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S1. PROPAGATION INVARIANT MODES IN A
BENT FIBER

To describe the effect of fiber bending on light modes
propagating through a fiber quantitatively, we will ini-
tially consider scalar waves and account for polarization
later. A scalar wave Ψ is governed by the Helmholtz
equation (∆ + k2n2)Ψ = 0, where n is the refractive in-
dex. The wave can be separated as Ψ = ψ(x, y) exp(iβz),
where z is the coordinate along the fiber axis, β is the
propagation constant, and ψ is governed by the trans-
verse equation

[∆⊥ + k2n2 − β2]ψ = 0 . (9)

Here ∆⊥ = ∂2x + ∂2y denotes the transverse part of the
Laplacian. For the parabolic refractive index profile (1),
Eq. (9) separates both in Cartesian and polar coordi-
nates. The PIMs separated in polar coordinates are
given by Eq. (2) with propagation constants (3).

Now consider scalar waves in a uniformly bent fiber
in the xz plane with curvature ρ, with the center of
curvature at the point (1/ρ, 0, 0). The local propaga-
tion constant is then no longer uniform across the fiber
cross-section, but depends on x as kz(x) = β′/(1− ρx),
where β′ is the propagation constant on the axis of the
bent fiber [1]. Replacing β by kz(x) in Eq. (9) and using
Eq. (1), we get the following equation for the bent fiber
scalar PIMs:[

∆⊥ + k2n20

(
1− x2 + y2

b2

)
− β′2

(1− ρx)2

]
ψ = 0 . (10)

If we make a substitution x = x′ − ∆x, where ∆x ≡
β′2ρ/(α2 + 3β′2ρ2) and α is defined under Eq. (2), we
get, after neglecting terms of the order ρ4 and higher,
the equation[

∆⊥ + k2n20 − α2(x′2 + y2)− 3β′2ρ2x′2

+
β′4ρ2

α2
− β′2

]
ψ = 0 . (11)

Eq. (11) corresponds in its form to Eq. (9) with x re-
placed by x′, with β2 replaced by β′2 − β′4ρ2/α2, and
with an additional term 3β′2ρ2x′2ψ. This shows that
the effect of fiber bending is threefold. First, the center
of the effective index profile is shifted in the negative x-
direction (i.e., towards the outer side of the bend) by the
distance ∆x defined above; the modes in the bent fiber
will, accordingly, also be shifted by ∆x towards the outer
side of the bend. Second, the steepness of the parabolic
index profile in the x-direction gets slightly increased due
to the additional term 3β′2ρ2x′2 in Eq. (11); for small
curvatures ρ this term can be regarded as a perturba-
tion. Third, there appears a term β′4ρ2/α2 that will
lead to an additional shift of the propagation constants.

Next we have to account for the influence of light po-
larization. As it is well known, the polarization influ-
ences propagation constants, which is an effect known
as spin-orbital (SO) interaction. For a straight fiber,
the corresponding equation for electromagnetic waves
still separates in cylindrical coordinates but no more in
Cartesian ones. For the parabolic index profile (1) in the
weakly-guided regime, the propagation constants (3) are
shifted due to SO interaction by the amount [2]

∆βl,m,σ = − lσ + 1

2kn0b2
, (12)

where σ = ±1 for the right- and left-handed circular
polarization state, respectively.

Now if the fiber is bent, both effects of the SO interac-
tion and the effective change of the refractive index de-
scribed above are present simultaneously. For small cur-
vatures, the SO interaction is dominant and the effect of
fiber bending can be regarded as a small correction; then
we can use perturbation theory of the first order to evalu-
ate the effect of the additional term 3β′2ρ2x′2 in Eq. (11).
For that, we need to evaluate the mean value of x′2 for
the LG PIMs. This can be done if we employ the equiva-
lence of Eq. (9) with the stationary Schrödinger equation
for a 2D harmonic oscillator with frequency α (when ~
and particle’s mass are set to unity). Then the operator
∆⊥ − α2(x′2 + y2) in Eq. (11), up to the factor −1/2,
is equal to the Hamiltonian −∆⊥/2 + α2(x′2 + y2)/2
of a 2D harmonic oscillator with equilibrium position
(x, y) = (−∆x, 0). Now, by the virial theorem, the mean
potential energy 〈α2(x′2 + y2)/2〉 comprises half of the
oscillator total energy, i.e., of α(|l|+2m+1) in case of the
LG state |l,m〉. Moreover, the probability distribution
in the LG states is isotropic, so the energy is distributed
equally between the x and y degrees of freedom. From
these facts we find that 〈x′2〉 = (|l|+ 2m+ 1)/(2α). Go-
ing back to Eq. (11) and substituting the relevant terms,
we get

