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Starting from well-known absolute instruments that provide perfect imaging, we analyze a class of rotationally
symmetric compact closed manifolds, namely, geodesic lenses. We demonstrate with a numerical method that
light rays confined on geodesic lenses form closed trajectories, and that for optical waves, the spectrum of a geo-
desic lens is (at least approximately) degenerate and equidistant. Moreover, we fabricate two geodesic lenses in
micrometer and millimeter scales and observe curved light rays along the geodesics. Our experimental setup may
offer a new platform to investigate light propagation on curved surfaces. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.001266

1. INTRODUCTION

Absolute instruments (AIs) in optics mean devices that bring
stigmatically an infinite number of light rays from a source
to its image, which can perform perfect imaging in the perspec-
tive of geometrical optics [1,2]. Two well-known examples of
AIs are a plane mirror and Maxwell’s fish-eye lens [with gra-
dient refractive index profile; see Fig. 1(a)]. Actually, there
are a lot of AIs, such as the Eaton lens, Luneburg lens, and
invisible lens [3]. The invisible lens has a spherically symmetric
index profile that forces light rays to make loops around its
center and then propagate in their original directions, which
makes it invisible. Recently, one author proposed a general
method to design AIs with the help of the Hamilton–Jacobi
equation [4], which has flourished in the family of AIs. No
matter how perfectly stigmatic the geometrical-optics image
might be, in the wave-optics regime, the resolution is always
limited by diffraction. Owing to this limitation, “perfect imag-
ing” in the perspective of geometrical optics and wave optics is
quite different [3]. As far as we know, the only AI in both per-
spectives is Pendry’s slab [5]. However, the frequency spectrum
of other AIs has been investigated by numerical method [6,7]
and the Wentzel–Kramers–Brillouin (WKB) approximation
[8,9]. It is found that their spectrum is (at least approximately)
degenerate and equidistant, which contributes to periodical
evolution of waves in AIs [6,8].

With a conformal coordinate transformation, AIs with
cylindrical-symmetry refractive index profiles in two-
dimensional (2D) space can be connected to curved surfaces
with rotational-symmetry embedding in three-dimensional
(3D) space in the perspective of geometrical optics [10,11].
Such surfaces are usually called geodesic lenses (GLs) corre-
sponding to AIs. For compact GLs, their geodesics are all
closed. Therefore, all light rays on compact GLs follow closed
trajectories that correspond to the perfect imaging of AIs [12].
However, for wave optics, it has not been clear so far whether
the spectra of GLs share the properties of spectra of AIs, namely,
whether they are (at least approximately) degenerate and
equidistant or not.

For light propagation on a 3D curved surface, such as a
sphere, hyperbolic surface, and paraboloid, there are several im-
portant theoretical works and experimental works [13–18]. In
2008, light constrained to a 3D curved surface via a possible
nonlinear film waveguide was proposed theoretically [13]. It
was shown that wave propagation on 3D curved surfaces
was approximated to the one in a 2D plane with a refrac-
tive-index profile. Later in 2010, the evolution of light on
3D curved surfaces was experimentally studied in centimeter
scale [14]. Periodic refocusing, self-imaging, and diffractionless
propagation on sphere surfaces were observed, while two-beam
interference on hyperbolic surfaces was first realized. Recently,

1266 Vol. 7, No. 11 / November 2019 / Photonics Research Research Article

2327-9125/19/111266-07 Journal © 2019 Chinese Laser Press

mailto:tomtyc@physics.muni.cz
mailto:tomtyc@physics.muni.cz
mailto:tomtyc@physics.muni.cz
mailto:liuhui@nju.edu.cn
mailto:liuhui@nju.edu.cn
mailto:liuhui@nju.edu.cn
mailto:kenyon@xmu.edu.cn
mailto:kenyon@xmu.edu.cn
mailto:kenyon@xmu.edu.cn
https://doi.org/10.1364/PRJ.7.001266
https://crossmark.crossref.org/dialog/?doi=10.1364/PRJ.7.001266&amp;domain=pdf&amp;date_stamp=2019-10-29


shape-preserving accelerating electromagnetic wave packets on
sphere surfaces and hyperbolic surfaces were further investi-
gated in both theory [15] and experiment [16]. Also, the theo-
retical and experimental research of Hanbury Brown and Twiss
measurements on curved space was also reported [17].
Moreover, the study of the control of light on paraboloid sur-
faces was carried out on nanophotonic structures [18].
Nevertheless, there is no experiment reported on non-spherical
GLs with perfect imaging functionality, which is usually not
possible for general curved surfaces.

