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1
The formalism

1.1 The Hilbert space

The basic concept in quantum mechanics is the Hilbert space. Mathematically, it
is a complex vector space whose elements (the vectors) describe different config-
urations of the system we are studying. We will use the bra-ket notation of Dirac
in which the elements of the Hilbert space are written as |α⟩. From mathematics
we know the properties of complex vector spaces. In a complex vector space we
may add elements and get a new element

|α⟩+ |β⟩ = |γ⟩ (1.1)

and the addition is associative

(|α⟩+ |β⟩) + |γ⟩ = |α⟩+ (|β⟩+ |γ⟩) (1.2)

as well as commutative

|α⟩+ |β⟩ = |β⟩+ |α⟩ (1.3)

There also exists a distinguished element |null⟩ called the null ket which satisfies

|α⟩+ |null⟩ = |α⟩ (1.4)

We may multiply an element with a complex number and and get a new element
although physically these two elements represents the same physical configura-
tion. The multiplication satisfies the distributive laws

a (|α⟩+ |β⟩) = a|α⟩+ a|β⟩ (1.5)
(a+ b)|α⟩ = a|α⟩+ b|α⟩ (1.6)

and the consistency conditions

a (b|α⟩) = (ab)|α⟩ (1.7)
1|α⟩ = |α⟩ (1.8)
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A Hilbert space also comes equipped with an inner product (·, ·), a linear map
H ×H → C satisfying

(i) (|α⟩, |α⟩) ≥ 0,with (|α⟩, |α⟩) = 0 ⇒ |α⟩ = 0 (1.9)
(ii) (|α⟩, |β⟩+ |γ⟩) = (|α⟩, |β⟩) + (|α⟩, |γ⟩) (1.10)
(iii) (|α⟩, a|β⟩) = a(|α⟩|β⟩) (1.11)
(iv) (|α⟩, |β⟩) = (|β⟩, |α⟩)∗ (1.12)

Notice that property (iv) implies that (a|α⟩, |β⟩) = a∗(|α⟩, |β⟩).
The thing that sets a Hilbert space apart from an ordinary complex vector space

is that it can be infinite dimensional which brings in some new features. To make
things well defined one imposes one more condition requiring the space to be
complete

(v) If{|αn⟩} ∈ H. lim
n,m→∞

(|αn⟩ − |αm⟩, |αn⟩ − |αm⟩) = 0 ⇒ (1.13)

∃|α⟩ ∈ H s.t. lim
n→∞

(|αn⟩ − |α⟩, |αn⟩ − |α⟩) = 0 (1.14)

However, in most applications the intuition we have for finite dimensional com-
plex vector spaces is good enough.

1.2 Operators on the Hilbert space

Physical observables are represented as operators on the Hilbert spaceH . That is
linear maps from the Hilbert space to itself

Â : H → H (1.15)

Linearity is imposed to preserve the defining properties of the vector space dis-
cussed above. In particular

Â (|α⟩+ |β⟩) = Â|α⟩+ Â|β⟩ (1.16)
Âa|α⟩ = aÂ|α⟩ (1.17)

Usually an operators maps a state to a different state so it acts differently than
just multiplication with complex numbers. However, for any operator, there are
particular important states where the operator acts in precisely this way

Â|a⟩ = a|a⟩ (1.18)

The state |a⟩ is called an eigenstate of the operator Â and the complex value a is
called an eigenvalue of the operator Â.
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1.3 The dual vector space

Remember that our Hilbert space comes equipped with an inner product

(·, ·) : H ×H → C (1.19)

where (|α⟩, |α⟩) ≥ 0 with equality only if the element is the null-ket. As adver-
ticed we have the usual linearity conditions

(|α⟩, |β⟩+ |γ⟩) = (|α⟩, |β⟩) + (|α⟩, |γ⟩) (1.20)
(|α⟩, b|β⟩) = b(|α⟩, |β⟩) (1.21)

but also the condition

(|α⟩, |β⟩) = [(|β⟩, |α⟩]∗ (1.22)

Notice that the last condition implies that the inner product is sesquilinear in the
first argument

(a|α⟩+ b|β⟩, |γ⟩) = a∗(|α⟩, |γ⟩) + b∗(|β⟩, |γ⟩) (1.23)

Using the inner product we may define the dual vector spaceH∗. Following Dirac
we will write elements of the dual Hilbert space as bra-states ⟨α| and the inner
product defines a sequilinear map H → H∗

a|α⟩+ b|β⟩ → (a|α⟩+ b|β⟩, ·) = a∗⟨α|+ b∗⟨β| (1.24)

The elements of H∗ can be thought of as linear transformations H → C which
in Dirac’s notation is written

⟨α| : |β⟩ → ⟨α|β⟩ ≡ (|α⟩, |β⟩) ∈ C (1.25)

When we have the inner product at our disposal we may that two states |α⟩ and
|β⟩ are orthogonal if and only if ⟨α|β⟩ = 0. We may also normalize an arbitrary
state since

|α̃⟩ ≡

(
1√
⟨α|α⟩

)
|α⟩ ⇒ ⟨α̃|α̃⟩ = 1 (1.26)

Through the inner product we immediately get the definition of the adjoint of
an operator

(|α⟩, Â|β⟩) ≡ (Â†|α⟩, |β⟩) (1.27)

we call Â† the Hermitean adjoint of Â. By insisting that

⟨α|(Â|β⟩) = (⟨α|Â)|β⟩ (1.28)
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we may define how operators act to the left on the dual Hilbert space, namely

⟨α|Â = (Â†|α⟩, ·) (1.29)

We have defined the inner product of two states in the Hilbert space. There
is one more possibility to combine these states that makes sense. We define the
outer product of two states as |α⟩⟨β|. This is to be interpreted as an operator on
H such that

|α⟩⟨β| : |γ⟩ → |α⟩ ⟨β|γ⟩︸ ︷︷ ︸
∈C

(1.30)

1.4 Basis

Let us assume that there exists a basis in our Hilbert space1. That is a set of states
|n⟩ such that any state can be written as a linear combination of them. If the basis
is orthonormal it means that ⟨m|n⟩ = δm,n. Then for an arbitrary state |α⟩ we
have

|α⟩ =
∑
n

cn|n⟩ (1.31)

where the cn is an infinte set of complex numbers. It is straightforward to verify
that cn = ⟨n|α⟩. By rewriting this and using the outer product notation we see
that

|α⟩ =
∑
n

|n⟩⟨n|α⟩ =

(∑
n

|n⟩⟨n|

)
|α⟩ (1.32)

Since |α⟩ is an arbitrary state we see that Î =
∑

n |n⟩⟨n| is an operator that maps
any state to itself, i.e. the identity operator. This innocent fact is extremely useful
and we will use it again and again. For instance if we have an operator Â acting
on a state |α⟩ we are free to insert identity operators

Â|α⟩ = ÎÂÎ|α⟩ =
∑
m,n

|m⟩⟨m|Â|n⟩⟨n|α⟩ (1.33)

We know that ⟨n|α⟩ = cn ∈ C, the expansion coefficient for the state |α⟩ in the
basis |n⟩. If we also define Amn = ⟨m|Â|n⟩ ∈ C we may write the relation as

Â|α⟩ =
∑
m,n

|m⟩Amncn =
∑
m

|m⟩dm (1.34)

We interpret this as saying that the result of Â acting on |α⟩ is a state with expan-
sion coefficients dm in the basis |m⟩ where dm =

∑
nAmncn. That means that

1 This is in fact a theorem, in every Hilbert space there exists a (possibly infinite) orthonormal basis.
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if we from the beginning decide to express all states in the basis |m⟩ we can for-
get about it and just use the expansion coefficients to define the states. Using this
convention an operator is represented as an (infinite dimensional) matrix Amn

and it acts on the state cn through (infinite dimensional) matrix multiplication.
Using the orthonormal basis and the identity operator we have found a matrix
representation of the operators on our Hilbert space. In the basis |n⟩ the operator
itself is written as

Â = ÎÂÎ =
∑
m,n

|m⟩Amn⟨n| (1.35)

The product of two operators can then be written

ÂB̂ = ÎÂÎB̂Î =
∑
m,n,k

|m⟩AmnBnk⟨k| (1.36)

so that also operator products are written in terms of matrix multiplication
Since the map ⟨α| = (|α⟩, ·) is sesquilinear we find that

|α⟩ =
∑
n

cn|n⟩ → (
∑
n

cn|n⟩, ·) =
∑
n

c∗n⟨n| (1.37)

so the dual state has complex conjugated matrix elements. To find how the Her-
mitean adjoint is expressed in this representation we introduce an additional
arbitrary state |α′⟩ =

∑
n c

′
n|n⟩ and use that Â|α⟩ =

∑
n |n⟩dn where dn =∑

mAnmcm. Then

⟨α|Â†|α′⟩ = (|α⟩, Â†|α′⟩) = (Â|α⟩, |α′⟩) =
(
∑
m

dm|m⟩,
∑
n

c′n|n⟩) =
∑
m,n

d∗mc
′
n⟨m|n⟩ =

∑
n

d∗nc
′
n (1.38)

Since d∗n =
∑

m c
∗
mA

∗
nm we may write

⟨α|Â†|α′⟩ =
∑
m,n

c∗mA
∗
nmc

′
n =

∑
m,n

c∗m(A†)mnc
′
n (1.39)

and we see that the Hilbert space Hermitean adjoint formally coincide with the
matrix definition of Hermitean conjugation.

1.5 Change of basis

There may be several choices of basis. Assume that both {|a⟩} and {|b⟩} are sets
of orthonormal basis vectors. We may construct an operator Û that takes us from
one basis to the other

Û |ak⟩ = |bk⟩ (1.40)
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Clearly Û =
∑

k |bk⟩⟨ak|. Since Û † =
∑

k |ak⟩⟨bk| we find that Û is a unitary
operator

Û †Û =
∑
k,l

|ak⟩⟨bk|bl⟩⟨al| =
∑
k

|ak⟩⟨ak| = Î (1.41)

The matrix elements of Û are given by

⟨ak|Û |al⟩ =
∑
i

⟨ak|bi⟩⟨ai|al⟩ = ⟨ak|bl⟩ (1.42)

Matrix multiplication with Û now gives the relation between the expansion co-
efficients in the different basis

⟨bk|α⟩ = ⟨bk|Î|α⟩ =
∑
l

⟨bk|al⟩⟨al|α⟩ =
∑
l

⟨ak|Û †|al⟩⟨al|α⟩ (1.43)

Similary the matrix element of an operator changes as

⟨bk|Â|bl⟩ = ⟨bk|ÎÂÎ|bl⟩ =
∑
m,n

⟨bk|am⟩⟨am|Â|an⟩⟨an|bl⟩ =∑
m,n

⟨aj|Û †|am⟩⟨am|Â|an⟩⟨an|Û |al⟩ (1.44)

In pure matrix notation we would write

c′ = U †c (1.45)
A′ = U †AU (1.46)

From this we understand that unitary operators are associated with changes in
the way we describe the system (change of basis) but not in the physics itself. In
particular, an operator and its unitary transform have the same eigenvalues. For
instance if

Â|α⟩ = α|α⟩ (1.47)

Then the operator Û †ÂÛ has an eigenvector Û †|α⟩ with exactly the same eigen-
value (

Û †ÂÛ
)
Û †|α⟩ = Û †Â|α⟩ = α Û †|α⟩ (1.48)

1.6 Continous spectra

A useful way to find a good basis is to use the set of eigenvectors of a Hermitean
operator (or a set of commuting Hermitean operators). Since Hermitean opera-
tors correspond to physical observables one is guaranteed to find a basis that will
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suffice to describe the system at hand. However, up until now we have assumed
that the operators have a descreet spectrum and that the basis is at most count-
ably infinite. Unfortunately some of the most important operators do not have
this property. For instance the position operator x̂ has a continuous spectrum in
most cases (corrsponding to the fact that we may find the particle anywhere in
the system)

x̂|x⟩ = x|x⟩ x ∈ R (1.49)

It is a remarkable fact that the formalism we developed in the previous situation
can be generalized in an intuitive way

⟨m|n⟩ = δm,n → ⟨x|x′⟩ = δ(x− x′) (1.50)∑
n

|n⟩⟨n| = Î →
∫
dx|x⟩⟨x| = Î (1.51)

|α⟩ =
∑
n

|n⟩⟨n|α⟩ → |α⟩ =
∫
dx|x⟩⟨x|α⟩ (1.52)

⟨β|α⟩ =
∑
n

⟨β|n⟩⟨n|α⟩ → ⟨β|α⟩ =
∫
dx⟨β|x⟩⟨x|α⟩ (1.53)

cn = ⟨n|α⟩ → c(x) = ⟨x|α⟩ (1.54)
⟨m|Â|n⟩ → ⟨x|Â|x′⟩ (1.55)

Notice how row and column vectors become functions and matrixes become de-
pendent on two continous variables. The continous variable could be thought of
as a "continous matrix index".

1.7 Position and translation

Let us look at the eigenstates of the position operator (in one dimension for sim-
plicity) x̂ a bit more closely

x̂|x⟩ = x|x⟩ (1.56)

The eigenstate represents a system with a particle being localized at precisely po-
sition x. Let us define an operator T̂ (∆x) that changes the state |x⟩ to |x +∆x⟩ =
T̂ (∆x)|x⟩. We call T̂ the translation operator. To find how T̂ acts on an arbitrary
state we can expand it in the position state basis

T̂ (∆x)|α⟩ = T̂ (∆x)

∫
dx|x⟩⟨x|α⟩ =

∫
dx|x +∆x⟩⟨x|α⟩ (1.57)
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The integration variable x is a "dummy variable" since we can always change the
integration variable x→ x′ −∆x without changing the result∫

dx|x +∆x⟩⟨x|α⟩ =
∫
dx′|x′⟩⟨x′ −∆x|α⟩ (1.58)

Thus we find that

⟨x|T̂ (∆x)|α⟩ =
∫
dx′⟨x|x′⟩⟨x′ −∆x|α⟩ = ⟨x′ −∆x|α⟩ (1.59)

From this we see that

⟨x|T̂ (∆x) = ⟨x−∆x| (1.60)

implying that

T̂ †(∆x)|x⟩ = |x−∆x⟩ (1.61)

so if T̂ translates a distance to the right, T̂ † translate the same distance to the left.
In particular, operating by T̂ followed by T̂ † takes you back to the initial state

T̂ †(∆x)T̂ (∆x) = T̂ (∆x)T̂ †(∆x) = Î (1.62)

In other words, T̂ is a unitary operator. Furthermore, it is natural to expect that
when we take ∆x smoothely to zero, the translation operator smoothely ap-
proaches the unity operator

lim
∆x→0

T̂ (∆x) = Î (1.63)

This means that we should be able to Taylor expand the operator for small values
of ∆x

T̂ (∆x) = Î − iK̂∆x+O(∆x2) (1.64)

Since to this order

T̂ †(∆x)T̂ (∆x) ≈ (Î + iK̂†∆x)(Î − iK̂∆x) ≈ Î + i(K̂† − K̂)∆x (1.65)

we see that unitarity implies that K̂ is hermitean K̂† = K̂ . From this also follows

T̂ (∆x)T̂ (∆x′) = T̂ (∆x+∆x′) (1.66)

Finally, we know that

x̂T̂ (∆x)|x⟩ = x̂|x +∆x⟩ = (x+∆x)|x +∆x⟩ (1.67)
T̂ (∆x)x̂|x⟩ = xT̂ (∆x)|x⟩ = x|x +∆x⟩ (1.68)

so that

[x̂, T̂ (∆x)]|x⟩ = ∆x|x +∆x⟩ ≈ ∆x|x⟩ (1.69)
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so that

[x̂, T̂ (∆x)] = ∆x (1.70)

If we use the infinitesimal form, we find

[x̂, Î − iK̂∆x] = −i[x̂, K̂]∆x = ∆x (1.71)

so that finally we have to require

[x̂, K̂] = i (1.72)

since we know that [x̂, p̂] = iℏ we can solve this by choosing K̂ = p̂
ℏ giving us

the form of the infinitesimal translation operator as

T̂ (∆x) = 1− i

ℏ
p̂∆x (1.73)

If we would like to translate a finite distance L, we have to do this by splitting
the interval into infinitesimal pieces and then use the infinitesimal translation
operator in each piece. For instance we may split the interval into N pieces so
that ∆x = L

N . Then the translation operator can be written as

T̂ (L) = lim
N→∞

(
1− i

ℏ
L

N
p̂

)N

= e−
i
ℏLp̂ (1.74)

using a well known form of the exponential function.