k2n20 − 2αQ− 3β′2ρ2Q

2α
+
β′4ρ2

α2
− β′2 = 0 , (13)

where we have denoted Q = |l|+2m+1 for convenience.
When we solve this equation for β′, neglect terms of the
fourth order in ρ and take advantage of Eq. (3), we get
finally for the propagation constants of the PIMs in the
bent fiber

β′ = β + ρ2
(
kn0b

2

2
− 9b(|l|+ 2m+ 1)

4

)
, (14)

where β is the propagation constant (3) of the PIM in
the straight fiber with the same numbers l,m. Using
Eq. (12) and expanding the square root, we can write the
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Common optical components
Item Part number
L1, L7, L8 A240TM-C
L2 AC254-400-C-ML
L3 AC254-300-C-ML
L5 AC254-150-C-ML
SMF P1-980A-FC-1
QWP1, QWP2 WPC10M-1064
HWP WPC10M-1064
NPBS1, NPBS2 CM1-BS014
M1-3 BB1-E03

Altered optical components
Item Fiber Rod

MMF/GL GIF50C LRL-035-P375
MO1 Plan N 20x UPLSAPO 10x
MO2 Plan N 20x Plan N 10x
L4 AC254-200-C-ML AC254-150-C-ML
L6 AC254-150-C-ML AC254-150-A-ML

TABLE S1. List of optics involved in the experiment. Com-
mon components have been listed in the top half, optics that
were changed to measure either fiber or rod have been listed
in the lower half. All part numbers except for the micro-
scope objectives are Thorlabs part numbers. All microscope
objectives were manufactured by Olympus.

Spot-scanning fibers

Fiber Part number # modes
SI fiber FG050UGA 500
GI fiber 1 GIF50C 300
GI fiber 2 GIF625 700

TABLE S2. Fibers employed for the spotscanning experi-
ment as described in Fig. 4. All part numbers are Thorlabs
part numbers.

total propagation constant for the vector PIM (l,m, σ)
as

β′l,m,σ = kn0

(
1 +

ρ2b2

2

)
−
(

1

b
+

9ρ2b

4

)
(|l|+ 2m+ 1)− lσ + 1

2kn0b2
. (15)

We can also compare the order of correction to propa-
gation constants due to bending and due to SO interac-
tion. A simple analysis shows that the two corrections,
namely 9ρ2bQ/4 and (lσ + 1)/(2kn0b

2), become compa-
rable for curvatures of ρ = 1/

√
2kn0b3, which is about

(1 cm)−1 for a typical fiber. The above analysis is valid
for curvatures smaller than this.

S2. EXPERIMENTAL DETAILS

S2-I. Waveguide characteristics

The PI-rod has been manufactured using a process
where initially a glass rod is taken with a constant re-
fractive index profile, which is then doped using a salt
bath, resulting in a very smooth parabolic refractive in-
dex profile. The rod has a diameter of 350 µm (Selfoc
LRL–035–P375–0–0–0–0), with a NA of 0.12. The man-
ufacturer of the PI rod specifies that the quality of the
refractive index profile goes down in the outer 20-30% of
the rod.

The graded index fiber is a standard communication
graded-index fiber, with an NA of 0.275, which is manu-
factured using an MCVD process, for which it is difficult
to prevent a characteristic dip in the core of the refrac-
tive index profile.