In this paper, we first introduce GLs and confirm with a
numerical method that the spectra of compact GLs are (at least
approximately) degenerate and equidistant. After that, we fab-
ricate part of a spindle in micrometer scale and a sphere in milli-
meter scale, where curved light rays along the geodesics are
observed.

2. GEODESIC LENSES CONSTRUCTED FROM
ABSOLUTE INSTRUMENTS

AIs with cylindrical-symmetry refractive index profiles denoted
by n�r� have been widely studied [3,11,12]. We present a
Maxwell’s fish-eye lens [19], a generalized Maxwell’s fish-eye
lens [3] with M � 5, an extended invisible lens [20], and
an inverse invisible lens [12] with contour plots in
Figs. 1(a)–1(d), respectively. The invisible lens has a refractive
index given by an implicit formula:

�r∕r0�n3∕2 � �r∕r0�n1∕2 − 2 � 0, (1)

in the region r < r0, while for r > r0, the index is unity. The
inverse invisible lens, on the other hand, has the index given by
Eq. (1) for r > r0 and n � 1 for r < r0. The extended invisible
lens has the index profile given by Eq. (1) for all r. Both the
inverse and extended invisible lenses are absolute instruments
where light rays form closed loops. Hence, an invisible lens
is a finite device, while an extended or inverse one is infinite.
The center of each lens is marked with S. The position vector
is denoted with r. Point sources at position A have either a
perfect image at position B [see Figs. 1(a) and 1(b)] or have
a self-image at position A [see Figs. 1(c) and 1(d)]. By using
Hamilton’s equation of optics, we can find all the trajectories
in AIs, as shown in red and green closed curves [21]. There
is a conformal coordinate transformation between AIs and
GLs [11], written as

ρ � n�r�r, dh � n�r�dr, (2)

where ρ is radial coordinate, and h is the length measured along
the meridian from the north poles of the GLs. Equation (2)
enables to construct a GL from a given index profile of an
AI. We have constructed four such GLs that correspond to
the above AI index profiles and are shown in Figs. 1(e)–
1(h): the sphere, spindle [12] (we use this name according
to its shape), Tannery’s pear [22], and truncated Tannery’s
pear [23], respectively. The list of these Gls along with the
corresponding AIs is given in Table 1. We will further inves-
tigate theoretically the properties of light waves in GLs

Fig. 1. AIs (upper row) and corresponding GLs (lower row) with rotational symmetry. In AIs, the center of each lens is marked with S. The
position vector is denoted with r. The angle parameter θ is omitted for simplification because of the rotational symmetry of AIs and GLs. Contour
plots show a refractive index profile of n�r�. The presented AIs are (a) Maxwell’s fish-eye lens, (b) generalized Maxwell’s fish-eye lens with M � 5,
(c) extended invisible lens, and (d) inverse invisible lens. The corresponding geodesic lenses are (a) sphere, (b) spindle with M � 5, (c) Tannery’s
pear, and (d) truncated Tannery’s pear. On GLs, the axis of rotational symmetry is denoted by a dashed line, which connects north (N) pole and
south (S) pole. ρ is the radial coordinate, and h�ρ� is the length measured along the meridian from N pole on the geodesic surface. Light rays starting
from point A form closed trajectories shown in different colors. S poles are mapped from the centers S of AIs, while N poles correspond to the
infinities of AIs. Dashed black circles of AIs are places with refractive index of unity at radius of r0, which are equivalent to those of GLs.
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mentioned in Fig. 1 and Table 1, and the first two of them also
experimentally.

