Suppose that we have a virtual space combined with a plane and a truncated Tannery’s pear 
shown in Fig. 3(a), which are connected along with a branch cut (a line in purple). The branch 
cut on both surfaces is also part of a geodesic. Parallel light rays shown in colored curves 
propagate in the plane and meet the branch cut, they enter the truncated Tannery’s pear and 
form closed trajectories which have been mentioned above. Then they come back to the 
branch cut and return into the plane to continue their journey with their positions and 
directions preserved. But for an observer far away from the truncated Tannery’s pear, it 
appears invisible within geometrical optics. 

Based on this virtual space, we could use a geodesic mapping from the truncated 
Tannery’s pear to an inverse invisible lens in Fig. 3(b). Then by further using Zhukowski 
conformal mapping, namely 1/w z z= +  [2], the whole virtual space in Fig. 3(b) is mapped 
to a physical space in Fig. 3(c), which has a continuous refractive index profile ranging from 
0 to 16. 

This design of conformal transparency is a composition of a geodesic mapping and a 
Zhukowski mapping. Owing to that truncated Tannery’s pear is also a geodesic lens, its 

                                                                                          Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS 28727 



spectrum is approximately 0 / 0.5r c N mω ≈ + +  from the numeric method [39], which is 

listed in Table 1. We also use numerical simulation to demonstrate the performance of our 
design with 0 =2r , see Fig. 3(d) with Gaussian beam by setting =20N m+  and Fig. 3(e) with 

the plane wave by setting =6N m+  to demonstrate the geometric-optical regime and wave-
optical regime, respectively. 

 

Fig. 3. Another conformal transparency design based on a truncated Tannery’s pear. Virtual 
space (a) consists of a complex plane and a truncated Tannery’s pear. They are sewed along 
with a branch cut (solid line in purple), which belongs to geodesics of both parts, namely a 
straight line of the plane and a straight line of the truncated Tannery’s pear. Its length is 4. Two 
colored light rays (in red and in blue) are paralleled in plane and form closed trajectories in 
truncated Tannery’s pear. Using geodesic mapping, truncated Tannery’s pear in (a) is mapped 
to inverse invisible lens in (b). Using a Zhukowski mapping, (b) is further mapped to physical 
space in (c), where dashed black lines are places with the refractive index of unity. 
Corresponding light rays (in red and in blue) are shown in colored curves in (a-d). Gaussian 
beam in (d) and plane wave in (e) impinge our design at the angle of π/4 at eigenfrequency 
with =20N m+  and =6,N m+  respectively. Here we set the length of the branch cut to be 4 

for the illustration. 

5.2. Wave reflection 

Besides optical conformal transparency, we could also achieve wave omnidirectional 
reflection, which looks like a double-sided mirror from the outside. We start with virtual 
space, which is a combination of a plane and spindle surface shown in Fig. 4(a). They are 
sewed along with a branch cut (an arc in purple). The branch cut is geodesic of both parts, 
namely it belongs to the straight line of the plane and the equator of spindle surface. Parallel 
light rays shown in colored curves propagate initially in the plane. Those of them that cross 
the branch cut enter the spindle surface, travel along closed trajectories, and come back to the 
branch cut with their positions preserved but directions reflected. For observers far away from 
spindle surface, light rays seem to be totally reflected from the branch cut. 

After performing geodesic mapping and exponential analytical conformal mapping, the 
spindle surface is mapped to Mikealian lens with a period of 16π shown in Fig. 4(b). The 
period here is twice larger than that in conformal transparency design. By carefully choosing 
an analytical conformal mapping which is written as 1 4 log( ) 4log( )w z z a z a= + − − + , we 

map the whole structure to physical space in Fig. 4(c) with a contour plot of refractive index 
profile. The analytical conformal mapping here has a slight difference from that in conformal 
transparency design. It can be even chosen such that the branch cut could be the whole circle 
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of the spindle. In Fig. 4(d), we also perform a numeric simulation to demonstrate wave 
reflection with Gaussian beam by setting =30.N m+  The conformal reflection works 
perfectly at any frequency, not just the resonant ones of conformal transparency in wave 
optical regime. 