Even though the rod (5.6 cm) is longer than the fiber
(20 mm), the refractive index profile of the fiber is much
steeper. To properly compare waveguide lengths we
compare the modal phase difference between subsequent
waveguides modes, which scales with L/b. When a pat-
tern is projected on the proximal end of a graded-index
medium, it is imaged again inside the rod after a length
2πb, called the pitch length. The pitch length of the
graded index rod is about 1.4 cm, whereas the pitch
length of the fiber is about 1 mm. Therefore the rod
is about 3.7 pitches long while the fiber is roughly 20
pitches long. For an ideal comparison, the waveguides
would have been cut to the same pitch length. However,
cutting a fiber of only a millimeter would have not been
possible, and a rod with a length of roughly 28 cm would
also be very difficult to handle or manufacture.

S2-II. Experimental setup

The optical setup for the fiber analysis is analogous to
the setup used in Ref. [1]. Since our study only exploits
one circular polarization (which has been shown to re-
main conserved while light propagates through a fiber)
our system only uses a single circular polarization path-
way, which is shown in Fig. S5. There is a 45◦ rotation
angle between the camera and the SLM, which is taken
into account in the analysis. The SLM is located in the
farfield of the frontal fiber facet. To measure the trans-
mission matrix, a hologram is displayed on the SLM cre-
ating two points in the farfield, one of which is imaged
onto the frontal fiber facet, called the scanning beam,
while the other one is coupled into a single mode fiber
and used as a reference. The scanning beam is sequen-
tially repositioned across the facet of proximal end, and
the resulting output field distribution is obtained by in-
terfering the output field with a reference beam on the
camera. More details on this procedure can be found
in [1, 3]. As the number of scanning points is limited
due to the relatively slow update rate of the SLM, the
spacing of the focal points on the proximal end and the
pixel size on the distal end have to be optimized for the
medium under investigation, as explained below.

S2-III. Modal cutoff conditions

To properly design the optical system required to char-
acterize the waveguides, it is important to know the
sampling requirements on the setup. This is determined
by the number of modes that travel through the waveg-
uide. While for a step-index fiber a clear cutoff of sup-
ported modes [2] can be defined, this is not obvious for
a parabolic refractive index profile, extending to infin-
ity. However, our waveguides have a finite spatial ex-
tent and as such the number of modes will be limited to
modes that mainly travel within the core of the waveg-
uide. PIMs that are very near the edge of the air–glass or
core/cladding interface will likely be severely distorted.
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FIG. S5. Optical setup employed to measure transmission
matrices. Electronic components: CCD 1 and 2: Basler
piA640-210gm. SLM: Boulder Nonlinear Systems / Mead-
owlark Optics HSDPM512 DVI. Optical components are de-
pendent on the MMF under investigation, and are listed in
Table S1. When measuring the fiber, optics were present be-
tween L3 and L4 to control polarization of the input state,
as in Ref.[1], which were not used and which are not shown.
They did not support scanning a larger field of view, and
have been removed for the rod measurements. To employ
the system with a bent fiber, the imaging setup on the distal
end is designed as a portable unit and can be moved on the
table.

Therefore we confined the analysis to the central part
of the rod only. To limit our analysis to modes that
are properly guided, we demand that 99% of the ampli-
tude of the mode falls within 75% of the core diameter
in the case of the rod (the area with a high quality re-
fractive index profile as specified by the manufacturer),
and within the full core diameter in case of the fiber. In
case of the graded index rod this means that the high-
est radial mode number we expect to be undistorted by
boundary effects to be at mmax = 15 for l = 0 , and
|lmax| = 44 for m = 0, as shown in Fig. S6.

S2-IV. Optical design considerations

Ideally, the transmission matrix should be measured
with a large enough spatial extent and a sufficiently fine
spacing that all the modes of interest up to and includ-
ing mmax and lmax can be sampled and analyzed. How-
ever, with our current setup, this would result in a trans-
mission matrix size that is not feasible due to technical
limitations, mainly with respect to the acquisition time.
The number of scanned points on the proximal end was
limited to 85 × 85 points. Therefore, it is important
to optimize the sampling area and pixel spacing of the
transmission matrix measurement in such a way that the
optimal amount of information can be extracted from the
minimal number of measurements.