3. LIGHT RAYS AND WAVES ON GEODESIC
LENSES

An important thing is that the local refractive index profile on
GLs is constant (and equal to unity), which is quite different
from that of AIs. Light trajectories on GLs can be simply
obtained by Eq. (2) from those in the corresponding AIs.
Since we know the shape of GLs, we can also find their
geodesics by solving the geodesic equations, namely,

d2xλ

dξ2
� Γλ

μν
dxμ

dξ

dxν

dξ
� 0, (3)

where ξ is the parameter of geodesics, Γλ
μν is the Christoffel

symbols of coordinate system fxλ; λ � 1, 2g. Those geodesics
are shortest paths in GLs, which correspond to light trajecto-
ries. Because of rotational-symmetrical ρ�h� of GLs, we find
that the Christoffel symbols are written as

Γλ
μν �

0
BBBB@

�
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0 −ρ�h�ρ 0�h�
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ρ�h�
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, (4)

where we use the coordinates fh, θg for fxλ; λ � 1, 2g. All the
geodesic equations in Eq. (3) are� h 0 0�ξ� − ρ�h�ξ��ρ 0�h�ξ��θ 0�ξ�θ 0�ξ� � 0,

θ 0 0�ξ� � 2 ρ 0 �h�ξ��
ρ�h�ξ�� h

0�ξ�θ 0�ξ� � 0:
(5)

By solving Eq. (5) with ρ�h� and given initial conditions, we
can find their geodesics, shown in Figs. 1(e)–1(h) with red and
green closed curves.

Since the transformation of Eq. (2) is conformal, it preserves
the angle of two light trajectories in AIs to that of their images
on GLs [12], which might find application in conformal
transformation optics.

The frequency spectra of AIs have a distinctive feature: they
are, at least approximately, degenerate and equidistant. This has
been shown by solving the Helmholtz equation by numerical
methods [6] as well as using the WKB approximation [4,8].
For GLs, the Helmholtz equation in curved 2D surfaces is
written as

∇̃2ψ � ω2

c2
ψ � 0, (6)

where ψ is a wave function, c is the speed of light, ω is eigen-
frequency, and ∇̃2 is Laplacian on a curved surface. Because of
the rotational symmetry of GLs, we can make an ansatz of the
wave function, namely,

ψ�h,φ� � R�h�eimφ, (7)

where m ∈ N is an angular periodic number, and R is a func-
tion depending on h. Substituting Eq. (7) into Eq. (6), we get

∂2R
∂h2

� 1

ρ

∂ρ
∂h

∂R
∂h

�
�
ω2

c2
−
m2

h2

�
R � 0: (8)

We can solve the eigen-problem of Eq. (8) numerically. We
find that ω is (at least approximately) degenerate with m. The
solutions of Eq. (8) with finite-value boundary conditions can
be numbered by a non-negative integer N , which represents
the number of nodes of the function R�h�. Therefore, we can
denote the wave function and its eigen-frequency with ψNm
and ωNm, respectively. These results are summarized in the col-
umn “Spectrum” of Table 1. Moreover, ωNm can be written as

ωNm � a · sNm � b, (9)

where a, b are constants, and sNm is an integer for all modes
ψNm. The integer numbers N and m represent the modes in
a natural way: N determines the number of zeros of eigen-
functions in the latitude direction, while m determines the
phase change (in multiples of 2π ) when encircling the geodesic
lens along a latitude line. It implies that the spectra of GLs are
(at least approximately) degenerate and equidistant. We plot
some typical wave functions on each GL, as shown in Fig. 2.

4. EXPERIMENTAL FABRICATION OF TWO
GEODESIC LENSES

To verify the trajectories in geodesic lenses, we performed two
experiments involving light beams propagating on a curved sur-
face in 3D space. One geodesic lens is part of a spindle corre-
sponding to a generalized Maxwell’s fish-eye lens with M � 5.
The other is a sphere corresponding to a Maxwell’s fish-eye lens.
The experiment is achieved based on a polymethyl methacry-
late (PMMA) waveguide, which is fabricated through the self-
assembling of polymer solutions on solid substrates [24,25].