1.8 More on the continous basis

Expanding an arbitrary state |α⟩ in terms of the position basis gives

|α⟩ =
∫
dx|x⟩⟨x|α⟩ (1.75)

where the expansion coefficient ⟨x|α⟩ is called the wavefunction. As usual, the
interpretation of the absolute square of the expansion coefficient is the probability
to find the system in this particular state. Because of the continous nature of the
states, we have to interpret this as the probability density so that |⟨x|α⟩|2dx is the
probability to find the particle in the interval (x, x+ dx).

If we have an alternative descreet basis, we may expand the wave function as

⟨x|α⟩ =
∑
n

⟨x|n⟩⟨n|α⟩ =
∑
n

cnun(x) (1.76)

where cn are the expansion coefficients in the basis |n⟩ and un(x) are the new
basis states in the continous state representation.

It is interesting to examine how operators are represented in the continous
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basis. For instance, since we know that p̂ is the generator of translations we can
write

⟨x|(1− i

ℏ
p̂∆x)|α⟩ = ⟨x−∆x|α⟩ ≈ ⟨x|α⟩ −∆x

∂

∂x
⟨x|α⟩ (1.77)

which means
i

ℏ
∆x⟨x|p̂|α⟩ = ∆x

∂

∂x
⟨x|α⟩ (1.78)

implying

⟨x|p̂|α⟩ = −iℏ ∂
∂x

⟨x|α⟩ (1.79)

so that in the continous representation, the states are represented as functions and
the operators are represented as differential operators on the space of functions.

1.9 Momentum

There are other physically important operators with continous spectrum. For in-
stance the momentum operator p̂ is such an operator. We therefore have the eigen-
states of p̂|p⟩ = p|p⟩ as an alternative basis. Similarly to the position state basis,
we can expand any state as

|α⟩ =
∫
dp|p⟩⟨p|α⟩ (1.80)

The expansion coefficient ⟨p|α⟩ is the momentum space wave function. Following
exactly the same logic as in the case of the coordinate space basis, one may show
that

e
i
ℏ∆px̂|p⟩ = |p +∆p⟩ (1.81)

so that x̂ becomes the generator of translations in momentum space. Completely
analogously we also show

⟨p|x̂|α⟩ = iℏ
∂

∂p
⟨p|α⟩ (1.82)

so that in the momentum space representation it is p̂ that is represented as a simple
multiplicative operator while x̂ is represented as a differential operator.

Particularly important is the transition from the coordinate basis to the momen-
tum basis and back. For instance, given the expansion coefficient in the coordinate
space basis we may insert the unity operator to get

⟨x|α⟩ =
∫
dp⟨x|p⟩⟨p|α⟩ (1.83)
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to be able to explicitly perform this integral, we need to find an explicit expression
for ⟨x|p⟩. This can be done by evaluating ⟨x|p̂|p⟩ in two different ways. First we
use that |p⟩ is the eigenket for p̂

⟨x|p̂|p⟩ = p⟨x|p⟩ (1.84)

On the other hand, we know that for any state |α⟩ we have

⟨x|p̂|α⟩ = −iℏ ∂
∂x

⟨x|α⟩ (1.85)

so that

⟨x|p̂|p⟩ = −iℏ ∂
∂x

⟨x|p⟩ (1.86)

Then we get a differential equation for the function ⟨x|p⟩

−iℏ ∂
∂x

⟨x|p⟩ = p⟨x|p⟩ (1.87)

with the solution

⟨x|p⟩ = Ne
i
ℏxp (1.88)

where the proportionality constant N has to be calculated by requirering that
the wavefunction is normalized where however the word normalized has to be
understood properly. In the case of a continous basis the basis states satisfy

⟨x|x′⟩ = δ(x− x′) (1.89)

so putting x = x′ gives infinity instead of 1. But this tells us that

δ(x− x′) =

∫
dp⟨x|p⟩⟨p|x′⟩ = |N |2

∫
dpe

i
ℏp(x−x′) = 2πℏ|N |2δ(x− x′)(1.90)

using one of the representations of the Dirac delta function. This means that

⟨x|p⟩ = 1√
2πℏ

e
i
ℏxp (1.91)

1.10 The density operator

Alternatively we may encode the configurations of a system, not using the Hilbert
space itself but by using the space of operators on the Hilbert space. This way of
encoding the physics is even more powerful than just using states in the Hilbert
space as we will see shortly. This is done using a so called density operator ρ̂.
A general density operator is a self-adjoint operator of trace one acting on the
Hilbert space of the system which is also positive semi-definite. In other words
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• ρ̂† = ρ̂

• Tr(ρ̂) = 1

whose eigenvalues are all real (because of Hermiticity) and greater or equal than
zero.

Any state |ψ⟩ in the Hilbert space gives rise to such an operator since ρ̂ =

|ψ⟩⟨ψ| fulfils all the requirements. On top of that it is also a projection operator
meaning that ρ̂2 = ρ̂. Any density operator of this type will be called a pure
density operator. It is a theorem that for any pure density operator ρ̂ there is a
state |χρ⟩ such that ρ̂ = |χρ⟩⟨χρ| so the mapping goes both ways.

To calculate the expectation value of any operator Ô for a system described by
a pure density operator ρ̂ = |ψ⟩⟨ψ| we use the trace since

⟨ψ|Ô|ψ⟩ =
∑
n

⟨ψ|n⟩⟨n|Ô|ψ⟩ =
∑
n

⟨n|Ô|ψ⟩⟨ψ|n⟩ = (1.92)

Tr
(
Ô|ψ⟩⟨ψ|

)
= Tr

(
Ôρ̂
)

(1.93)

Any trasformation of the system, performed by acting on the Hilbert space with
a unitary operator Û can be transferred to the density operator by

ρ̂→ Û ρ̂Û † = Û ρ̂Û−1 (1.94)

1.10.1 Mixed density operators

If the density operator is not pure ρ̂2 ̸= ρ̂, then there is no such state and the den-
sity operator does not represent a concrete quantum state of the system. Rather it
represents a statistical ensemble where different quantum states are represented
with different probability. In such a case the system is said to be in a mixed state
and the density matrix is called a mixed density operator. Any mixed density op-
erator can be written as

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| (1.95)

which means that the expectation value of any operator in a system represented
by this density operator is

⟨O⟩ = Tr (Oρ̂) =
∑
i

pi⟨ψi|O|ψi⟩ (1.96)

To see the difference between pure and mixed density operators we consider a
scattering experiment where we are shooting electrons at a target. If the scattering
is sensitive to the wether the electron spin is up or down we can have two situa-
tions. Either the electrons are all in the same quantum state, |ψ⟩ = 1√

2
(|↑⟩+ |↓⟩)
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with the density operator

ρ̂p =
1

2
(|↑⟩+ |↓⟩) (⟨↑|+ ⟨↓|) = 1

2
(|↑⟩⟨↑|+ |↑⟩⟨↓|+ |↓⟩⟨↑|+ |↓⟩⟨↓|) (1.97)

The probability to measure spin up or spin down is 50 %. The second option is
that half of the electrons coming are randomly in the state |↑⟩ and half are in the
state |↓⟩ and now the density matrix is

ρ̂m =
1

2
(|↑⟩⟨↑|+ |↓⟩⟨↓|) (1.98)

Again the probability of measuring spin up or spin down is 50 % but the physics
is different. The outcome of the scattering experiment is different in the two cases
so the situations are clearly different but we can only describe the first case by a
state in the Hilbert space. Notice that ρ̂2p = ρ̂p whereas ρ̂2m = 1

2 ρ̂m.
Another situation where a mixed density matrix may arise is in a system where

we lack information. Imagine that our system consists of two subsystems so that
the Hilbert space is the tensor product of the Hilbert spaces of the subsystems.
Concretely we may think of each system consisting of a spin (a qubit) such that
the Hilbert space of the first system is

HA = span{|↓⟩A, |↑⟩A} (1.99)

and similarly we have the Hilbert space of the second system

HB = span{|↓⟩B, |↑⟩B} (1.100)

The full system consists of two qubits so that the Hilbert space is the tensor prod-
uct of the individual Hilbert spaces

H = HA ⊗HB = (1.101)
span{|↑⟩A ⊗ |↑⟩B, |↑⟩A ⊗ |↓⟩B, |↓⟩A ⊗ |↑⟩B, |↓⟩A ⊗ |↓⟩B} (1.102)

There are many pure states in which we may find the system. For instance, the
spin of both particles may be up corresponding to the state |↑⟩⊗ |↑⟩ which corre-
sponds to a density operator ρ̂ = (|↑⟩A ⊗ |↑⟩B) (⟨↑|A ⊗ ⟨↑|B) = |↑⟩⟨↑|A⊗|↑⟩⟨↑|B
where we have introduced the tensor product also in the space of operators. A
more interesting case is if the subsystems are entangled. For instance, in the pure
state 1√

2
(|↑⟩A ⊗ |↑⟩B + |↓⟩A ⊗ |↓⟩B) we know with certainty that if we measure

the spin of system A, system B will have the same value, the systems are entangled.
This state corresponds to a density operator

ρ̂ =
1

2
(|↑⟩⟨↑|A ⊗ |↑⟩⟨↑|B + |↑⟩⟨↓|A ⊗ |↑⟩⟨↓|B+ (1.103)

|↓⟩⟨↑|A ⊗ |↓⟩⟨↑|B + |↓⟩⟨↓|A ⊗ |↓⟩⟨↓|B) (1.104)
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Assume that we only have access to system A and that system B is hidden to us.
Then the operators we can work with are of the form ÔA⊗ ÎB where the operator
action on system B is a unit operator since we have no way of interacting with
system B. The expectation value of such an operator is

⟨ÔA ⊗ ÎB⟩ = Tr
(
ÔA ⊗ ÎB ρ̂

)
(1.105)

If we assume a basis |m⟩ for HA and a basis |n′⟩ for HB we can choose a basis for
the whole system as |m⟩ ⊗ |n′⟩ and the trace can be performed as

⟨ÔA ⊗ ÎB⟩ =
∑
m

∑
n′

(
⟨m| ⊗ ⟨n′|

) (
ÔA ⊗ ÎB ρ̂

) (
|m⟩ ⊗ |n′⟩

)
= (1.106)

∑
m

⟨m|OA

(∑
n′

⟨n′|ρ̂|n′⟩

)
|m⟩ (1.107)

Here we can define the partial trace TrB which takes an operator on HA ⊗ HB

to an operator on HA by summing over the degrees of freedom of the subsystem
B only

TrB (ρ̂) =
∑
n′

⟨n′|ρ̂|n′⟩ (1.108)

which means that we can finally write

⟨ÔA ⊗ ÎB⟩ = TrA

[
ÔATrB {ρ̂}

]
(1.109)

System A can therefore be described by an effective density operator ρ̂A = TrB (ρ̂)

since ⟨OA⟩ = TrA (OAρ̂A).
We may now illustrate this on the spin system discussed previously. If the full

system is in the pure state |↑⟩A⊗|↑⟩B with a density matrix ρ̂ = |↑⟩⟨↑|A⊗|↑⟩⟨↑|B
we perform the partial trace

ρ̂A = TrB (ρ̂) = ⟨↑|ρ̂|↑⟩B + ⟨↓|ρ̂|↓⟩B = (1.110)
|↑⟩⟨↑|A × ⟨↑| {|↑⟩⟨↑|B} |↑⟩B + |↑⟩⟨↑|A × ⟨↓| {|↑⟩⟨↑|B} |↓⟩B = |↑⟩⟨↑|A (1.111)

which is a pure density matrix corresponding to the state |↑⟩A. If we instead as-
sume that the original system is in the entangled state |↑⟩A ⊗ |↑⟩B + |↓⟩A ⊗ |↓⟩B
then the partial trace gives a more interesting result

ρ̂A = TrB (ρ̂) = ⟨↑|ρ̂|↑⟩B + ⟨↓|ρ̂|↓⟩B = (1.112)
1

2
[|↑⟩⟨↑|A × ⟨↑| {|↑⟩⟨↑|B} |↑⟩B + |↑⟩⟨↓|A × ⟨↑| {|↑⟩⟨↓|B} |↑⟩B+(1.113)

|↓⟩⟨↑|A × ⟨↑| {|↓⟩⟨↑|B} |↑⟩B + |↓⟩⟨↓|A × ⟨↓| {|↑⟩⟨↓|B} |↓⟩B] = (1.114)
1

2
[|↑⟩⟨↑|A + |↓⟩⟨↓|A] (1.115)
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Notice that although ρ̂ was pure, ρ̂A is not. This is the best description we can
have of system A when we have no information from system B.

1.10.2 Entropy of a density operator

As we see, the density operator knows about how much information we have
about a system. Therefore one might suspect that there is a notion of entropy
that can be defined in terms of the density operator. In fact, for the general density
operator of the form

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| (1.116)

we may define the entropy as

S(ρ̂) = −
∑
i

pi ln(pi) (1.117)

For any pure density operator, ρ̂ = |ψ⟩⟨ψ| and S = 0. For a mixed density op-
erator, the entropy is always greater than one with the maximum value of lnN
where N is the dimension of the Hilbert space. For instance, the density operator
ρ̂ = 1

2 [|↑⟩⟨↑|+ |↓⟩⟨↓|] the entropy is

S = −1

2
ln

1

2
− 1

2
ln

1

2
= ln 2 (1.118)

so it corresponds to a maximally mixed state.

1.10.3 The Bloch sphere

For two dimensional quantum systems (qubits) we can have a particularly nice
geometric description of the density operator. A general density operator can be
represented as a Hermitean matrix and in two dimensions all Hermitean matrices
can be written as a linear combination of the Pauli matrices and the unit matrix

ρ = a0I + aiσ
i (1.119)

Since the Pauli matrixes are all traceless Trρ = 2a0 so for ρ to represent a density
operator we must choose a0 = 1

2 . Furthermore we need ρ to be positive semi
definite. To investigate this we calculate the eigenvalues of ρ which leads to

ρ =
1

2
±
√
a21 + a22 + a23 (1.120)

which tells us that only values a21 + a22 + a23 ≤ 1
4 give representations of density

operators. So the space of density operators can be geometrically given as a ball
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with radius 1
2 . Most of them represent mixed density operators, only the values

on the surface of the ball, a21 + a22 + a23 = 1
4 , when one eigenvalue is zero, rep-

resent pure operators. The center, a1 = a2 = a3 = 0 gives the maximally mixed
operator.

We may also calculate the entropy of an arbitrary operator using a to denote
the distance from the center for notational simplicity

S = −(
1

2
+ a) ln(

1

2
+ a)− (

1

2
− a) ln(

1

2
− a) (1.121)

This is a function which is zero on the boundary of the sphere a = 1
2 and mono-

tonically increases to the value ln 2 at the center of the sphere as can be seen
on the graph so in fact there are infinitely many density operators representing

Figure 1.1 Entropy of states in the Bloch sphere

systems with various degrees of mixing with only a tiny part representing pure
systems.

Exercise 1

1. In a two dimensional Hilbert space with basis {|1⟩, |2⟩} what is the matrix
representation of the operator Â = |1⟩⟨2|?