If a PIM is not properly sampled, the fiber is not pre-
sented with a perfect eigenmode. Similar to presenting

the fiber with a misaligned mode, this will lead to ap-
parent mode coupling, as discussed in the main article.
In order to excite a given mode with sufficient resolution
on the proximal end, and in order to detect a mode un-
ambiguously on the distal end, similar selection criteria
were employed as for determining the highest supported
PIMs in the preceding section: The physical extent of
the PIM needs to be sampled (real space condition),
and this area has to be scanned with a sufficiently fine
spacing that all features within the PIM are sufficiently
expressed (Fourier space condition). To check the real
space condition, a larger field of view was sampled, veri-
fying that no more than 1% of the total amplitude of the
PIM was present outside of the sampled area. To check
the Fourier space condition, every mode was sampled at
a half the pixel spacing, and the 2D fast Fourier trans-
form (FFT) was computed. In this case, a mode was
discarded if more than 1% of the total amplitude of the
PIM was outside the area dictated by half the Nyquist
frequency. The exact cutoff conditions are therefore de-
pendent on the magnification of the imaging systems,
and on the alignment parameters.

In order to optimize the design of the optical setup,
for every available combination of lenses the number of
modes that could be sampled and analyzed was com-
puted, and the combination of optics that led to the
highest number of excitable modes was used.

For the available combinations of optics, the optimal
pixel pitch on the proximal end was 4.6 µm. On the dis-
tal end, the sampling was fixed at 6.2 µm, due to the
curvature of the reference beam. The highest supported
radial and angular PIM after optimizing alignment are
shown in Fig. S7. In both cases the PIM approaches the
edge of the scanned area by the SLM, as well as contain-
ing features which are too fine to be sampled properly
on the camera.

Even though it was impossible to excite all supported
PIMs, the final modal cutoff conditions for perfect align-
ment ran between |l| = 42 for m = 0, and m = 13 for
|l| = 0. This represents a significant fraction of all the
PIMs of interest.

S3. OPTIMIZATION ALGORITHMS

S3-I. Misalignment parameters

After measuring the transmission matrix in a point
basis, the correct alignment parameters still have to be
found in order to understand the transmission matrix
in terms of PIMs. The optimization strategy is very
similar to the one used in Ref. [1], but not identical.
A brief overview of the procedure is given here and the
differences are highlighted.

First, after measuring the transmission matrix TM in
a point basis, the same method as described in the meth-
ods section of Ref. [1] was used for the initial alignment,
resulting into a matrix of 3969 (63 × 63) input points
by 4096 (64 × 64) output points for circular polarized
light. Unlike the previous system, only a single polar-
ization was taken into account. Therefore, spin-orbit
interaction cannot be distinguished from a rotation be-
tween SLM and camera and it was not analyzed in the
procedure.
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FIG. S6. Radial part Rl,m(r) of the highest supported radial (left) and angular (right) PIM for the graded-index rod. Blue
shading indicates the area outside of the rod, red shading indicates the area with a low-quality refractive index profile. The
black line indicates the amplitude of the radial part, red indicates the amplitude outside in the area with a low-quality refractive
index.

FIG. S7. Sampling of highest order radial (left) and angular (right) PIM included in the analysis after optimal alignment
of the rod. Both groups of four represent the different constraints, and the black square indicates the area that has been
sampled while measuring the transmission matrix. For both groups of four: Top left: PIM sampled on the proximal end of
the fiber (real space constraint on proximal end) , Bottom left: same PIM sampled on the distal end of the fiber (real space
constraint on distal end). Top right: Farfield of the PIM sampled on the proximal end (Fourier space constraint on proximal
end). Bottom right: Farfield of the PIM sampled on the distal end (Fourier space constraint on distal end). For a PIM to be
properly guided, it needs to fit within all of these images. In this case, the Fourier space constraint on the distal end is just
met for the PIMs under investigation. Also, the PIMs hit the edge of our sampled domain on the proximal end.

Initially, after converting the TM into a mode basis,
the power on the diagonal (modal performance) is still
only around 1%, due to residual misalignment. There-
fore, a separate alignment procedure is employed to find
the optimal location and size of the PIMs. In total, this
optimization procedure needs to find eleven parameters:
waveguide location (3D) on proximal and distal end, and
angle of incidence (2D) on proximal and distal end, and
the overall steepness of the refractive index profile (1D).
Instead of attempting to optimize all of these parameters
at the same time, only the parameters corresponding to
a particular domain, (for instance proximal position or
distal angle) are optimized at the same time for reasons
of computational efficiency. The procedure is iteratively
repeated until it converges using a Nelder-Mead simplex
algorithm. As this is a minimization algorithm, instead

of the relative power on the diagonal P , −P was used
as a cost function. Previously P−1 was used. This was
not seen to have any significant influence on the result.
Also, previous work employed explicit minimization of
PIMs close to the diagonal, which was not implemented
in our analysis.