Table 1. Description of Four AIs and Corresponding GLs with Spectrum

Lens Refractive Index Profile
Geodesic
Lens

Description of
Geodesic Lens Spectrum

Maxwell’s fish-eye lens n�r� � 2
1��r∕r0�2 Sphere h�ρ� � arcsin�ρ� ωNmr0

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N � m��N � m� 1�

p
≈ N � m� 0.5

Generalized
Maxwell’s fish-eye lens

n�r� � 2�r∕r0�1∕M−1

1��r∕r0�2∕M , M � 2, 3, 4,… Spindle h�ρ� � arcsin�Mρ�,
M � 2, 3, 4,…

ωNmr0
c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N�M ·m��N�M ·m�1�

p
M

≈ N�0.5
M � m

Extended invisible lens �r∕r0�n3∕2 � �r∕r0�n1∕2 − 2 � 0 Tannery’s
pear

h1�ρ� � −ρ� 2 arcsin�ρ�,
h2�ρ� � ρ� 2 arcsin�ρ�

ωNmr0
c ≈ N�0.5

2 � m

Inverse invisible
lens

�r∕r0�n3∕2 � �r∕r0�n1∕2 − 2 � 0 for
r > r0; n � 1 for r < r0

Truncated
Tannery’s

pear

h1�ρ� � −ρ� 2 arcsin�ρ�,
h2�ρ� � 2� π − ρ

ωNmr0
c ≈ N � m� 0.5
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Our geodesic lens is a 2D waveguide with a PMMA polymer
layer spin-coated on the surface of a metallic needle in spindle
shape. The PMMA polymer layer has a uniform thickness of
about 2 μm and is doped with the rare-earth ion Eu3� to emit
fluorescent light at 615 nm when illuminated with a laser beam
with 460 nm wavelength. The optical measurement is based on
waveguide excitation and fluorescent imaging techniques
shown in Fig. 3(a). In the process, the beam is coupled through
grating from the top of the sample, as shown in Fig. 3(a), and
propagates in the waveguide. The fluorescent light goes
through a color filter and finally is collected by a CCD camera.
Figure 3(b) displays the structure of the waveguide in detail.
We can take it as a bulk material with a refractive index around
1.52 on the surface. We use the spin-coating method to deposit
the PMMA polymer layer on the surface of a metallic needle
shape. First, we put on a hydrogen flame at a proper position
under a straight silver wire. Then, the ends of the straight
silver wire are pulled so that the silver wire gradually becomes

tapered. Finally, the silver wire is broken into two metallic
cones at some point. The details of the sample fabrication can
be found in Appendix A. Figures 3(c) and 3(d) show the scan-
ning electron microscope (SEM) image of the metallic needle
shape with different scales before spin coating. Based on these
figures, we can accurately obtain the parameters of the metallic
needle shape. In Fig. 3(c), the height of the part of the spindle
that we observed under SEM is 644 μm, and its diameter
ranges from 169 μm to 346 μm. The coupling grating, i.e., the
cross structure shown in Fig. 3(c), is fabricated before the spin-
coating process.

In Fig. 4(a), we find that a spindle with M � 5 in Fig. 1(f )
is exactly the shape of our metallic needle in Fig. 3(d). The edge
of our sample is almost part of the outline of the spindle (in
blue). A point source in the spindle has a closed trajectory
in red. Figure 4(b) shows that a laser hitting the cross grating
generates a coupling source on a metallic needle shape, which
further results in a light trajectory on a curved surface by using

Fig. 2. Real part of the modes with different indices N and m: (a) ψ22 on sphere, (b) ψ50 on spindle, (c) ψ22 on Tannery’s pear, and (d) ψ22 on
truncated Tannery’s pear.