2. Show that a product of unitary operators is unitary.
3. Show that Unitary operators preserve the inner product between the states

they act on.
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4. What is the Hermitean conjugate of an operator Â = |α⟩⟨β|?
5. Define the trace of an operator by using an orthonormal basis |n⟩ as

Tr(Â) =
∑
n

⟨n|Â|n⟩. (1.122)

Show that the definition is independent of the choice of basis by intro-
ducing a different orthonormal basis |n′⟩ and using that both sets of basis
vectors are complete.

6. If {|n⟩} and {|n′⟩} are two different sets of orthonormal basis vectors. We
may define the operator

Û =
∑
n′=n

|n′⟩⟨n| (1.123)

which maps a state |n⟩ in the first basis to a state |n′⟩ in the second basis.
Show that Û is a unitary operator.

7. Show that the eigenvalues of a unitary operator are complex numbers of
unit modulus.

8. Show that the eigenvectors of a unitary operator are mutually orthogonal
(if no degeneracy).

9. Show that cyclicity of the trace holds Tr(ÂB̂) = Tr(B̂Â).
10. Show that Tr(|ψ⟩⟨χ|) = ⟨χ|ψ⟩.
11. Show that (|ψ⟩⟨χ|)† = |χ⟩⟨ψ|.
12. By using the sesquilinearity of (·, ·), show that (|ψ⟩, |χ⟩) = (|χ⟩, |ψ⟩)⋆.
13. In a space with three basis vectors {|1⟩, |2⟩, |3⟩} we define an operator R̂

according to its action on the basis states as

R̂|1⟩ = |2⟩ R̂|2⟩ = −|1⟩ R̂|3⟩ = |3⟩ (1.124)

What is the matrix representative of this operator? If we have a state |ψ⟩ =
a|1⟩+ b|2⟩+ c|3⟩, what is its matrix representative? How does the matrix
representative of R̂ act on the matrix representative of |ψ⟩?

14. Consider the operator D̂ = −i d
dx , defined on the space of differentiable

functions of x on the interval a ≤ x ≤ bwith the inner product defined as
(f(x), g(x)) =

∫ b
a dxf

⋆(x)g(x). We may define various subspaces of the
space of differentiable functions by imposing boundary conditions.

• What are the boundary conditions that one have to impose to make D̂
hermitian?

• What are the eigenfunctions and eigenvalues for the operator D̂?
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• Are the eigenfunctions part of the space on which we define D̂? For
what boundary conditions are the eigenfunctions part of the space on
which D̂ is defined?

• What if a = −∞ and b = ∞?

15. What boundary conditions must be imposed on the functions {f(x̄)} de-
fined in some finite or infinite volume of space in order for the Laplace
operator ∆ = ∇2 to be Hermitian?

16. Suppose that we compose a system of the two subsystems A and B. Assume
that the system is in the state |a⟩ ⊗ |b⟩ where |a⟩ and |b⟩ are pure states
of systems A and B respectively. Show that the reduced density operator
of system A is pure.

17. Assume that a two state system with orthonormal basis states |0⟩ and |1⟩
is described by the density operator

ρ̂ =
3

4
|0⟩⟨0|+ 1

4
|1⟩⟨1| (1.125)

Define the states

|a⟩ =
√
3

2
|0⟩+ 1

2
|1⟩ (1.126)

|b⟩ =
√
3

2
|0⟩ − 1

2
|1⟩ (1.127)

and show that the density operator

ρ̂′ =
1

2
|a⟩⟨a|+ 1

2
|b⟩⟨b| (1.128)

is actually equal to ρ̂. This shows that inequivalent systems can have the
same density operator. Why is ρ̂′ not maximally mixed although it looks
like it?



2
Propagators and Path integrals

2.1 Time evolution in Quantum mechanics

Time evolution in quantum mechanics is given by the Schrödinger equation

Ĥ|ψ⟩ = iℏ
∂

∂t
|ψ⟩. (2.1)

The way we are used to solve this is to find a basis of eigenstates of the Hamilto-
nian, i.e. to solve the equation

Ĥ|ψn⟩ = En|ψn⟩. (2.2)

Each of these states evolve very simply with time since

iℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ = En|ψn⟩, (2.3)

so that

|ψn(t)⟩ = e−
i
ℏEnt|ψn⟩. (2.4)

Since |ψn⟩ is a complete basis, we can express any wave function as a linear com-
bination of the |ψn⟩ states

|ψ⟩ =
∑
n

cn|ψn⟩, (2.5)

and since we know how each of the basis states evolve in time, we know the full
time evolution

|ψ(t)⟩ =
∑
n

cne
− i

ℏEnt|ψn⟩. (2.6)

This method is not always possible to use however. For instance, if the Hamilto-
nian itself Ĥ(t) depends on time we cannot solve equation (2.2) and we will have
to find a different method. It is also possible that this method does not give the
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simplest description of time evolution. For instance if the initial wave function is
very different from the base states.

Let us now look for a more general solution to (2.1). Infinitesimally we may
write it as

Ĥ(t)|ψ(t)⟩ = iℏ
|ψ(t + ∆t)⟩ − |ψ(t)⟩

∆t
. (2.7)

Or, turning it around

|ψ(t + ∆t)⟩ = |ψ(t)⟩ − i

ℏ
Ĥ(t)∆t|ψ(t)⟩ =

(
1− i

ℏ
Ĥ(t)∆t

)
|ψ(t)⟩. (2.8)

We see that we may define an operator

Û(t+∆t, t) = 1− i

ℏ
Ĥ(t)∆t, (2.9)

which evolves arbitrary wave functions from time t to time t + ∆t. Notice that
the only approximation we made was to assume that the time increment was
infinitesimal. In particular, the Hamiltonian was arbitrary. We can observe that

lim
∆t→0

Û(t+∆t, t) = 1, (2.10)

so that the time evolution is continuous. We also see that Û is a unitary operator.
That is, Û †Û = Û Û † = 1 (to lowest order in ∆t). This has to be since we do not
want that probability density is lost in the time evolution (that is, independently
of what the physical situation is and what the particle does, the probability of
finding it anywhere in space should always be one). Mathematically we write this
as

1 = ⟨ψ(t + ∆t)|ψ(t + ∆t)⟩ = ⟨ψ(t)|Û †U |ψ(t)⟩. (2.11)

We can rewrite Û in such a way that the unitarity becomes manifest. Namely, for
the infinitesimal time evolution we have

Û(t+∆t, t) = 1− i

ℏ
Ĥ(t)∆t ≈ e−

i
ℏ Ĥ(t)∆t. (2.12)

This is manifestly unitary since Ĥ is hermitian. This we will take as the defini-
tion of the infinitesimal time evolution operator. To be able to handle arbitrary
time evolutions we will use that any arbitrary time interval can be divided into
infinitesimal pieces. We therefore define the arbitrary time evolution operator
Û(t′, t) by dividing the time interval t′ − t into N pieces. Letting N go to in-
finity makes the intervals arbitrarily small so in each interval the time evolution
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operator can be taken in its infinitesimal form. Thus we get:

Û(t′, t) = lim
N→∞

Û(t′, tN−1)Û(tN−1, tN−2) . . . Û(t2, t1)Û(t1, t), (2.13)

ti = t+
t′ − t

N
i,

and this is the most general definition of the time evolution operator. It works for
arbitrary Hamiltonians and in the following we will evaluate it in various special
cases where it simplifies.

The problem of taking the product in (2.13) is the fact that the Ĥ operator
appearing in each Û is taken at a different time. If the Hamiltonians at different
times do not commute we cannot perform the product of the Û operators in a
simple form. A good exercise to see why this is so is to try to derive the Baker-
Campbell-Hausdorff formula for two operators Â and B̂

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+ 1

12 [Â,[Â,B̂]]+ 1
12 [[Â,B̂]B̂]+.... (2.14)

Only in the special case where the Hamiltonians at different times commute with
themselves can we simplify the expression (2.13) for Û as follows

Û(t′, t) = lim
N→∞

e−
i
ℏ Ĥ(tN−1)∆t− i

ℏ Ĥ(tN−2)∆t−...− i
ℏ Ĥ(t1)∆t− i

ℏ Ĥ(t)∆t

= e−
i
ℏ
∫ t′
t ds Ĥ(s). (2.15)

This is such a nice and compact form that one would like to use it for the general
case. This we can do if we define a new operator T called the time ordering oper-
ator. T acting on a product of operators always reorders them so that operators
evaluated at earlier times stands to the right of operators evaluated at later times.
Using T we can write the general expression for Û as

Û(t′, t) = T

[
e−

i
ℏ
∫ t′
t ds Ĥ(s)

]
. (2.16)

The appearance of T [⋆] in this expression tells us that we have to write Û in such
a way that all operators taken at earlier times are written to the right of operators
at later times, just as is manifestly done in the original definition (2.13).

2.2 The propagator

Now let us try to use the time evolution operator in some specific cases. The wave
function at arbitrary time t is given by

|ψ(t)⟩ = Û(t, t′)|ψ(t′)⟩ (2.17)
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In coordinate representation this looks like

ψ(x, t) = ⟨x|ψ(t)⟩ = ⟨x|Û(t, t′)|ψ(t′)⟩

=

∫
d3x′ ⟨x|Û(t, t′)|x′⟩ ⟨x′|ψ(t′)⟩

=

∫
d3x′ K(x, t;x′, t′) ψ(x′, t′), (2.18)

where we have inserted 1 in the form
∫
d3x′|x′⟩⟨x′| and defined the configuration

space propagator

K(x, t;x′, t′) = ⟨x|Û(t, t′)|x′⟩. (2.19)

The name propagator is chosen because K(x, t;x′, t′) takes the wave function at
time t′ and propagates it to time t and space point x. It works very much like in
electrodynamics where we can use the knowledge of the potential (and its normal
derivative) on the border of a region to find the potential everywhere in this region
with the help of a Green function. In our case the border is the space time surface
at t′, the potential is the wave function and the Green function is the propagator.
We shall see later that this is no coincidence, K is indeed the Green function for
the Schrödinger operator.

In the special case where the initial wave function is completely localized at a
point, ψ(x′, t′) = δ(3)(x′ − x0) we have

ψ(x, t) =

∫
d3x′ K(x, t;x′, t′) δ(3)(x′ − x0) = K(x, t;x0, t

′), (2.20)

so we see that a direct physical interpretation of the propagator is that it is the
wave function of a particle which was completely localized at the initial time.

Since the propagator has the interpretation as a wave function, it has to fulfill
the Schrödinger equation. This we now prove in the special case that the Hamil-
tonian has the form

Ĥ =
p̂2

2m
+ V (x̂) (2.21)

First we notice that for infinitesimal ∆t

K(x, t+∆t;x′, t′) = ⟨x|Û(t+∆t, t′)|x′⟩ = ⟨x|Û(t+∆t, t)Û(t, t′)|x′⟩.(2.22)

Since the leftmost time evolution operator is infinitesimal, we know how to eval-
uate it

Û(t+∆t, t) = 1− i

ℏ
Ĥ(t)∆t. (2.23)
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Inserting the identity operator we have

K(x, t+∆t;x′, t′) =

∫
d3y ⟨x|1− i

ℏ
Ĥ(t)∆t|y⟩ ⟨y|Û(t, t′)|x′⟩

=

∫
d3y ⟨x|1− i

ℏ
Ĥ(t)∆t|y⟩ K(y, t;x′, t′). (2.24)

Using the explicit form of the Hamiltonian we can compute

⟨x|Ĥ|y⟩ = − ℏ2

2m
(∇y)

2δ(3)(x− y) + V (y)δ(3)(x− y), (2.25)

where we have use the fact that

⟨x|x̂|y⟩ = xδ(3)(x− y) = yδ(3)(x− y),

⟨x|p̂|y⟩ = −iℏ∇xδ
(3)(x− y) = iℏ∇yδ

(3)(x− y). (2.26)

Inserting this we get

K(x, t+∆t;x′, t′) =

∫
d3y δ(3)(x− y) K(y, t;x′, t′)

− i

ℏ
∆t

∫
d3y

(
− ℏ2

2m
(∇y)

2δ(3)(x− y) + V (y)δ(3)(x− y)

)
K(y, t;x′, t′).(2.27)

After integrating by parts we can use the delta functions to perform the integral

K(x, t+∆t;x′, t′) = K(x, t;x′, t′)

− i

ℏ
∆t

(
− ℏ2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′), (2.28)

or, reshuffling the terms a little bit

iℏ
∆t

(
K(x, t+∆t;x′, t′)−K(x, t;x′, t′)

)
=

(
− ℏ2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′),(2.29)

which for infinitesimal ∆t is the same as

iℏ
∂

∂t
K(x, t;x′, t′) =

(
− ℏ2

2m
(∇x)

2 + V (x)

)
K(x, t;x′, t′), (2.30)

in which we recognize the Schrödinger equation as we set out to show above. We
therefore see that K(x, t;x′, t′) is a solution to the Schrödinger equation with
boundary conditions

lim
t→t′

K(x, t;x′, t′) = δ(3)(x− x′). (2.31)

If we require that the propagator should be zero if t < t′ (there is no evolution
backwards in time) we can define it as

K̃(x, t;x′, t′) = K(x, t;x′, t′)Θ(t− t′), (2.32)
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where Θ is a step function. This new K̃ satisfies the equation(
iℏ
∂

∂t
− Ĥ

)
K̃(x, t;x′, t′) =

[(
iℏ
∂

∂t
− Ĥ

)
K(x, t;x′, t′)

]
Θ(t− t′)

+ K(x, t;x′, t′) iℏ
∂

∂t
Θ(t− t′) (2.33)

= iℏK(x, t;x′, t′)δ(t− t′)

= iℏδ(3)(x− x′)δ(t− t′),

where we used that fact that the derivative of the step function is a delta function
and thatK evaluated at zero time-step is a delta function in space. This shows that
K̃ is indeed a Green function of the Schrödinger differential operator iℏ ∂

∂t − Ĥ .
As an illustration, let us evaluate the propagator for the one dimensional free

particle. From the definition we have

K(x, t;x′, t′) = ⟨x|T
[
e−

i
ℏ
∫ t
t′ dsĤ(s)

]
|x′⟩, (2.34)

where now Ĥ is the Hamiltonian for a free particle Ĥ = p̂2

2m . Since this Hamil-
tonian does not depend on time it commutes with itself for all times. That means
that the T operator acts trivially and that the integral in the exponential can be
written

∫ t
t′ dsĤ(s) = (t − t′)Ĥ . Since the Hamiltonian contains p̂ it is useful to

insert a complete set of momentum eigenstates

K(x, t;x′, t′) =

∫ ∞

−∞
dp ⟨x|e−

i
ℏ Ĥ(t−t′)|p⟩ ⟨p|x′⟩

=

∫ ∞

−∞
dp e−

i
ℏ (t−t′) p2

2m ⟨x|p⟩ ⟨p|x′⟩, (2.35)

and using the explicit form of the wave function ⟨x|p⟩ = 1√
2πℏ

e
i
ℏpx we get

K(x, t;x′, t′) =

∫ ∞

−∞

dp

2πℏ
e−

i
ℏ (t−t′) p2

2m
+ i

ℏp(x−x′). (2.36)

The integral over p is not really well defined since the integrand does not fall off
for large p. It is possible to define it correctly mathematically in various ways. For
instance, we can make the integral convergent by defining

Knew(x, t;x
′, t′) = lim

ϵ→0
Kold(x, t− iϵ;x′, t′). (2.37)

For each non-zero ϵ the integrand falls off like a Gaussian so the integral is con-
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vergent and gives us

K(x, t− iϵ;x′, t′) =

∫ ∞

−∞

dp

2πℏ
e−

ϵ
2mℏp

2− i
ℏ (t−t′) p2

2m
+ i

ℏp(x−x′)

= e
− m(x−x′)2

2ℏ(i(t−t′)+2mϵ)

∫ ∞

−∞

dp

2πℏ
e
− i(t−t′)+2mϵ

2mℏ

(
p−i

m(x−x′)
i(t−t′)+2mϵ

)2

. (2.38)

Shifting the integration variable p gives a Gaussian integral of the type∫ ∞

−∞
dxe−ax2

=

√
π

a
, (2.39)

and using this we finally have

K(x, t− iϵ;x′, t′) =

√
m

2πℏ(i(t− t′) + 2mϵ)
e
− m(x−x′)2

2ℏ(i(t−t′)+2mϵ) . (2.40)

In this expression we can without worries take the limit ϵ→ 0 to get the config-
uration space propagator for the one dimensional free particle

K(x, t;x′, t′) =

√
m

2πiℏ(t− t′)
e

im(x−x′)2
2ℏ(t−t′) . (2.41)

It is interesting to try to interpret this propagator physically since we know
that K(x, t, ; 0, 0) should be the wave function for a particle which at t = 0 was
completely localized at x = 0. Since |K(x, t; 0, 0)|2 is the same everywhere in
space it means that at any instant after t = 0 the probability to find the particle
anywhere in space is the same!! This can be understood since in non-relativistic
physics there is no maximum velocity. When we try to localize a particle we need
to use waves of all possible momenta, even infinitely high. These wave will of
course propagate arbitrarily far in infinitesimal time giving us the above result.
In relativistic quantum mechanics the propagator is modified in such a way that
nothing can propagate faster than light so that the probability density is always
zero outside the light cone.

