- 1. Let $s \in (-l/2, l/2)$ be a length parameter on the rigidly rotating string with s = 0 chosen to be the fixed center of the string. Let $\epsilon(s)$ denote the energy per unit length as a function of s
 - i. Show that $\epsilon(s) = T_0/\sqrt{1 (2s/l)^2}$. Plot $\epsilon(s)$ as a function of s. Note that $\epsilon(s)$ has integrable singularities at the string endpoints, and confirm that the total energy is $\frac{\pi}{2}lT_0$.
 - ii. For what points on the string is the local energy density equal to the average energy density?
 - iii. Calculate the energy E(s) carried by the string on the interval [-s, s]. For what value of 2s/l is E(s) half of the total energy? 90% of the energy?
 - iv. Calculate the total space-time momentum and angular momentum of the string. Is there a relation between the angular momentum and the mass square of the string?
- 2. Show that the action for a relativistic point particle

$$S = m \int dt \sqrt{-X^{\mu}(t)X_{\mu}(t)}$$

is invariant under infinitesimal reparametrizations of the world line parameter t.

3. The quantum Virasoro algebra is given by

$$[L_m, L_n] = (m-n)L_{m+n} + A(m)\delta_{m+n}$$

where A(m) is a function of m that we did not explicitly calculate in the lectures. Use the constraints on A(m) that can be obtained from the requirement that the Virasoro algebra should be a Lie algebra to calculate A(m). A Lie algebra satisfies

$$[A, B] = -[B, A] \text{ antisymmetry}$$
$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 \text{ Jacobi$$

i. What does the antisymmetry of the bracket tell you about A(m)? What is A(0)? ii. Consider now the Jacobi identity for generators L_m , L_n and L_k with m + n + k = 0. Show that

$$(m-n)A(k) + (n-k)A(m) + (k-m)A(n) = 0$$

- iii. Use this to show that A(m) = am and $A(m) = bm^3$, for constants a and b, are solutions.
- iv. Consider the solution of the Jacobi identity with k = 1. Show that knowledge of A(1) and A(2) determine all A(m).
- 4. Consider two infinitely long D1-branes stretched on the (x^2, x^3) plane. The first brane is defined by $x^3 = 0$, and the second brane is at an angle γ measured counterclockwise from the x^2 axis. Let the open string coordinates be $X^2(\tau, \sigma)$, and $X^3(\tau, \sigma)$, and consider only open strings which begin on the first brane and end on the second brane. Determine the boundary conditions satisfied by X^2 and X^3 at $\sigma = 0$ and $\sigma = \pi$.