Fig. 3. Experimental setup and sample description. (a) Schematic of the observation and coupling scheme of the light to the geodesic lens. A laser
beam is coupled to a 3D curved waveguide from the top and excites the rare-earth ions in the waveguide. The emitted fluorescent light at 615 nm is
then collected by a CCD camera. (b) 3D curved waveguide morphology captured by a CCD camera when illuminated by white light. (c) Scanning
electron microscope image of the 3D curved surface around the coupling grating (red dashed box) before spin coating. The cross structure cor-
responds to that displayed in (b) and is used to couple laser beams into the waveguide. (d) Scanning electron microscope image of the 3D curved
surface with larger scale (blue dashed box) before spin coating. Based on this figure, one can get the accurate parameters of the 3D curved surface.
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a CCD camera. An enlarged drawing nearby the coupling
source is shown in Fig. 4(c). The details of experimental mea-
surements can be found in Appendix B. We use the spindle in
Fig. 1(f ) to fit the measurement in Fig. 4(b). The observed light
trajectory matches the calculated one very well, as shown in
Fig. 4(d). Based on the results of the shape using SEM and
light trajectories using a CCD camera, we confirm that we have
fabricated part of a spindle with M � 5 and observed part of
a closed trajectory. Similarly, we also fabricate a sphere with a
radius of 1 mm in Appendix C, which is surely a well-known
GL. It is noted that there is another experiment to explore the
light propagation on a sphere made of BK7 glass with a radius
of 12.5 mm [14]. It focuses more on curved surfaces with con-
stant curvatures, while our work here focuses more on GLs with
closed geodesics and perfect imaging functionalities.

5. CONCLUSION

To conclude, we have demonstrated with numerical methods
that the light trajectories of GLs are closed and the spectra of
compact GLs are (at least approximately) degenerate and equi-
distant. Those properties depend mainly on the differential
structure of GLs embedding in the 3D space. It is noted that
the toroidal surface with the genius one has a focusing property
under paraxial approximation [26]. It is worth to explore
whether there exist some GLs with different geniuses that could
achieve perfect imaging. We further fabricate two GLs, namely,
part of a spindle in micrometer scale and a sphere in millimeter
scale. In these two GLs, we observe curved geodesic light tra-
jectories. Our results may offer a new platform to investigate

light propagation on curved surfaces, especially in mircopho-
tonics or nanophotonics when combining GLs to microcavities
and enhancing the Q factors. The GLs might also find appli-
cations in improving the efficiency of micro-LED technology.

APPENDIX A: SAMPLE FABRICATION

A spindle waveguide with uniform thickness was fabricated for
our experiment, as depicted in Fig. 3(b) in the main text. The
sample is a polymethyl methacrylate (PMMA) resist polymer
layer on the surface of a metallic spindle. The fabrication
process is based on a metallic wire fusion technique and

Fig. 4. Optical measurements and fitting results of light rays in a
spindle withM � 5. (a) Fitting the shape of micro-structured metallic
needle waveguide with a spindle. (b) Optical measurements on micro-
structured metallic needle waveguide. (c) Enlarged drawing nearby the
coupling source. (d) Fitting the light trajectory of micro-structured
metallic needle waveguide with a spindle.

Fig. 5. Sample fabrication process. (a) Position of straight silver
wire, movement console (MC), and hydrogen flame. A straight silver
wire is fixed on MC1 and MC2 and then put on a hydrogen flame at a
proper position. (b) Metallic wire fusion process. The ends of the
straight silver wire are pulled at speeds v1 and v2, and the silver wire
gradually becomes tapered. (c) Two obtained metallic cones. The silver
wire breaks into two metallic cones at some point.