2.3 The propagator as a Green function

Well, if the propagator is a Green function we must be able to calculate it using
standard methods. We now illustrate this on exactly the same problem as in the
previous section, namely the configuration space propagator for the one dimen-
sional free particle. The general equation for the Green function of an operator
gives (

iℏ
∂

∂t
− Ĥ

)
K(x, t; 0, 0) = iℏδ(x)δ(t), (2.42)



28 Propagators and Path integrals

where we have put x′ and t′ to zero without loss of generality. In our case we have
to choose the Hamiltonian Ĥ = −ℏ2∂2

x
2m so we have(

iℏ
∂

∂t
+

ℏ2∂2x
2m

)
K(x, t; 0, 0) = iℏδ(x)δ(t). (2.43)

Such equations are very nicely solved using Fourier transforms. Namely, write
the Fourier transform of K(x, t) as L(k, ω) such that

K(x, t) =

∫
dk dω

(2π)2
L(k, ω)eikx−iωt, (2.44)

we can write the left hand side of (2.43) as(
iℏ
∂

∂t
+

ℏ2∂2x
2m

)∫
dk dω

(2π)2
L(k, ω) eikx−iωt (2.45)

=

∫
dk dω

(2π)2

(
ℏω − ℏ2k2

2m

)
L(k, ω) eikx−iωt. (2.46)

Using that we know how the Fourier transform of a delta function looks like
(δ(t) =

∫
dω
2π e

−iωt) we can then write the right hand side of (2.43) as

iℏ
∫
dk dω

(2π)2
eikx−iωt. (2.47)

We see that the two sides are equal if and only if(
ℏω − ℏ2k2

2m

)
L(k, ω) = iℏ, (2.48)

or, if you wish

L(k, ω) =
iℏ

ℏω − ℏ2k2
2m

. (2.49)

Well, now we have L(k, ω) but since it is just the Fourier transform ofK(x, t) we
just need to transform back to get K(x, t). That should be a piece of cake! Let us
try. Using (2.44) we can write

K(x, t) =

∫
dk dω

(2π)2
iℏ

ℏω − ℏ2k2
2m

eikx−iωt

=

∫ ∞

−∞

dk

2π
eikx

(∫ ∞

−∞

dω

2πi

−1

ω − ℏk2
2m

e−iωt

)
. (2.50)

We will do the integral over ω using contour methods.
In order to be able to write the integral as a sum over residues, using the Cauchy

theorem, we need to have a closed contour. This we get by closing the contour
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either with a half circle in the upper half plane or with a half circle in the lower
half plane as shown in picture 2.1 We can then write the closed contour I as the

I1

I1

I
2

I
2
’

x x

Figure 2.1 The possible contours

sum of the integral in which we are interested I1 and the integral over the half
circle I2 (or I ′2). Since I is given by the integral around a closed contour it can
be calculated simply as the sum over the residues of the poles enclosed by the
contour. Then we have I1 = I − I2 and since we will now show that I2 = 0 we
in fact have that I1 = I .

To show that I2 = 0we need to estimate the integral. The contour is over values
of ω with |ω| constant and large (going to infinity even). arg(ω) varies between 0

and π for I2 and 0 and −π for I ′2. To make the estimate for this contour we write∣∣∣∣∣ 1

ω − ℏk2
2m

∣∣∣∣∣ ≈ 1

|ω|
+O

(
1

|ω|2

)
,

∣∣e−iωt
∣∣ = ∣∣∣e−i|ω|(cos θ+i sin θ)t

∣∣∣ = ∣∣∣e|ω|t sin θ
∣∣∣ , (2.51)

dω = ωidθ,

which means that we can estimate the integral as∫
C2

dω

2πi

1

ω − ℏk2
2m

e−iωt ≤
∫

dθ

2πi

|ω|
|ω|

e|ω|t sin θ. (2.52)

Notice that |ω| is really a constant all through the calculation. Furthermore, this
constant we will take to infinity (corresponding to an infinitely large half cir-
cle). The integrand is therefore very much suppressed if we choose θ so that
|ω| t sin(θ) < 0. In other words, for t > 0 we have to choose −π ≤ θ ≤ 0

corresponding to I ′2 and for t < 0 we have to choose 0 ≤ θ ≤ π corresponding
to I2.

There is one more problem with the integral I1 which we skipped over in the
previous discussion. Namely, there is a pole (singularity) of the integrand for ω =
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ℏk2
2m . The usual way to avoid this problem is to let the integration contour pass the
singularity in a small circle. But there are two ways we can do this. Either above
or below. Which is the correct way? Physics will have to tell us. Namely, from the
four possible contours in figure 2.2 we see immediately that two of them are zero

x x

x x

Figure 2.2 All possible contours

(since they do not enclose any poles). If we choose to shift the contour down we
get a result which is non-zero only for t < 0 (this is not what we want, it would
mean propagation only backwards in time) but if we choose to shift the contour
up we get a result which is non-zero only for t > 0 (which is exactly what we
want since this is how we defined the Green function in the first place). The fact
that physics tells us that we always have to shift the contour up can be nicely
encoded in the way we write the momentum space propagator. Namely, write

L(k, ω) =
i

ω − ℏk2
2m + iϵ

, (2.53)

where ϵ is an arbitrary small real number which we always let go to zero after the
calculation. The fact that ϵ appears shifts the location of the pole from ω = ℏk2

2m

to ω = ℏk2
2m − iϵ which means that the contour will not meet the pole and will

naturally pass over it.
Finally, let us perform the integral in the case t > 0 which means that we have

to choose to close the contour in the lower half plane so that there will be an extra
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minus from the clockwise orientation of the contour

−
∫ ∞

−∞

dω

2πi

1

ω − ℏk2
2m + iϵ

e−iωt = −
∮

dω

2πi

1

ω − ℏk2
2m + iϵ

e−iωt =

lim
ϵ→0

e
−i

(
ℏk2
2m

−iϵ
)
t
= e−

i
ℏ

ℏ2k2
2m

t, (2.54)

and inserting this in (2.50) we get

K(x, t) =

∫ ∞

−∞

dk

2π
eikxe−

i
ℏ

ℏ2k2
2m

t = {p = ℏk} =

∫ ∞

−∞

dp

2πℏ
e

i
ℏpxe−

i
ℏ

p2

2m
t,(2.55)

in which we recognize (2.36) which is indeed the expression for the one dimen-
sional propagator that we derived independently in the previous section.

2.4 The spreading of a wave packet

Let us now try to calculate a more physical example using the one-dimensional
free particle propagator. We saw previously that the sharply localized particle will
spread out over all space infinitely fast. What about the perhaps more physical
case where the initial particle (at time t = 0 say) is “smoothly” localized by a
Gaussian “blob”

ψi(x, t = 0) =

(
2

π

) 1
4

e−x2
. (2.56)

The wave function at any later time is now given by

ψ(x, t) =

∫
dx′K(x, t;x′, t′ = 0)ψi(x

′), (2.57)

whereK(x, t;x′, t′) is the propagator for the physical situation we are interested
in (in our case the free one-dimensional particle). Introducing the notation α =
m
2ℏt we write

ψ(x, t) =

(
2

π

) 1
4
∫
dx′
√
α

iπ
eiα(x−x′)2e−x′2

=(
2

π

) 1
4
√
α

iπ
eiαx

2

∫
dx′e−(1−iα)[x′2+ 2iα

1−iα
xx′], (2.58)

which, completing the squares in the exponential becomes

ψ(x, t) =

(
2

π

) 1
4
√
α

iπ
eiαx

2

∫
dx′e

−(1−iα)
[
(x′+ iα

1−iα
x)2+ α2x2

(1−iα)2

]
. (2.59)
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Shifting the integration variable x̃ = x′ + iα
1−iαx we can perform the integration

with the result

ψ(x, t) =

(
2

π

) 1
4
√
α

iπ

√
π

1− iα
eiαx

2
e

α2x2

(1−iα)2 =(
2

π

) 1
4
√

iα

iα− 1
e−

iα
iα−1

x2

, (2.60)

which gives us the probability density

ρ = |ψ(x, t)|2 =

√
2α2

π(1 + α2)
e
− 2α2

1+α2 x
2

. (2.61)

This is a normalized Gaussian of width
√

1+α2

2α2 =
√

m2+(2ℏt)2
2m2 . Taking the limit

t → 0 we get back the initial wave-function as we should but for large t we
see that the width increases linearly with t so that the Gaussian wave-packet is
smoothly spreading with time in correspondence with our intuition about this
physical situation.

2.5 The path integral

The method we used to calculate the propagator in the free particle case was to
insert a complete set of momentum eigenstates to turn the Hamiltonian operator
into an ordinary function. However, this will work only for Hamiltonians depend-
ing on momenta only. For instance, if we try to use it in the case of a Hamiltonian
of the form Ĥ = p̂2

2m + V (x̂) we have

⟨x|e−
i
ℏ tĤ |x′⟩ =

∫
dp⟨x|e−

i
ℏ tĤ |p⟩⟨p|x′⟩, (2.62)

but now

⟨x|e−
i
ℏ tĤ |p⟩ ≠ e−

i
ℏ t(

p2

2m
+V (x))⟨x|p⟩. (2.63)

I repeat: the left hand side and right hand side of the above equation are not equal
to each other. To see this explicitly, try to evaluate the first few terms in a series
expansion of the exponential on both sides (for the simple Hamiltonian Ĥ =

p̂2 + x̂2 for example). You will see that the problem is that the p̂2 part of the
Hamiltonian does not commute with the x̂2 part. You will also see that the problem
will appear at the quadratic (and higher) term in the expansion.

We therefore have to find some different way to calculate the propagator when
the Hamiltonian is more complicated than the free particle. Instead, let us try to
compute it for an infinitesimal time step. As before, the general case we can always
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get by putting together infinitely many infinitesimal steps. In the infinitesimal
case we have

⟨x|e−
i
ℏ Ĥ∆t|x′⟩ ≈ ⟨x|

(
1− i

ℏ
∆tĤ

)
|x′⟩. (2.64)

Inserting a complete set of momentum eigenstates now is non problematic

K(x, t+∆t;x′, t) = (2.65)∫
d3p

(
⟨x|p⟩⟨p|x′⟩ − i

ℏ
∆t⟨x| p̂

2

2m
|p⟩⟨p|x′⟩ − i

ℏ
∆t⟨x|V (x̂)|p⟩⟨p|x′⟩

)
,

giving us the result

K(x, t+∆t;x′, t) = (2.66)∫
d3p

(
1− i

ℏ
∆t

p2

2m
− i

ℏ
∆tV (x)

)
⟨x|p⟩⟨p|x′⟩,

where now all the operators have been replaces by numbers. Notice that the last
term can be rewritten∫

d3p⟨x|V (x̂)|p⟩⟨p|x′⟩ =
∫
d3p⟨x|p⟩⟨p|V (x̂)|x′⟩, (2.67)

giving us the possibility to write

K(x, t+∆t;x′, t) = (2.68)∫
d3p

(
1− i

ℏ
∆t

p2

2m
− i

ℏ
∆tV (x)

)
⟨x|p⟩⟨p|x′⟩ =∫

d3p

(
1− i

ℏ
∆t

p2

2m
− i

ℏ
∆tV (x′)

)
⟨x|p⟩⟨p|x′⟩ =∫

d3p

(
1− i

ℏ
∆t

p2

2m
− i

ℏ
∆tV

(
x+ x′

2

))
⟨x|p⟩⟨p|x′⟩. (2.69)

Again, to linear order in ∆t we can write this as

K(x, t+∆t;x′, t) =

∫
d3p e

− i
ℏ∆t

(
p2

2m
+V

(
x+x′

2

))
⟨x|p⟩⟨p|x′⟩ = (2.70)∫

d3p e−
i
ℏH∆t⟨x|p⟩⟨p|x′⟩, (2.71)

where now H is a number and not an operator. Inserting the expression for the
wave functions we get

K(x, t+∆t;x′, t) =

∫
d3p

(2πℏ)3
e

i
ℏ∆t

(
p·(x−x′)

∆t
−H

)
. (2.72)
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Now remember that x is the position at time t+∆t and that x′ is the position at
time t. This means that we can write

x− x′

∆t
≈ dx(t)

dt
, (2.73)

giving us the expression for the infinitesimal propagator

K(x, t+∆t;x′, t) =

∫
d3p

(2πℏ)3
e

i
ℏ∆t(p·ẋ−H). (2.74)

Here we recognize the combination p · ẋ−H as being the Lagrangian of classical
mechanics (after performing a Legendre transform). In fact, we can transform this
into the usual Lagrangian (which does not depend on p remember) by performing
the p integration explicitly in the case where the Hamiltonian is of the formH =
p2

2m + V (x). Then we have

K(x, t+∆t;x′, t) = e−
i
ℏ∆tV

∫
d3p

(2πℏ)3
e

i
ℏ∆t

(
p·ẋ− p2

2m

)
=

e−
i
ℏ∆tV

∫
d3p

(2πℏ)3
e−

i
2ℏm∆t(p2−2mp·ẋ). (2.75)

The integral is again Gaussian and can be performed with the tricks we have
developed earlier. Namely, we write∫

d3p

(2πℏ)2
e−

i
2ℏm∆t(p2−2mp·ẋ) =

∫
d3p

(2πℏ)2
e−

i
2ℏm∆t[(p−mẋ)2−m2ẋ2], (2.76)

so that the integral (or integrals, there are three of them) can be performed by
redefining the integration variable p̃ = p−mẋ and using the usual formula for
the Gaussian integral (2.39). Doing this we finally get

K(x, t+∆t;x′, t) =
( m

2πiℏ∆t

) 3
2
e

i
ℏ∆t( 1

2
mẋ2−V ), (2.77)

and we see that indeed it is the classical Lagrangian that appears in the exponen-
tial. Therefore we have the extremely nice result that the infinitesimal propagator
can be written as

K(x, t+∆t;x′, t) =
( m

2πiℏ∆t

) 3
2
e

i
ℏ∆tL (2.78)

where we have introduced the classical Lagrangian L. Observing that for an in-
finitesimal time interval ∆tL = S, the classical action evaluated for the straight
line path between points x(t) and x(t+∆t)1.
1 Remember that the action is a functional which means it is a function of a function. In other words, to

compute S[x(t)], we need to specify the function x(t), that is we need to specify how the particle moves
from the point x(t1) to the point x(t2). What we just showed is that we can write the infinitesimal
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Now let us try to evaluate the propagator for a finite time interval. In the same
way as before we divide the interval (say from ti to tf ) into infinitesimal pieces
and in each piece we can use the infinitesimal expression. To this end define

∆t =
tf − ti
N

,

tk = ti + k∆t k ∈ [0 . . . N ], (2.79)

so that tN = tf and t0 = ti. By taking N large we can make the time intervals
as small as we like. Now let us compute the propagator by splitting it into these
intervals

K(xf , tf ;xi, ti) = ⟨xf |Û(tf , ti)|xi⟩ = (2.80)
lim

N→∞
⟨xf |Û(tN , tN−1)× Û(tN−1, tN−2)× . . .× Û(t2, t1)× Û(t1, t0)|xi⟩.