One of the challenges of the optimization routine is
that it takes very long to converge, especially if a lot of
modes are involved. The previous routine attempted to
optimize misalignment parameters using all supported
PIMs at the same time, but we found that a reason-
ably accurate guess can be obtained by first selecting
only a few low-order modes and doing a few rapid itera-
tions based on those. Then the number of modes can be
increased for a more accurate estimate. After every it-
eration, the lmax was increased by two and mmax by one
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FIG. S8. Indication of stability of the solution to perturbing
input misalignments, relative to the optimized position used
in the paper. (a): Optimized alignment used in the further
analysis. (b-j): Final alignment parameters after perturbing
the final state in (a) by a total of 10 pixels, as discussed in
the text. The initial and final performance P is printed on
top of the figure. (k): All perturbed initial alignment param-
eters. (l): All final alignment parameters. Labels: rp, rd rep-
resent spatial alignment parameters on proximal and distal
end, φp, φd are the angular misalignments. Even though the
the final P is on a similar level, different initial misalignment
parameters lead to different final misalignment parameters.

0 10 20 30 40 50
iteration

1.000

0.500

0.250

0.100

0.050

0.025

1
−
P

misalignment run

a

b

c

d

e

f

g

h

i

j

FIG. S9. Optimization trace for input misalignments (a-j)
in Fig. S8. The performance is plotted after optimizing ev-
ery invididual misalignment parameter. Even though there
is a small variation in the number of steps required to find
the misalignment, the final modal performances P are very
similar.

until the sampling limit was reached. Optimizing the
refractive index profile steepness was only started after
20 iterations of the optimization routine. Previously, the
fiber parameters needed a different optimization metric
in order not to lead to solutions featuring a small num-
ber of PIMs. This is not required for the analysis of the
graded index waveguide.

As the modal cutoff conditions of the waveguide are
determined by the pixel spacing it is important to be
cautious about sampling artefacts, which could lead to
apparent mode coupling. In previous work, all the modes
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FIG. S10. Optimized refractive index profile differences for
different optimization runs as described in Fig. S8. The
shaded region indicates the 95% confidence interval. The
final parameters have a small influence on the resulting re-
fractive index profile.

were computed for a single location and shifting the cen-
ter and tilt of all the modes was achieved using an in-
terpolation matrix C. This might lead to interpolation
artefacts, however. Therefore we chose to sample the
modes after every step of the iteration using Eq. (2).

Due to technical constraints with respect to the exper-
imental setup, complete characterization of the rod was
not possible, as the number of modes that can propagate
in the rod exceed the number of modes that we can ana-
lyze using our sampled transmission matrix. Therefore,
some inaccuracy of the final misalignment parameters is
to be expected, and multiple combinations of misalign-
ment parameters can lead to similar performance.

In order to give an idea of the accuracy of the recon-
structed alignment parameters, we perturbed the final
alignment parameters of the optimization routine in 2D,
and ran the optimization routine again using the per-
turbed misalignment parameters as the initial locations.
To keep the optimization time within a couple of hours,
the sum of the disturbances was kept at 10 pixels. This
is a large enough disturbance that P is initially only a
few percent, but it is not so much disturbed that the
optimization strategy takes more than an hour. If the
system was fully determined, different initial conditions
would lead to the same final conditions. However, as we
show in Fig. S8 and S9, the final misalignment parame-
ters differ for varying input misalignments.