Fig. 6. (a) Sketch of a metallic waveguide. (b) Cross section of the
metallic waveguide.
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spin-coating technique. First, a straight silver wire with a diam-
eter of 400 μm was put on a hydrogen flame [Fig. 5(a)].
Second, the ends of the straight silver wire were pulled at a
specific speed and broke into two parts [Figs. 5(b) and
5(c)]. Third, the broken end [Figs. 3(c) and 3(d) in the main
text] of the silver wire was coated with a PMMA layer, and the
rare-earth ion Eu3� was added to the PMMA resist to facilitate
fluorescence imaging to reveal the propagation dynamics of
light beams. Finally, a three-dimensional metallic waveguide,
namely, a polymer layer on the surface of the broken end of
the silver wire, was obtained [Fig. 3(d) in the main text]. In
the experiment, the shape of the metallic spindle could be
changed by controlling the pulling rate of the ends of the
straight metallic wire, the materials of the metallic wire, and
the distance between the silver wire and the hydrogen flame.

The polymer layer thickness and uniformity could be varied by
changing the solubility of the PMMA solution, the evaporation
rate of the oven, and the pulling rate, immersion rate, and cy-
cling time of the spin coating. By changing these parameters,
a spindle waveguide of the desired shape was fabricated. The
thickness of the waveguide was great enough such that it effec-
tively behaved as a bulk material with a refractive index around
1.52. A sketch of the waveguide is shown in Fig. 6. In our ex-
periment, the light is transported only inside the polymer wave-
guide layer attached to the iron curved spindle. The iron is used
to support the curved thin polymer layer. The laser is coupled
to this layer from the grating. Since most energy of the laser is
confined in the polymer layer but not iron, the influence of
loss inside the iron is negligible.

APPENDIX B: EXPERIMENTAL MEASUREMENTS

As mentioned in Appendix A, a metallic waveguide was gen-
erated along the metallic curved surface by means of spin-
coating technology. We then used the experimental setup
[Fig. 3(a) in the main text] to measure the light propagation
in the metallic waveguide. A laser beam at a wavelength of
460 nm was coupled to the waveguide by a grating with a
period of 310 nm, which was fabricated on the metallic curved
surface with a focused ion beam (FEI Strata FIB 201, 30 keV,
11 pA) before the spin-coating process. To better illustrate the
coupling process, we made a sketch of the grating [Fig. 7(a)].
It (in the yellow boxes) corresponds to the red dashed box in
Fig. 7(b), which is an SEM image of the curved surface. After
the spin-coating process, a thick enough PMMA polymer layer
was deposited on the surface. The blue laser beam was perpen-
dicularly incident on the grating, and converted to the PMMA
waveguide. Figure 7(c) shows the grating coupling process and
the optical measurement of the metallic waveguide.

APPENDIX C: A SPHERICAL GL

Similarly, we also fabricated a sphere as shown in Fig. 8(a)
under a CCD camera. The sphere is made of iron, and its radius
is 1 mm. By the spin-coating method, a uniform PMMA
polymer layer is formed on the sphere. A handle is attached
to the sphere to fix it. A grating is etched nearby the handle
to couple the laser beam into the waveguide, which results
in closed trajectories on the sphere. By turning off the back-
ground illumination in Fig. 8(a), a clearer picture of a closed

Fig. 7. (a) Sketch of the coupling grating (yellow boxes). (b) SEM
image of the metallic curved surface and the coupling grating (in red
dashed box) before spin-coating process. (c) Grating coupling process
and optical measurement of the sample. The yellow boxes in (a) show
the coupling grating, the graded blue spot represents the exciting
beam, and the blue arrows show the direction of the laser beam propa-
gating in the waveguide. The coupling grating in (a) corresponds to the
red dashed box in (b), which is fabricated before spin-coating process.
The red dashed box region in (b) corresponds to the grating in (c),
which is indicated by the red arrows.

Fig. 8. Optical measurements and fitting results of light rays on a sphere. (a) CCD camera picture of micro-structured sphere waveguide. (b) Light
trajectory on micro-structured sphere waveguide. (c) Fitting the light trajectory with a sphere.
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light trajectory on the sphere is shown in Fig. 8(b). We also
compare the experimental measurement in Fig. 8(b) with
the shape in Fig. 1(e) in the main text, which demonstrates
that a sphere has been fabricated and a closed light trajectory
is observed.
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