Between each of the Û operators we may insert 1̂ in the form of a complete set of
position eigenstates giving us the expression

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1

⟨xf |Û(tN , tN−1)|xN−1⟩⟨xN−1|Û(tN−1, tN−2)|xN−2⟩ × . . .

. . .× ⟨x2|Û(t2, t1)|x1⟩⟨x1|Û(t1, ti)|xi⟩. (2.81)

But now each of the ⟨xk+1|Û(tk+1, tk)|xk⟩ is an infinitesimal propagator which
we just calculated. We know that it is simply given by the classical action calcu-
lated along the straight line constant velocity path going from point xk at time tk
to the point xk+1 at time tk+1. Or in formulas we have

⟨xk+1|Û(tk+1, tk)|xk⟩ =
( m

2πiℏ∆t

) 3
2
e

i
ℏ∆tL(k+1,k). (2.82)

Inserting this in the formula for the full propagator we have

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1( m

2πiℏ∆t

) 3N
2
e

i
ℏ∆tL(N,N−1) × . . .× e

i
ℏ∆tL(1,0). (2.83)

Since the L functions are just numbers and not operators we may just as well

propagator in terms of the path where the particle moves from the initial point to the final point in a
straight line with constant speed.



36 Propagators and Path integrals

write them all in the same exponential

K(xf , tf ;xi, ti) = lim
N→∞

∫
d3xN−1

∫
d3xN−2 . . .

∫
d3x2

∫
d3x1( m

2πiℏ∆t

) 3N
2
e

i
ℏ∆t(L(N,N−1)+L(N−1,N−2)+...+L(2,1)+L(1,0)). (2.84)

The expression in the exponential is nothing but the integral i
ℏ
∫ tf
ti
dtL(t) along

the piecewise linear path given in figure 2.3 Notice that the fact that we integrate

t

x
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Figure 2.3 The piecewise path

over all possible intermediate positions (i.e. over all intermediate xk) tells us that
the propagator can essentially be calculated as the sum over all possible paths of
the factor e

i
ℏS[path] where S[path] is the classical action functional of the system.

Sometimes this is written compactly as

K(xf , tf ;xi, ti) =

∫
Dxe

i
ℏS[x], (2.85)

where the funny symbol Dx stands for summing over all paths (including all the
ugly factors which we have hidden).

The path-integral formulation of Quantum Mechanics gives a very nice inter-
pretation of the theory and its classical limit. Namely, to calculate the probability
amplitude that something will happen in Quantum Mechanics we have to include
contribution from all possible ways it can happen, even over the ways which are
forbidden classically. For most of these paths the action changes rapidly when we
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change the path a little bit. For instance, for a particular generic path leading to
the action S1 there is always a close lying path having the action S1 + ℏπ. When
we add the contribution e

i
ℏS of these two paths we will get zero. However, there

also exist special paths for which the action does not change when we change the
path a little bit. When we sum over such paths they will add up instead of cancel-
ing out. These paths are of course the paths which are solutions to the variational
equation

δS

δx
= 0, (2.86)

i.e. the solutions to the classical equations of motion. So the classical limit of Quan-
tum mechanics is essentially the limit where we sum over only the paths which
are classically allowed.

2.6 The path integral evaluation of the harmonic oscillator

We will now illustrate the path integral method in an example. Namely, we want
to calculate the probability amplitude (propagator) that we find the one dimen-
sional harmonic oscillator at the point xf at time tf if we at time ti have it
localized at point xi. We will use the definition in the form (2.83) so we first
need to decompose the interval into N equal pieces. Thus we have (xi(ti), ti) =

(x0(t0), t0), . . . , (xN (tN ), tN ) = (xf (tf ), tf ) and ∆t = tN−t0
N = tk+1 − tk. The

definition now becomes

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2

∫
dxN−1e

im∆t
2ℏ

(
(xN−xN−1)

∆t2
−ω2

(
xN+xN−1

2

)2
)

× . . .×
∫
dx1e

im∆t
2ℏ

(
(x1−x0)

∆t2
−ω2

(
x1+x0

2

)2
)
.(2.87)

Reshuffling the terms a bit and introducing the notation

A =
m∆t

2iℏ

(
1

∆t2
− ω2

4

)
B =

m∆t

2iℏ

(
1

∆t2
+
ω2

4

)
, (2.88)

we may write the path integral as

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2

∫ N−1∏
k=1

dxke
−Ax2

N−Ax2
N−1+2BxNxN−1

× . . .× e−Ax2
1−Ax2

0+2Bx1x0 . (2.89)
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This can be written even more compactly using matrix notation. We introduce
the N − 1 dimensional matrices

q =

 x1
...

xN−1

 , q0 =


Bx0
0
...
0

BxN

 ,

M =


2A −B 0 0 · · ·
−B 2A −B 0 · · ·
0 −B 2A −B · · ·
...

...
...

... . . .

 , (2.90)

we may write the path integral very compactly as

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )

∫ N−1∏
k=1

dxke
−qTMq+qT q0+qT0 q. (2.91)

The expression in the exponent can be rewritten as

−qTMq + qT q0 + qT0 q = −
(
qT − qT0M

−1
)
M
(
q −M−1q0

)
+ qT0M

−1q0,(2.92)

where we have used thatM is nondegenerate and symmetric. We now use the fact
that we may shift each of the integration variables xk by an arbitrary constant
without producing a (nontrivial) Jacobian. Thus we collectively define the new
integration variables

y =

 y1
...

yN−1

 = q −M−1q0, (2.93)

which, when inserted in the path integral gives

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

∫ N−1∏
k=1

dyke
−yTMy. (2.94)

Since M is a symmetric (N − 1 by N − 1) matrix, we know that there exists
an orthogonal matrix O with detO = 1 such that OTMO is a diagonal matrix
which we will call D. Thus, if we again change integration variables Oz = y

which produces a Jacobian detO = 1 we may write the path integral as

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

∫ N−1∏
k=1

dzke
−zTOTMOz.(2.95)
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SinceOTMO = D we have decoupled theN −1 integrals into simple Gaussians
which we are able to perform. Thus we have

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

N−1∏
k=1

∫
dzke

−dkkz
2
k =

lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

N−1∏
k=1

√
π

dkk
=

lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

√
πN−1

detD
=

lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e+qT0 M−1q0

√
πN−1

detM
,(2.96)

where we in the last line have used that detD = detOTMO = detM . This
is quite a simple expression for the complicated path integral! It depends on the
determinant and the inverse of the matrix M . Fortunately, because of the simple
expression for q0 (2.90) we only need to know the matrix elements (M−1)11 and
(M−1)1 N−1 of the inverse.

We will calculate the determinant recursively. Let us call the determinant of
the N − 1 times N − 1 dimensional matrix M (2.90) IN−1. Using the structure
of M we may derive a recursion relation for IN . Namely, we have that IN+2 =

2AIN+1 − B2IN with initial conditions I1 = 2A and I2 = 4A2 − B2. Such a
recursion relation can be conveniently solved by defining the generating function

f(ξ) =
∞∑
n=0

In
ξn

n!
. (2.97)

Multiplying the recursion relation by ξn

n! and summing we get a differential equa-
tion for f(ξ)

f ′′ − 2Af ′ +B2f = 0, (2.98)

with general solution

f(ξ) = c1e
ω+ξ + c2e

ω−ξ , ω± = A±
√
A2 −B2 (2.99)

Taylor expanding f(ξ) we can read off the individual IN . The initial conditions
give equations for c1 and c2

c1ω+ + c2ω− = 2A

c1ω
2
+ + c2ω

2
− = 4A2 −B2, (2.100)

which can be solved to find c1 = ω+

2
√
A2−B2

and c2 = − ω−
2
√
A2−B2

which then gives
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us the general expression

IN =
1

2
√
A2 −B2

(
ωN+1
+ − ωN+1

−

)
. (2.101)

To find the elements of M−1 we use Cramer’s rule and the fact that we know the
determinant of M of various dimensions. Straightforwardly we have

(M−1)11 =
IN−2

IN−1
(2.102)

To calculate (M−1)1 N−1 is a bit more tricky. The minor one has to compute is
an upper triangular matrix with −B on the diagonal. Thus we have

(M−1)1 N−1 =
BN−2

IN−1
. (2.103)

Thus we have

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2
e−A(x2

0+x2
N )e

(x2
0+x2

N )
B2IN−2
IN−1

+2x0xN
BN−2

IN−1

√
πN−1

IN−1
.(2.104)

Now we have to take the N → ∞ limit in this expression. First let us have a look
at the determinant. From the explicit expressions for ω± (2.99) and the constants
A and B (2.88) we have

ω± =
m

2iℏ∆t

(
1± iω∆t

2

)2

. (2.105)

Here theN dependence is hidden in ∆t = tN−t0
N . Let us define T = tN −t0. Then

we can write

ωN
± =

( m

2iℏ∆t

)N (
1± iωT

2N

)2N

=
( m

2iℏ∆t

)N
e2N ln(1± iωT

2N ) ≈( m

2iℏ∆t

)N
e2N(± iωT

2N
− 1

2(
iωT
2N )

2
) ≈

( m

2iℏ∆t

)N
e±iωT

(
1 +

ω2T 2

4N
+O(

1

N2
)

)
,(2.106)

giving

IN−1 =
2iℏ
mω

( m

2iℏ∆t

)N
sinωT

(
1 +

ω2T 2

4N
+O(

1

N2
)

)
(2.107)

A similar but slightly more involved calculation gives for

IN−2 =
2iℏ
mω

( m

2iℏ∆t

)N−1
[
sinωT − ωT

N
cosωT +O(

1

N2
)

]
×

(1 +
ω2T 2

4N
+O(

1

N2
)). (2.108)
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Similarly we have

BN =
( m

2iℏ∆t

)N (
1 +O(

1

N2
)

)
(2.109)

This is all we need to compute the relevant expressions in (2.104). They are

B2IN−2

IN−1
−A =

( m

2iℏ∆t

)(
1− ωT

N
cotωT

)
−
(
1− ω2T 2

4N2

)
=

−
(ωm
2iℏ

)
cotωT +O(

1

N
), (2.110)

and
BN

IN−1
=
mω

2iℏ
1

sinωT
+O(

1

N
). (2.111)

In these expressions we may now take the limit N → ∞ since all potentially
divergent terms have cancelled. Collecting all terms we have

⟨f|i⟩ = lim
N→∞

( m

2πiℏ∆t

)N
2

(
2πiℏ∆t
m

)N
2
√

mω

2πiℏ sinωT

e
−mω

2iℏ

(
cotωT(x2

0+x2
N)−

2
sinωT

x0xN+O( 1
N2 )

)
. (2.112)

We see that indeed all the dangerousN dependence cancel and we can safely take
the limit N → ∞ which has the effect that we drop all terms O( 1

N ). The final
result is then

⟨xf |xi⟩ =
√

mω

2πiℏ sinωT
e

imω
2ℏ (cotωT(x2

i+x2
f)−

2
sinωT

xixf) (2.113)

2.7 Time evolution of the density operator

The time evolution of the density operator looks a bit different than for a state in
the Hilbert space. A pure density operator evolves as

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| = Û(t)|ψ(t)⟩⟨ψ(t)|Û †(t) (2.114)

so that the time derivative of the density operator satisfy the equation

dρ̂

dt
= lim

∆t→0

Û(t+∆t)ρ̂(0)Û †(t+∆t)− Û(t)ρ̂(0)Û †(t)

∆t
(2.115)

= lim
∆t→0

Û(t+∆t)ρ̂(0)Û †(t+∆t)− Û(t+∆t)ρ̂(0)Û †(t)

∆t
(2.116)

+ lim
∆t→0

Û(t+∆t)ρ̂(0)Û †(t)− Û(t)ρ̂(0)Û †(t)

∆t
(2.117)

(2.118)
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which, using what we proved before, can be written
dρ̂

dt
=

1

iℏ

(
Ĥρ̂− ρ̂Ĥ

)
=

1

iℏ

[
Ĥ, ρ̂

]
(2.119)

A more interesting connection between Path integrals and statistical physics
we get if we study the density operator of a statistical ensemble of states in ther-
mal equilibrium. From Statistical physics we know that the probability to find the
system in a state |n⟩ with energy En is pn = 1

Z e
−βEn where Z is the partition

function. This system could be described by a density operator

ρ̂ =
1

Z

∑
n

e−βEn |n⟩⟨n| = 1

Z

∑
n

e−βĤ |n⟩⟨n| (2.120)

In the coordinate representation, this becomes

ρ(x,x′) = ⟨x|ρ̂|x′⟩ = 1

Z

∑
n

⟨x|e−βĤ |n⟩⟨n|x′⟩ = 1

Z
⟨x|e−βĤ |x′⟩ (2.121)

where we have used that
∑

n |n⟩⟨n| = 1 in the last equality. But since

⟨x|e−βĤ |x′⟩ = K(x, t− iℏβ;x′, t) (2.122)

and since we know that Trρ̂ =
∫
d3xρ(x,x) = 1, we see that there is an in-

teresting connection between the propagator and the statistical physics partition
function

Z =

∫
d3xK(x, t− iℏβ;x, t) (2.123)

In the case of the free particle we get

Z =

∫
d3x

(
mkT

2πℏ2

) 3
2

= V

(
mkT

2πℏ2

) 3
2

(2.124)

Assuming N identical free particles we would get a partition function

Z =
V N

N !

(
mkT

2πℏ2

) 3N
2

(2.125)

which is the correct value for the ideal gas.

Exercise 2

1. Show that if |n⟩ are eigenstates of the Hamiltonian with energy En, the
propagator can be written as K(x, t;x′, t′) =

∑
n e

− i
ℏEn(t−t′)⟨x|n⟩⟨n|x′⟩.

2. In a two dimensional Hilbert space with a basis of normalized eigenstates
of the hamiltonian |1⟩ and |2⟩ with energy eigenvalue E1 and E2, write
the time evolution operator in terms of the states |±⟩ = 1√

2
(|1⟩ ± |2⟩).
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3. Assume that space consists of two points, x and y. We will try to find the
time evolution of the system by assuming that the probability amplitude
at each time step ∆t to stay at the same point is given by 1+ iω∆t and the
probability amplitude to change points is given by iβ∆t where ω and β
are arbitrary real numbers. Define the probability amplitude (i.e the prop-
agator)

Kxx(T ) = To go from x at t=0 to x at t=T (2.126)
Kxy(T ) = To go from y at t=0 to x at t=T (2.127)
Kyx(T ) = To go from x at t=0 to y at t=T (2.128)
Kyy(T ) = To go from y at t=0 to y at t=T (2.129)

If we divide the time interval into N pieces so that ∆t = T
N , show that

Kxx(T ) = Kxx(T −∆t)(1 + iω∆t) +Kyx(T −∆t)iβ∆t (2.130)
Kyx(T ) = Kyx(T −∆t)(1 + iω∆t) +Kxx(T −∆t)iβ∆t (2.131)

Show that this gives a recursion relation that can be solved as

Kxx(T ) =
1

2

[
(1 + i(ω + β)∆t)N + (1 + i(ω − β)∆t)N

]
(2.132)

Kyx(T ) =
1

2

[
(1 + i(ω + β)∆t)N − (1 + i(ω − β)∆t)N

]
(2.133)

which when we let N → ∞ becomes

Kxx = eiωT cos(βT ) (2.134)
Kyx = ieiωT sin(βT ) (2.135)

Is the probability conserved? What is the wavefunction at T for a particle
which is localized at x when t = 0? What is the wavefunction at T for a
particle with an initial wavefunction ψ(x) = 1√

2
, ψ(y) = 1√

2
?