The grin rod is acting like very good lens and as such,
depending on the length or the rod, some of the mis-
alignment parameters are coupled. For instance, if the
waveguide were replaced with an imaging system imag-
ing the frontal facet onto the distal facet, it would always
be possible to shift the input modes by the same amount
as the output modes, provided that the analyzed modes
do not hit the edges of the lens. Therefore, when the lens
is larger than the analyzed area there are multiple com-
binations of misalignment parameters that lead to very
similar performance. Future research could exploit this
ambiguity in order to come up with a faster optimization
scheme. The final P is very similar (Fig. S9) and for our
analysis this ambiguity is mainly an indication that the
rod is of a very high optical quality.
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FIG. S11. Simulation of the scanning imaging experiment
in Fig.4, tight bend, for the fiber indicated as GRIN∼300
modes. Top: Indication of simulated fiber layout for the short
fiber (the single orange sigment) and the long fiber (blue, six
copies of the short segment). a1: simulated imaging perfor-
mance for a straight fiber, a2: bent fiber using the straight
fiber TM, a3: imaging using the length correction described
by Eq. (7). b1,2,3: Same simulation for the long fiber. For
the long fiber, the bending compensation clearly results in
the restoration of the image quality.

S3-II. Changes to the refractive index profile
optimization routine

The procedure used to fit the refractive index profile
abberations, as shown in Fig. 2, was nearly identical to
the one used in [1]. For abberating functions, a basis
of Zernike modes Zn(r/r0) was employed, where r0 is a
scaling factor, fixed at 125 µm, the effective radius that
was analyzed. We repeated the analysis for all the final
locations indicated in Fig. S8. This only resulted in very
small deviations in the resulting refractive index mod-
ulations, indicated in Fig. S10. The confidence interval
was taken as two times the standard deviation in the
individually optimized refractive index profiles.

S4. SPOT-SCANNING EXPERIMENT

The experimental procedure for the spot-scanning ex-
periment was identical to the one outlined in Ref. [1,
Supplementary movie 7]. It consists of the following steps:

1. Using the setup in Fig. S5, acquire a transmission
matrix T for the fiber, allowing for some room in
between the distal end of the MMF and MO2 for
later sample insertion.

2. Insert the sample (the transmissive part of a re-
flective USAF target) between MMF and MO2.

3. Using the SLM, display the required input fields
(columns of T †) sequentially in order to scan a spot
on the distal end of the fiber.

4. At every spot position, record the total transmit-
ted intensity on CCD2 (sum of all camera pixel
values).

5. Arrange the measured intensities by focal location,
forming an image (Fig. 4).

As described in Ref. [1, Supplemental material], it would
also be possible to employ the only open port of NPBS1
to do “true” endoscopic imaging, but it requires careful
calibration of the internal reflections in the setup, and it
is not essential to demonstrate the bending sensitivity.
To bend the fiber, the portable unit in the setup can
be moved towards MO1, and only the imaging experi-
ment was repeated. The fiber parameters are shown in
Table S2.

To compare the theoretical imaging performance with
the experimental results for the strongest bend in Fig. 4,
a mathematical simulation of imaging through a bent
fiber is performed, by numerically reproducing the pro-
cess of the scanning imaging experiment. The brightness
of the i-th pixel of resulting image can be computed as

Ii =
∣∣PS†T ′T−1Svi∣∣2 . (16)

Here P is a binary mask representing the target, T is the
calculated TM of the straight fiber in the PIM basis, T ′ is
the calculated TM of the same fiber bent according to the
experiment calculated in the basis of PIMs of the straight
fiber, S is a matrix representing the transformation from
the basis of focused spots into the basis of PIMs (the
converse transformation is represented by S†) and vi is
a vector in the basis of focused spots representing the
spot at the position of i-th pixel.

The TM of the bent fiber T ′ is calculated as a product
of 300 TMs of short segments of fiber with constant cur-
vature. T can be modified to account for the effective
length increase as described by Eq. (7). However, the
effective length increase is only 17 µm, and as such the
effect is minimal. Results of the simulation are shown
in Fig. S11a. We attribute the decreased imaging per-
formance observed in the experiment to imperfections
in the refractive index profile. To demonstrate the ex-
pected performance of the bending correction for an ideal
parabolic-index MMF, we simulate the imaging proce-
dure for a longer fiber consisting of six identical copies
of the short geometry, shown in Fig. S11b, using 1800
segments. In this case it is clear that the applied cor-
rection for the effective length increase leads to almost
complete restoration of the original image quality.
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