 

Fig. 4. Conformal reflection design based on a spindle. Virtual space (a) consists of a complex 
plane and a spindle. They are sewed along with a branch cut (solid arc in purple), which 
belongs to geodesics of both parts, namely a straight line of the plane and the equator of the 
spindle. Using geodesic mapping, the spindle is mapped to a generalized Maxwell’s fish-eye 
lens in (b). With a further exponential conformal mapping, Maxwell’s fish-eye lens in (b) is 
mapped to a cylindrical Mikealian lens shown in (c). Using an analytical conformal mapping, 
physical space is finally obtained in (d), with the contour plot of refractive index profile 
(Dashed black lines are places with the refractive index of unity). Corresponding light rays are 
shown in colored curves in (a-d). Gaussian beam in (e) impinges our design at the angle of –
π/4 with a frequency corresponding to =30.N m+  For the illustration, the length of the 
equator and the branch cut are set to be 4π and 12.14, respectively. The corresponding 
parameter a in an analytical conformal mapping is 1.2. 

5.3. Two methods for achieving invisibility cloaks 

Based on the above designs, we can further achieve invisible cloaks with two methods. One is 
that we employ the fact that there is some place in the virtual space, where light rays coming 
from the outside could not reach, such as the two yellow curves in Fig. 2(a). These two 
yellow curves could be equipped with PECs. This way, we can naturally achieve invisible 
cloaks using PECs. This method is similar to that used in non-Euclidean cloaks [43]. The 
other method is that we can place a PEC along a meridian of the geodesic lens as shown in 
black closed curve of Figs. 5(a), 5(c) and 5(e) to reflect light rays twice, which will give an 
invisible cloak as well [26]. The PEC divides the branch cut into two equal parts. As shown in 
Figs. 5(b), 5(d) and 5(f), it seems that these PECs in black lines are invisible, similar to that in 
Figs. 2(f), 3(e) and 4(d), respectively. We call this method “double-reflection mechanism”. 
Once we make the PEC invisible, we can further expand it to make cloaking region of 
cloaking by another conformal mapping [46]. 
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Fig. 5. Invisibility cloaks of PECs. PECs (in black) along closed geodesics of geodesic lenses 
of Figs. 2(a), 3(a) and 4(a), are located to divide the branch cut into equal parts. Once light rays 
meet the PECs, they are reflected. Light rays are shown in colored curves in (a), (c) and (e). 
Gaussian beams in (b), (d) and (f) are consistent with trajectories of light rays at the same 
condition of corresponding physical spaces of Figs. 2(e), 3(d) and 4(e). 

In the first design of the above conformal transparency, we can use another PEC, which 
gives the double-reflection mechanism as well. One such PEC is a great circle of the sphere in 
black as shown in Fig. 6(a). This PEC touches one vertex of the branch cut. After light rays 
enter the sphere, they will be reflected by the PEC twice and form closed trajectories. 
Therefore light rays will never reach the other half of the sphere because of the PEC. After 
mapping virtual space to physical space as in Fig. 6(b), we obtain a cloaking region bounded 
by the PEC in black. We can also modify our device by removing a part of the PEC as is 
shown in Figs. 6(c) and 6(d) or, alternatively, Figs. 6(e) and 6(f). In this case, the remaining 
PEC will reflect light rays twice and the sphere will still be invisible, but the cloaked region 
will be lost. 
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Fig. 6. Conformal cloaks of PECs. (a) PECs (in black) along with the closed geodesic of the 
sphere of Fig. 2(a) is located to pass through one vertex of the branch cut, N and S poles. 
Double reflection on this PEC could make half of the sphere invisible. (b) This way, a 
waterdrop-shape cloaking region is obtained in physical space. In fact, both halves of this PEC, 
which connects N and S pole, are invisible by double-reflection mechanism as shown in (c) 
and (e), respectively. Light rays are shown in colored curves in (a), (c) and (e). Propagation of 
a Gaussian beam with the same parameters as in Fig. 2(e), as shown in (b), (d) and (f). 

6. Conclusion 

In conclusion, we propose a special method of conformal transformation optics based on 
geodesic lenses. The resulting refractive index profile is a continuous refractive index profile 
and shows the almost perfect performance of the designed devices. We demonstrate our 
method by achieving optical transparency and wave reflection. Furthermore, we can achieve 
invisible cloaks with two methods. Thanks to the intuition of virtual space, we further explain 
the mechanism of conformal transparency at eigenfrequencies in wave optics. Such a method 
may also find applications in other dynamic waves. 
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