4. A model of a moving wave-packet in 1 dimension is given by the wave-
function

N

∫
dpe−

a
2
(p−p0)2 |p⟩ (2.136)

where a is a constant andN is the normalization factor. DetermineN and
use the propagator of a free particle to find how the packet moves in time.
Interpret your result!

5. Let |n⟩ be a complete set of eigenstates of the time independent Hamilto-
nian Ĥ where Ĥ|n⟩ = En|n⟩ and with configuration space representation
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ψn(x) = ⟨x|n⟩. Using these elements, write expressions for the time evo-
lution operator in the |k⟩ and |x⟩ basis i.e. find Akl and B(x, x′) in the
expressions

Û(t, t′) =
∑
k,l

Akl|k⟩⟨l| =
∫
dx dx′ B(x, x′)|x⟩⟨x′|

6. Calculate the propagator for a particle in a linear potential

S[x(t)] =

∫
dt(

1

2
mẋ2 − Fx) (2.137)

using path integral methods. Here are some useful observations that you
might want to use
• In the path integral, we sum over all paths with the prescribed boundary

conditions.
• The sum will be the same if we shift all paths by some particular fixed

path.
• Define the new path y(t) as the old path shifted by a solution of the

equations of motion xcl(t) so that y = x− xcl.
• However, shifting a path satisfying a particluar boundary condition by

a fixed path gives a new path that usually does not satisfy the same
boundary condition. What boundary conditions should y(t) fulfil if the
classical solution xcl satisfies the same boundary conditions as x?

• Find a particular xcl with the same boundary conditions as x, i.e. that
begins at x′ at time t′ and ends at x at time t.

• Show that the action S[y(t)] consists of only of a kinetic term and a
term dependent only on the boundary conditions. In particular there is
no potential for y(t).

• The path integral over y(t) can now be done using the result for the
path integral of a free particle. Remeber that is is given by∫

Dxe
i
ℏSfree[x(t)] =

√
m

2πiℏ(t− t′)
e

im(x−x′)2
2ℏ(t−t′) (2.138)

for a path that starts at x′ at time t′ and ends at x at time t.
Check that your result agrees with the result of the previous problem.



3
Angular momentum

We know from experience that there is no preferred place or direction in the uni-
verse, that is, in more fancy language, that space is homogeneous and isotropic.
(Homogeneous means that space is invariant under translations and isotropic
means that it is invariant under rotations). This, in classical mechanics leads to
the conservation of momentum and angular momentum respectively. This makes
it important to study how physical objects transform under translations and ro-
tations. This is also true in quantum mechanics. In this section we will study how
physical systems behave under rotations in quantum mechanics.

The effect of a rotation of the physical system in quantum mechanics is of
course represented by the action of an operator. Let us use the notation

R̂n (ϕ) , (3.1)

for the operator which performs a rotation by an angle ϕ around the unit vector
n.

One important property of the operator R̂ we get from the fact that we cannot
“lose” particles (or probability) when we do a rotation. This tells us that the state
we get as a result of a rotation has to have the same norm as the initial state. In
formulas we write

⟨χ|χ⟩ = ⟨χ′|χ′⟩ = ⟨χ|R̂†R̂|χ⟩, (3.2)

which implies that R̂†R̂ = 1̂ or that the operator R̂ is a unitary operator.
We can learn a lot from the fact that quantum mechanical rotations have to

fulfill the properties of classical rotations. In particular, we know that any clas-
sical rotation can be built up from many infinitesimal rotations. That is, instead
of rotating the system the angle ϕ around the axis n we can rotate it N times
around the same axis, but each time only an angle ϕ

N . Our experience from clas-
sical physics tells us the the result of these two operations has to be the same. In
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quantum mechanics we write

R̂n (ϕ) =

[
R̂n

(
ϕ

N

)]N
. (3.3)

We also know that letting the angle with which we rotate become small, the
“change” of the system becomes smaller and smaller. In quantum mechanics we
could write this as

lim
ϕ→0

R̂ (ϕ) = 1̂, (3.4)

or, introducing an operator K̂(ϕ) with the property that limϕ→0 K̂ (ϕ) = 0 we
can for infinitesimal angles ϵ write

R̂(ϵ) = 1̂ + K̂ (ϵ) + . . . . (3.5)

Keeping the angle infinitesimal, and using (3.3) we can write

1̂ + K̂(2ϵ) = R̂(2ϵ) = R̂(ϵ)R̂(ϵ) =
(
1̂ + K̂(ϵ)

)(
1̂ + K̂(ϵ)

)
= 1̂ + 2K̂(ϵ) + . . .(3.6)

That is, K̂(2ϵ) = 2K̂(ϵ). This means that K̂ depends on ϵ linearly. Let us therefore
write

K̂(ϵ) = − i

ℏ
ϵĴ . (3.7)

(The factor − i
ℏ is introduced for convenience). Now wemay also use that R̂ is

unitary to write

1̂ = R̂†(ϵ)R̂(ϵ) =

(
1̂− i

ℏ
ϵĴ

)†(
1̂− i

ℏ
ϵĴ

)
=

(
1̂ +

i

ℏ
ϵĴ†
)(

1̂− i

ℏ
ϵĴ

)
1̂ +

i

ℏ
ϵ(Ĵ† − Ĵ) +O(ϵ2),(3.8)

which leads us to deduce that Ĵ = Ĵ† or, that Ĵ is a hermitian operator. Ĵ is called
the generator of rotations1.

Since an arbitrary rotation can be thought of as being composed of an infinite
number of infinitesimal rotations we can use the infinitesimal form found above
to give the general form of the rotation operator. That is, we build up a rotation
with angle ϕ as N rotations all with angle ∆ϕ = ϕ

N . That is

R̂(ϕ) = lim
N→∞

[
R̂

(
ϕ

N

)]N
= lim

N→∞

[
1− i

ℏ
ϕ

N
Ĵ

]N
. (3.9)

1 Here one can notice the reason for the extra factor of i in the definition of Ĵ . Had it not been there the
operator Ĵ would have been antihermitian. Since we know that Hermitian operators are nice (they have
real eigenvalues for instance) this is why we choose to define Ĵ as we did.
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Using a known formula for the exponential as ex = limN→∞
(
1 + x

N

)N we find

R̂(ϕ) = e−
i
ℏ Ĵϕ, (3.10)

in agreement with what we said about the operator R̂ before.
It interesting to check that unitary operators can generally be written in terms

of hermitian operators in this very convenient way. Namely, if we let Ĵ be an
hermitian operator Ĵ† = Ĵ , the operator R̂ = e−iĴ is always unitary since R̂† =(
1− iĴ + (−iĴ)2

2! + . . .
)†

=
(
1 + iĴ† + (iĴ†)2

2! + . . .
)
= eiĴ and e−iĴeiĴ = 1.

To summarize what we have found one can say that the operator of rotations
with angle ϕ around an axis n can be written as

R̂n(ϕ) = e−
i
ℏϕĴn , (3.11)

where Ĵn is a hermitian operator called the generator of rotations around axis n.
If physics is invariant under rotations around n it is represented by a state |ψ⟩
which has to be an eigenstate of the generator of rotations.

Another classical property of rotations is that they do not commute. That is a
rotation around the x-axis followed by a rotation around the y-axis is not the same
as a rotation around the y-axis followed by a rotation around the x-axis. This is
however true only in the non infinitesimal case. One can for instance check that
two (classical) rotations with angle ϵ around the x and y axises commute when
taking into account terms linear in epsilon only. To see the non-commutativity
one has to also keep terms quadratic in ϵ. Mathematically we may write

Rx(ϵ)Ry(ϵ)−Ry(ϵ)Rx(ϵ) = Rz(ϵ
2)− 1 +O(ϵ3). (3.12)

Let us check how this goes in the quantum mechanical case. Writing the rotation
operators in terms of generators we have on the left hand side

R̂xR̂y − R̂yR̂x =

(
1− i

ℏ
Ĵxϵ−

1

2ℏ2
Ĵ2
xϵ

2

)(
1− i

ℏ
Ĵyϵ−

1

2ℏ2
Ĵ2
y ϵ

2

)
−(

1− i

ℏ
Ĵyϵ−

1

2ℏ2
Ĵ2
y ϵ

2

)(
1− i

ℏ
Ĵxϵ−

1

2ℏ2
Ĵ2
xϵ

2

)
+O(ϵ3) =

− ϵ2

ℏ2
[
Ĵx, Ĵy

]
+O(ϵ3).(3.13)

This should be compared to the right hand side which becomes

R̂z

(
ϵ2
)
− 1 = − i

ℏ
Ĵzϵ

2. (3.14)

Thus we see that for rotations in quantum mechanics to have the properties of
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classical rotations, we need to require[
Ĵx, Ĵy

]
=

ℏ2

ϵ2

(
i

ℏ
Ĵzϵ

2

)
= iℏĴz. (3.15)

Since the axis around which we performed the rotation is really arbitrary in this
example, we can immediately generalize this to the commutation relations[

Ĵi, Ĵk

]
= iℏϵiklĴl, (3.16)

where we have introduced the notation Ĵ1 = Ĵx, Ĵ2 = Ĵy, Ĵ3 = Ĵz and the
totally antisymmetric tensor ϵikl.

3.1 An example

As an illustration of the use of rotations in quantum mechanics consider the fol-
lowing situation. The “elementary” particle Λ0 (with spin 1

2 ) decays into a π−

meson (with spin 0) and a proton p+ (with spin 1
2 ). Assume that the initial Λ0

particle is in a state where the spin is pointing upwards along the z-axis and let
us call this state |+⟩ (as opposed to the state with spin projection down which
we will call |−⟩). Our task is to calculate the angular distribution of the final p+

(because of momentum conservation the p+ and the π− always go out back to
back so we do not need to worry about the π− in what follows). What “angular
distribution” means is that we want to calculate the probability that the proton
p+ comes out at an angle θ with the z-axis. This seems almost impossible since it
seems that we do not have enough information to calculate this but the answer
is essentially given by rotation invariance. Calculate as follows: assume that we
know the probability for the proton to go out along the z-axis. To be concrete, let
us say that the probability amplitude is a if the initial Λ0 has spin up |+⟩ and b if
the initial Λ0 has spin down |−⟩. Because of angular momentum conservation the
proton comes out with spin up in the first case and with spin down in the second
case. To calculate the probability amplitude for the proton to go out at an angle θ
we take the original Λ0 and rotate it. In the rotated system we want to calculate
the probability for the proton to go straight up (since this is at an angle θ with the
original Λ0). To find out the effect of a rotation on Λ0 we need to know how the
rotation operator acts on spin 1

2 states. This will be shown later in great detail so
let me just quote the result for a rotation around the y-axis

R̂y (θ) |+⟩ = cos

(
θ

2

)
|+⟩+ sin

(
θ

2

)
|−⟩, (3.17)
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so in the rotated system the probability amplitude that the proton goes straight
up with spin up is

a cos

(
θ

2

)
, (3.18)

and the probability amplitude that the proton goes straight up with spin down is

b sin

(
θ

2

)
. (3.19)

The probability that the proton comes out with spin up is

|a|2 cos2
(
θ

2

)
, (3.20)

and with spin down it is given by

|b|2 sin2
(
θ

2

)
. (3.21)

The total probability that the proton comes out at an angle θ (if we do not observe
the spin) is given by the sum of these two probabilities

|a|2 + |b|2

2

(
1 +

|a|2 − |b|2

|a|2 + |b|2
cos (θ)

)
. (3.22)

So we see that from just rotation invariance we have been able to say that the
probability that the proton goes out at an angle θ is given by a formula of the
type

α (1 + β cos (θ)) , (3.23)

for some constants α and β.

3.2 The angular momentum algebra

The angular momentum algebra can abstractly be written as[
Ĵi, Ĵk

]
= iℏϵikl Ĵl, (3.24)
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where ϵijk is the completely antisymmetric symbol and repeated indices are summed
over. This is a compact form of writing the following three commutation relations[

Ĵ1, Ĵ2

]
= iℏĴ3,[

Ĵ2, Ĵ3

]
= iℏĴ1, (3.25)[

Ĵ3, Ĵ1

]
= iℏĴ2,

(3.26)

where we can interpret Ĵ1 = Ĵx, Ĵ2 = Ĵy and Ĵ3 = Ĵz . It is possible to form an
operator which commutes with all Ĵi. Namely, define Ĵ2 = Ĵ2

1 + Ĵ
2
2 + Ĵ

2
3 . Then it

is easy to check that
[
Ĵi, Ĵ

2
]
= 0 for all i. This means that we can always choose

states to be simultaneous eigenstates of Ĵ2 and Ĵi for one fixed i. Let us choose
Ĵ3 = Ĵz to be concrete. Then we can choose states |a, b⟩ such that

Ĵ3|a, b⟩ = a|a, b⟩,
Ĵ2|a, b⟩ = b|a,b⟩. (3.27)

To find out what Ĵ1 and Ĵ2 do with this state we define the operators Ĵ± =

Ĵ1 ± iĴ2. Since the operators Ĵ± are just linear combinations of Ĵ1,2 we may
equivalently work with them or, in other words, the algebra in terms of Ĵ+, Ĵ−, J3
contains the same information (is equivalent to) the algebra in terms of Ĵ1, Ĵ2, Ĵ3.
In terms of these new operators the algebra looks like[

Ĵ3, Ĵ±

]
= ±ℏĴ±,[

Ĵ+, Ĵ−

]
= 2ℏĴ3. (3.28)

We may also rewrite Ĵ2 in terms of the new operators. By inserting their defini-
tions it is straightforward to confirm that Ĵ2 = 1

2

{
Ĵ+, Ĵ−

}
+ Ĵ2

3 where we have

introduced the anti-commutator
{
Â, B̂

}
= ÂB̂ + B̂Â.

We will now try to find out what the operators Ĵ± does to the states |a,b⟩. In
fact, running ahead a bit, we will see that they map these states into each other,
that is acting with Ĵ± on an eigenstate of Ĵ3, Ĵ2 gives us back a (generally differ-
ent) eigenstate of Ĵ3, Ĵ2. In formulas we have

Ĵ3Ĵ±|a,b⟩ =
([
Ĵ3, Ĵ±

]
+ Ĵ±Ĵ3

)
|a,b⟩

=
(
±ℏĴ± + Ĵ±a

)
|a, b⟩ (3.29)

= (a± ℏ) Ĵ±|a, b⟩,
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which tells us that Ĵ±|a,b⟩ is an eigenstate of Ĵ3 with eigenvalue (a ± ℏ). Let
us check that Ĵ±|a, b⟩ is an eigenstate of also Ĵ2. This is even easier; since Ĵ2

commutes with all Ĵi it also commutes with Ĵ± which are just linear combinations
of the Ĵi operators. Thus we have that Ĵ2Ĵ±|a,b⟩ = Ĵ±Ĵ

2|a, b⟩ = bĴ±|a, b⟩
showing that Ĵ±|a,b⟩ is an eigenstate of both Ĵ3 and Ĵ2 with eigenvalues a ± ℏ
and b. That is, that Ĵ±|a, b⟩ ∝ |a± ℏ, b⟩. Notice that the action of Ĵ1 or Ĵ2 does
not give back states of the type |a,b⟩. This is the explanation why we choose to
work with Ĵ±.

Acting more times with Ĵ± and using the argument repeatedly we have that(
Ĵ±

)n
|a, b⟩ ∝ |a± nℏ,b⟩ and it looks like we can go on forever like this. How-

ever, this cannot be true which we can see by studying the operator Ĵ2 − Ĵ2
3 .

According to a previous formula, this can be written as

Ĵ2 − Ĵ2
3 =

1

2

{
Ĵ+, Ĵ−

}
=

1

2

(
Ĵ−Ĵ+ + Ĵ+Ĵ−

)
, (3.30)

and using that Ĵ± =
(
Ĵ∓

)†
we can write this as

Ĵ2 − Ĵ2
3 =

1

2

(
Ĵ†
+Ĵ+ + Ĵ†

−Ĵ−

)
. (3.31)

Taking the expectation value of this relation in a |a,b⟩ state we have on the left
hand side

⟨a,b|
(
Ĵ2 − Ĵ2

3

)
|a,b⟩ = b− a2, (3.32)

and on the right hand side we get

1

2
⟨a,b|

(
Ĵ†
+Ĵ+ + Ĵ†

−Ĵ−

)
|a, b⟩ = 1

2

(∣∣∣Ĵ+|a, b⟩∣∣∣2 + ∣∣∣Ĵ−|a,b⟩∣∣∣2) ≥ 0, (3.33)

which leads to the inequality

b− a2 ≥ 0. (3.34)

Here is a lot of information hidden. First of all, b has to be positive. Second of all,
a cannot be arbitrary large but there exists a maximal a = amax such that

b ≥ a2max,

b < (amax + ℏ)2 , (3.35)

and equivalently a minimal a = amin such that

−b ≤ a2min,

−b > (amin − ℏ)2 . (3.36)
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In order for the
(
Ĵ±

)n
|a,b⟩ ∝ |a±mℏ,b⟩ iteration to stop at amax (resp. amin),

we need

Ĵ+|amax,b⟩ = 0,

Ĵ−|amin,b⟩ = 0. (3.37)

This we may now use in the following way

0 = Ĵ−Ĵ+|amax,b⟩ =
(
Ĵ1 − iĴ2

)(
Ĵ1 + iĴ2

)
|amax, b⟩ =(

Ĵ2
1 + Ĵ2

2 + i
[
Ĵ1, Ĵ2

])
|amax,b⟩ =

(
Ĵ2
1 + Ĵ2

2 − ℏĴ3
)
|amax, b⟩ = (3.38)(

Ĵ2 − Ĵ2
3 − ℏĴ3

)
|amax, b⟩ =

(
b− a2max − ℏamax

)
|amax, b⟩,

which tells us that b = amax (amax + ℏ). The same calculation starting with 0 =

Ĵ+Ĵ−|amin, b⟩ gives b = amin (amin − ℏ) which tells us that amin = −amax.
Starting from |amin, b⟩ = |−amax, b⟩ and acting with Ĵ+ we should reach

|amax, b⟩ after a finite number of steps, let us say n (where n of course is an inte-
ger). Thus we have −amax+nℏ = amax, or amax = n

2ℏ. Thus, the representation
is characterized by the half-integer n

2 . Let us call it j for simplicity (and we have
to remember that j can be both integer and half-integer). Then we have

b = ℏ2j (j + 1) ,

a ∈ ℏ [−j,−j + 1, . . . , j − 1, j] . (3.39)

In the following we will forget about the ℏ factors in the way we denote the states
|a,b⟩ and denote them just by the half-integer j and bym = a

ℏ so that an arbitrary
state will look like |j,m⟩ where m ∈ [−j, . . . , j]. The action by the operators on
these states are

Ĵ2|j,m⟩ = ℏ2j (j + 1) |j,m⟩,
Ĵ3|j,m⟩ = ℏm|j,m⟩, (3.40)
Ĵ±|j,m⟩ ∝ |j,m± 1⟩.

In the last relation, we can even compute the coefficient of proportionality. Namely,
if we have Ĵ+|j,m⟩ = Cj,m|j,m+ 1⟩ we can compute the absolute value of Cj,m

since we know that the |j,m⟩ states are normalized. Thus

|Cj,m| =
∣∣∣Ĵ+|j,m⟩

∣∣∣2 = ⟨j,m|Ĵ†
+Ĵ+|j,m⟩ = ⟨j,m|Ĵ−Ĵ+|j,m⟩ =

⟨j,m|
(
Ĵ2
1 + Ĵ2

2 + i
[
Ĵ1, Ĵ2

])
|j,m⟩ =

⟨j,m|
(
Ĵ2 − Ĵ2

3 − ℏĴ3
)
|j,m⟩ = (3.41)

ℏ2 (j (j + 1)−m (m+ 1)) ,
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so if we choose Cj,m to be real and positive by convention we have

Ĵ+|j,m⟩ = ℏ
√
j (j + 1)−m (m+ 1)|j,m+ 1⟩. (3.42)

A similar calculation for Ĵ− gives

Ĵ−|j,m⟩ = ℏ
√
j (j + 1)−m (m− 1)|j,m− 1⟩. (3.43)

Notice that the proportionality factor indeed vanishes for the case Ĵ+|j, j⟩ or
Ĵ−|j,−j⟩ so that the iteration indeed stops as we claimed before.

3.3 The rotation operator in general

We are now equipped to study the rotation operator in general. From the previous
section we know that any action of the Ĵ operators on a state with fixed quantum
number j gives back states with the same quantum number j (but in general with
different values of the quantum number m). In more physical language this cor-
responds to the fact that if we take a spin j particle and rotates it, it stays a spin j
particle. In mathematical language we say that the states with spin j constitutes a
irreducible representation of the rotation group2. In other words, the rotation op-
erator acts in a block diagonal way on the different irreducible representations.
This means that we can study how the rotation operator looks like for the dif-
ferent representations (or spins if you like) separately. For instance, for the spin
0 representation the rotation operator acts trivially (since there is only one state
there is not much that can happen) so the first non-trivial example is for the spin
half (j = 1

2 ) representation. From the previous section we know that there are
two states in this representation

|1
2
,
1

2
⟩ ≡ |+⟩,

|1
2
,−1

2
⟩ ≡ |−⟩. (3.44)

2 An irreducible representation is the minimal set of states that transform into each other under an arbitrary
operation of the group
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The action of the generators on these states is given by

Ĵz|±⟩ = ±ℏ
2
|±⟩,

Ĵ+|+⟩ = 0,

Ĵ−|+⟩ = ℏ
√

3

4
+

1

4
|−⟩ = ℏ|−⟩, (3.45)

Ĵ+|−⟩ = ℏ
√

3

4
+

1

4
|+⟩ = ℏ|+⟩,

Ĵ−|−⟩ = 0.

From the action of the Ĵ± operators we find the action of the Ĵx and Ĵy operators
as

Ĵx|+⟩ = ℏ
2
|−⟩,

Ĵx|−⟩ = ℏ
2
|+⟩, (3.46)

Ĵy|+⟩ = − ℏ
2i
|−⟩,

Ĵy|−⟩ = ℏ
2i
|+⟩.

Equivalently, we can give the matrix elements of the operators as(
⟨+|Ĵ |+⟩ ⟨+|Ĵ |−⟩
⟨−|Ĵ |+⟩ ⟨−|Ĵ |−⟩

)
. (3.47)

Doing this we have

Jx =
ℏ
2

(
0 1

1 0

)
,

Jy =
ℏ
2

(
0 −i
i 0

)
, (3.48)

Jz =
ℏ
2

(
1 0

0 −1

)
.

(Here you might recognize the Pauli matrices!) This matrix notation is very ef-
ficient if we want to find matrix elements of powers of operators. For instance,
finding the matrix elements of the operator ÔK̂ one proceeds as follows. An ar-
bitrary matrix element is

⟨i|ÔK̂|k⟩ =
∑
n

⟨i|Ô|n⟩⟨n|K̂|k⟩, (3.49)
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where we have inserted 1̂ in terms of a complete set of states between the op-
erators. We see that the matrix elements of the product operator is given by the
product of the matrices ⟨i|Ô|n⟩ and ⟨n|K̂|k⟩. Thus we can evaluate any power
of the operators Ĵi by taking the power of their matrix representatives. To be
concrete, let us take Ĵy as an example. We now compute

J2
y =

(
ℏ
2

)2(
0 −i
i 0

)(
0 −i
i 0

)
=

(
ℏ
2

)2(
1 0

0 1

)
. (3.50)

Now it is easy to generalize to arbitrary power, we get

J2n
y =

(
ℏ
2

)2n(
1 0

0 1

)
,

J2n+1
y =

(
ℏ
2

)2n+1(
0 −i
i 0

)
. (3.51)

This we can use to compute the matrix representative of the rotation operator R̂y

since

Ry(θ) = e−
i
ℏJyθ =

∞∑
n=0

1

n!

(
− i

ℏ
Jyθ

)n

=

1− iθ

2

(
0 −i
i 0

)
+

1

2!

(
− iθ

2

)2(
1 0

0 1

)
+ . . . . (3.52)

We see that the odd and even dimensional powers decouple when we add up the
matrices. The sum is

Ry(θ) =

(
1 0

0 1

) ∞∑
n=0

1

(2n)!

(
− iθ

2

)2n

+

(
0 −i
i 0

) ∞∑
n=0

1

(2n+ 1)!

(
− iθ

2

)2n+1

,(3.53)

and using that

∞∑
n=0

1

(2n)!

(
− iθ

2

)2n

= cos
θ

2
,

∞∑
n=0

1

(2n+ 1)!

(
− iθ

2

)2n+1

= −i sin θ
2
, (3.54)

we get

Ry(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (3.55)
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which we interpret to mean in the operator language that

R̂y (θ) |+⟩ = cos
θ

2
|+⟩+ sin

θ

2
|−⟩,

R̂y (θ) |−⟩ = − sin
θ

2
|+⟩+ cos

θ

2
|−⟩ (3.56)

Needless to say, this method to compute the action of an arbitrary rotation be-
comes very cumbersome when the representations (or the spins if you prefer)
become large since the matrices then become very big. There is another nice way
to compute the action of a rotation for arbitrary spin. We start by observing that
any state state with fixed spin j and maximal spin projection m = j can be con-
structed by putting 2j spin 1

2 states, all with spin up, next to each other. Another
way of saying it is that if we have 2j spin 1

2 particles, all with spin up, the system
as a whole is in the state |j, j⟩3. Mathematically we would write

|+⟩ ⊗ |+⟩ ⊗ . . .⊗ |+⟩ = |j, j⟩. (3.57)

The action of the rotation operator on |j, j⟩ is now given by the fact that we know
how a rotation acts on each of the |+⟩ states. (We just computed the R̂y action,
remember). Since we know that the rotation operator does not give us states with
different spin, we can classify what we get by computing m. This method can be
used to compute the rotation operator for arbitrary spin but let us illustrate the
method by using it to compute R̂y in the spin 1 representation. In that case we
have

|1, 1⟩ = |+⟩ ⊗ |+⟩, (3.58)

which, when we act on it with the rotation operator becomes

R̂y(θ)|1, 1⟩ =
(
cos

θ

2
|+⟩+ sin

θ

2
|−⟩
)
⊗
(
cos

θ

2
|+⟩+ sin

θ

2
|−⟩
)
. (3.59)

We know that the result of a rotation has to be a linear combination of states with
the same j but different m so we can write for some constants a, b and c

R̂y(θ)|1, 1⟩ = a|1, 1⟩+ b|1, 0⟩+ c|1,−1⟩. (3.60)

Comparing both equations we see that

|1, 1⟩ = |+⟩ ⊗ |+⟩,

|1, 0⟩ = 1√
2
(|+⟩ ⊗ |−⟩+ |−⟩ ⊗ |+⟩) , (3.61)

|1,−1⟩ = |−⟩ ⊗ |−⟩, (3.62)
3 This will be discussed in great detail in the subsection about addition of angular momenta
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and, consequently that

a = cos2
θ

2
,

b =
√
2 sin

θ

2
cos

θ

2
, (3.63)

c = sin2
θ

2
. (3.64)

Since we now know how the |1, 0⟩ state looks like, we can find out how a rotation
acts on that state

R̂y|1, 0⟩ =
1√
2

((
cos

θ

2
|+⟩+ sin

θ

2
|−⟩
)
⊗
(
− sin

θ

2
|+⟩+ cos

θ

2
|−⟩
)
+(

− sin
θ

2
|+⟩+ cos

θ

2
|−⟩
)
⊗
(
cos

θ

2
|+⟩+ sin

θ

2
|−⟩
))

,(3.65)

leading to

R̂y|1, 0⟩ = −
√
2 sin

θ

2
cos

θ

2
|1, 1⟩+

(
cos2

θ

2
− sin2

θ

2

)
|1, 0⟩+

√
2 sin

θ

2
cos

θ

2
|1,−1⟩, (3.66)

and on the |1,−1⟩ we similarly find

R̂y|1,−1⟩ = sin2
θ

2
|1, 1⟩ −

√
2 sin

θ

2
cos

θ

2
|1, 0⟩+ cos2

θ

2
|1,−1⟩, (3.67)

leading to the matrix representation of the spin 1 rotation operator

⟨1,m′|R̂y|1,m⟩ =

 cos2 θ
2 −

√
2 sin θ

2 cos
θ
2 sin2 θ

2√
2 sin θ

2 cos
θ
2 cos2 θ

2 − sin2 θ
2 −

√
2 sin θ

2 cos
θ
2

sin2 θ
2

√
2 sin θ

2 cos
θ
2 cos2 θ

2

 .(3.68)

One can check that this matrix is unitary as it should be.

3.4 The rotation operator in coordinate representation and spherical
harmonics

We can now ask what is the coordinate representation of the generators of the
rotation operator. We do this in the same way as one can do to find the coordinate
representation of the momentum operator. Namely, let us consider the (infinites-
imal) action of (say) R̂z on an arbitrary state

R̂z(∆ϕ)|ψ⟩. (3.69)
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The coordinate representation of this is of course

⟨x|R̂z(∆ϕ)|ψ⟩ =
(
⟨ψ|R̂†

z(∆ϕ)|x⟩
)∗

= (⟨ψ||x +∆ϕy, y −∆ϕx, z⟩)∗ =

⟨x +∆ϕy, y −∆ϕx, z||ψ⟩ = ⟨x|ψ⟩+∆ϕ

(
y
∂

∂x
− x

∂

∂y

)
⟨x|ψ⟩,(3.70)

where we have used that R̂ is unitary so that R̂†(θ) = R̂(−θ). Since ∆ϕ is in-
finitesimal we can expand R̂z(∆ϕ) = 1 − i∆ϕ

ℏ Ĵz + . . .. Reading off terms up to
first order we get that

Ĵz = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
. (3.71)

This is the coordinate representation of the generator Ĵz . In an exactly analogous
fashion we can compute the general formula

Ĵi = −iℏϵijkxj
∂

∂xk
. (3.72)

In spherical coordinates we can write the action of the (infinitesimal) rotation
operator as

R̂x(ϵ)|θ, ϕ⟩ = |θ − ϵ sinϕ, ϕ− ϵ cot θ cosϕ⟩,
R̂y(ϵ)|θ, ϕ⟩ = |θ + ϵ cosϕ, ϕ− ϵ cot θ sinϕ⟩, (3.73)
R̂z(ϵ)|θ, ϕ⟩ = |θ, ϕ+ ϵ⟩.

So in that case the coordinate representation becomes

⟨x|R̂x(ϵ)|ψ⟩ = ⟨θ + ϵ sinϕ, ϕ+ ϵ cot θ cosϕ|ψ⟩,
⟨x|R̂y(ϵ)|ψ⟩ = ⟨θ − ϵ cosϕ, ϕ+ ϵ cot θ sinϕ|ψ⟩, (3.74)
⟨x|R̂z(ϵ)|ψ⟩ = ⟨θ, ϕ− ϵ|ψ⟩,

and Taylor expanding in ϵ we get the coordinate representation of the generators

− i

ℏ
⟨x|Ĵx|ψ⟩ =

(
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
⟨x|ψ⟩,

− i

ℏ
⟨x|Ĵy|ψ⟩ =

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
⟨x|ψ⟩, (3.75)

− i

ℏ
⟨x|Ĵz|ψ⟩ = − ∂

∂ϕ
⟨x|ψ⟩,
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or, in other words

Jx = −iℏ
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
,

Jy = −iℏ
(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
, (3.76)

Jz = −iℏ ∂

∂ϕ
.

From these expressions we may also find the coordinate representations of the
ladder operators

J± = −iℏe±iϕ

(
±i ∂
∂θ

− cot θ
∂

∂ϕ

)
. (3.77)

Having the coordinate representation of the operators we may now proceed
to find the coordinate representation of the states. In other words, we want to
find the wave functions ⟨θ, ϕ|l,m⟩. Let us first assume that l is an integer (the
half integer case we will be commented on in the end). First we notice that the
equation

mℏ⟨θ, ϕ|l,m⟩ = ⟨θ, ϕ|Ĵz|l,m⟩ = −iℏ ∂

∂ϕ
⟨θ, ϕ|l.m⟩, (3.78)

can be immediately solved to tell us that the wave function can be written as

⟨θ, ϕ|l,m⟩ = eimϕfl(θ), (3.79)

for some function fl(θ). Now we know that for m = l we have

0 = ⟨θ, ϕ|Ĵ+|l, l⟩ = −iℏei(l+1)ϕ

(
i
∂fl
∂θ

− il cot θfl

)
, (3.80)

or, that
∂fl
∂θ

= l cot θfl. (3.81)

This is a first order differential equation which is easy to solve. The result is

fl = cl sin
l θ, (3.82)

for some normalization constant cl. To determine it we have to do the integral

1 = |cl|2
∫

sin θdθdϕ |fl|2 = 2π |cl|2
∫ 1

−1
d(cos θ)

(
1− cos2 θ

)l
=

2π |cl|2
Γ(l + 1)Γ(12)

Γ(l + 3
2)

= |cl|2 4π
22ll!2

(2l + 1)!
, (3.83)
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leading to

cl =
(−1)l

2ll!

√
(2l + 1)!

4π
. (3.84)

Here the choice of the phase factor (−1)l is purely conventional.
Having the coordinate representation of the highest weight states it is an easy

task to find all states. We just proceed as we did before by acting with Ĵ− to take
us from one state to the other. To be explicit we have

ℏ
√
l(l + 1)−m(m− 1)⟨θ, ϕ|l,m− 1⟩ = ⟨θ, ϕ|Ĵ−|l,m⟩ =

−iℏe−iϕ

(
−i ∂
∂θ

− im cot θ

)
⟨θ, ϕ|l,m⟩. (3.85)

The states come out automatically normalized and orthogonal to each other. These
wave functions are conventionally denoted Y m

l (θ, ϕ) = ⟨θ, ϕ|l,m⟩ and are called
Spherical harmonics. They form a complete basis of functions in the angular vari-
ables θ and ϕ so that in problems with spherical symmetry they are often used to
Fourier expand the functions.

Let us try the method out for l = 1. In this case we know that

Y 1
1 = −

√
3

8π
sin θeiϕ. (3.86)

To find Y 0
1 we act with Ĵ− to get

ℏ
√
2Y 0

1 = −iℏe−iϕ

(
−i ∂
∂θ

− i cot θ

)
(−1)

√
3

8π
sin θeiϕ, (3.87)

giving us

Y 0
1 =

√
3

16π
(cos θ + cos θ) =

√
3

4π
cos θ. (3.88)

Acting once more we have

ℏ
√
2Y −1

1 = −iℏe−iϕ

(
−i ∂
∂θ

)√
3

4π
cos θ, (3.89)

which gives us

Y −1
1 =

√
3

8π
sin θe−iϕ. (3.90)

One can try what happens if one assumes that l is half integer. For simplicity
let us assume l = 1

2 . Then the above program leads us to the wave function

Y
1/2
1/2 = c 1

2

√
sin θe

i
2
ϕ. (3.91)
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Acting on this with the Ĵ− operator we get

Y
−1/2
1/2 = −c 1

2
cot θ

√
sin θe−

i
2
ϕ. (3.92)

There are (at least) two problems with this (tentative) expression for the half in-
teger wave functions. Firstly it is singular at θ = 0, π. Secondly, if we act with
Ĵ− again we do not get zero as we should!! This leads us to the conclusion that
only the integer value angular momentum wave functions have a coordinate rep-
resentation. The half integer wave functions should be understood as an internal
property of the system and can not be understood as “something rotating around
something else” in normal space.

Finally, let us return to the rotation matrix now that we have found the coordi-
nate representation of the generators. Let us consider a rotation matrix that takes
a vector pointing in the z direction and rotates it to a vector that point in the θ, ϕ
direction. This can be done by first making a rotation around y with angle θ and
then a rotation around z with angle ϕ. In other words, let us look at the operator

R̂(θ, ϕ) = R̂z(ϕ)R̂y(θ). (3.93)

This operator takes a state |ẑ⟩ ≡ |θ = 0, ϕ⟩ and rotates it to the state |n̂⟩ ≡ |θ, ϕ⟩.
(Here n̂ is a unit vector in the ϕ, θ direction). In formulas we have

R̂|ẑ⟩ = |n̂⟩. (3.94)

In this relation we insert a 1̂ as follows

|n̂⟩ =
∑
l′,m′

R̂|l′,m′⟩⟨l′,m′|ẑ⟩. (3.95)

Hitting everything from the left with a ⟨l,m| gives

⟨l,m|n̂⟩ =
∑
l′,m′

⟨l,m|R̂|l′,m′⟩⟨l′,m′|ẑ⟩. (3.96)

Since we know that a rotation just mixes the m quantum numbers but not the l
quantum numbers, the sum over l′ is trivial, and we get

⟨l,m|n̂⟩ =
∑
m′

⟨l,m|R̂|l,m′⟩⟨l,m′|ẑ⟩. (3.97)

Now we can use that we know the coordinate representation of the |l,m⟩ states.
Namely, we know that

⟨n̂|l,m⟩ = Y m
l (θ, ϕ), (3.98)
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which in particular means that

⟨ẑ|l,m⟩ = Y m
l (θ = 0, ϕ) =

√
2l + 1

4π
δm,0. (3.99)

Here we have used that we know that Y m
l (θ = 0, ϕ) vanishes form ̸= 04 and the

explicit form of Y 0
l . This implies that

(Y m
l (θ, ϕ))∗ =

∑
m′

⟨l,m|R̂|l,m′⟩

(√
2l + 1

4π
δm′,0

)∗

= ⟨l,m|R̂|l, 0⟩
√

2l + 1

4π
,(3.100)

or

⟨l,m|R̂|l, 0⟩ =
√

4π

2l + 1
(Y m

l (θ, ϕ))∗ , (3.101)

so the matrix elements in the coordinate representation of the rotation matrix are
essentially given by the spherical harmonics!

3.5 Addition of angular momentum

We now turn to the problem of how systems of many spins (or angular momenta)
behave under rotations. Technically what happens is that a system of many spins
does not transform irreducibly under rotations and one has to decompose it into
pieces that do transform irreducibly. In more physical words, under a rotation the
states of the system get mixed up. However, since the representation is reducible
all states do not transform into all other states. It is possible to find subsets of
states which transform into each other and only into each other. One reason why
this is important is that these subgroups of states have similar physical properties.
For instance, if our physics is rotationally invariant we must have that

R̂Û |ψ⟩ = Û R̂|ψ⟩, (3.102)

or, in words that we get the same thing if we first rotate the system and then wait
a little time or if we first wait and then rotate. this means that R̂†Û R̂ = Û or,
infinitesimally, that

[
Ĵ, H

]
= 0. This means that we can find a set of mutually

commuting operators Ĵz, Ĵ2, H whose eigenvalues we can use to label the states
|n, j,m⟩. Also, since any rotation on the states |n, j,m⟩ just mixes them quantum
numbers (this is of course because any Ĵi commutes with both Ĵ2 and Ĥ), the
j and the n quantum number stay the same, that is all states in a given angular
momentum representation must have the same energy! This is in general true for
the spectrum of any operator that commutes with rotations and since rotations
4 This can be seen from the fact that Ĵz |ẑ⟩ = 0 since then 0 = ⟨ẑ|Ĵz |l,m⟩ = ℏm⟨ẑ|l,m⟩
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and rotational symmetry is such a common phenomenon in physics, it is very
important to investigate how these composite states decompose into states that
transform irreducibly.

For instance, let us say that we have a system of two independent spin 1
2 spins.

The Hilbert space of states are given by tensor products of states of the single
spins

|+⟩ ⊗ |+⟩, |+⟩ ⊗ |−⟩, |−⟩ ⊗ |+⟩, |−⟩ ⊗ |−⟩. (3.103)

We may define operators that act on the whole space as follows

Ŝ = Ŝ1 ⊗ 1̂ + 1̂⊗ Ŝ2. (3.104)

Here Ô⊗ P̂ means an operator which acts on the state |a⟩ ⊗ |b⟩ as Ô|a⟩ ⊗ P̂ |b⟩.
With some abuse of notation, we often write Ŝ1 ≡ Ŝ1 ⊗ 1̂ and Ŝ2 ≡ 1̂⊗ Ŝ2. Let
us assume that the (rotationally invariant) Hamiltonian of the system is given by

Ĥ = αŜ1 · Ŝ2 = α
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)
. (3.105)

We can straightforwardly compute the matrix elements of the Hamiltonian as

⟨±,±|Ĥ|±,±⟩ = αℏ2

4


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 . (3.106)

We see that the Hamilton is not diagonal and hence the |±,±⟩ states are not
the “correct” states to use. We can diagonalize the Hamiltonian with the result
that it has one eigenstate 1√

2
(|+⟩ ⊗ |−⟩ − |−⟩ ⊗ |+⟩)with eigenvalue−3αℏ2

4 and
three eigenstates |+⟩ ⊗ |+⟩, 1√

2
(|+⟩ ⊗ |−⟩+ |−⟩ ⊗ |+⟩) and |−⟩ ⊗ |−⟩ which

each have eigenvalue αℏ2
4 . The single eigenstate corresponds to a one-dimensional

representation of the rotation group (a spin 0 representation) and the group of
three eigenstates correspond to a three dimensional representation (a spin 1 rep.).
The states in each representations transform into each other under rotations but
they do not mix.

Let us now investigate how this work in general. Assume that we have two in-
dependent arbitrary spins j1 and j2. Again we define the states of the system with
the help of the tensor product as |j1,m1⟩ ⊗ |j2,m2⟩. We also define the operators

Ĵ = Ĵ1 ⊗ 1̂ + 1̂⊗ Ĵ2 ≡ Ĵ1 + Ĵ2. (3.107)

One can check that the operator thus defined also satisfies the angular momentum
algebra [

Ĵi, Ĵk

]
= iℏϵiklĴl. (3.108)
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Since we have two spins, the states of the system are completely given by four
quantum number. For instance the eigenvalues of J1z, Ĵ2

1, J2z, Ĵ
2
2 (which leads

to the tensor product states |j1,m1⟩ ⊗ |j2,m2⟩). However, if one instead takes
the four operators Ĵ2

1, Ĵ
2
2, Ĵ

2, Ĵz one can show that they also mutually commute.
For instance, that Ĵ2 and Ĵz commutes follows from the fact that they satisfy
the usual angular momentum commutation relations. That Ĵ2

1 and Ĵ2
2 commutes

follows from the fact that they act on independent spaces. In formulas we would
write

Ĵ2
1Ĵ

2
2 ≡

(
Ĵ2
1 ⊗ 1̂

)(
1̂⊗ Ĵ2

2

)
= Ĵ2

1 ⊗ Ĵ2
2 = Ĵ2

2Ĵ
2
1, (3.109)

so the commutator is indeed zero. Lastly we see that Ĵ2
1 (and similarly also Ĵ2

2)
commutes with all other operators since Ĵ2

1 commutes with any Ĵ1i (this is the
usual relation

[
Ĵi, Ĵ

2
]
= 0 which holds for any spin) and also with any Ĵ2i (since

they act on different spins).
Thus we can instead choose Ĵ2

1, Ĵ
2
2, Ĵ

2, Ĵz as the operators which will classify
our states. These are states |j,m, j1, j2⟩ given by the total angular momentum j

and its projection m plus the individual spins j1 and j2. Notice that the indi-
vidual spin projections m1 and m2 in this basis are not certain. This is because[
Ĵ2, Ĵ1z

]
̸= 0 (and similarly for Ĵ2z so that one cannot at the same time give total

spin and individual spin projections. To be completely clear, let us give the action
of the operators on their eigenstates. First the states which are eigenstates of the
individual spins

Ĵ2
1|j1,m1; j2,m2⟩ = ℏ2j1(j1 + 1)|j1,m1; j2,m2⟩,

Ĵ2
2|j1,m1; j2,m2⟩ = ℏ2j2(j2 + 1)|j1,m1; j2,m2⟩,

Ĵ1z|j1,m1; j2,m2⟩ = ℏm1|j1,m1; j2,m2⟩, (3.110)
Ĵ2z|j1,m1; j2,m2⟩ = ℏm2|j1,m1; j2,m2⟩.

Ĵ2
1|j1, j2; j,m⟩ = ℏ2j1(j1 + 1)|j1, j2; j,m⟩,

Ĵ2
2|j1, j2; j,m⟩ = ℏ2j2(j2 + 1)|j1, j2; j,m⟩,

Ĵ2|j1, j2; j,m⟩ = ℏ2j(j + 1)|j1, j2; j,m⟩, (3.111)
Ĵz|j1, j2; j,m⟩ = ℏm|j1, j2; j,m⟩

To find how a state transforms in the general case what we need to do is
to write any state where the individual particles have fixed angular momenta
|j1,m1; j2,m2⟩ in terms of states |j1, j2; j,m⟩ which have well defined proper-
ties under rotation. Actually we will do the opposite (write |j1, j2; j,m⟩ as a linear
combination of |j1,m1; j2,m2⟩) but that does not matter since the transformation



3.5 Addition of angular momentum 65

is invertible. Also, to avoid cluttering the formulas we will not write j1 and j2 ev-
erywhere since they are the same for all states and to keep track of which states
are of which type we introduce the notation

|j,m⟩ ≡ |j1, j2; j,m⟩,
|m1,m2⟩⟩ ≡ |j1,m1; j2,m2⟩. (3.112)

Our goal is now to find the relation between these states

|j,m⟩ =
∑

m1,m2

cm1,m2 |m1,m2⟩⟩. (3.113)

This we will do in several steps. First let us see that the space of all |m1,m2⟩ is
finite dimensional with a total number of (2j1+1)(2j2+1) states. This is because
each spin (j1 and j2) can separately have 2j1 + 1 and 2j2 + 1 different values of
the m quantum number respectively. However, we do not need to sum over all
these states in the sum (3.113) since for fixed m we can use that Ĵz = Ĵ1z + Ĵ2z
and since we know that

Ĵz|j,m⟩ = m|j,m⟩,(
Ĵ1z + Ĵ2z

)
|m1,m2⟩⟩ = (m1 +m2) |m1,m2⟩⟩, (3.114)

we immediately see that ⟨⟨m1,m2|j,m⟩ = 0 if m ̸= m1 +m2. This follows from
the fact that

0 = ⟨⟨m1,m2|
(
Ĵz − Ĵ1z − Ĵ2z

)
|j,m⟩ = (m−m1 −m2) ⟨⟨m1,m2|j,m⟩.(3.115)

So for each fixed m on the left hand side of the equation (3.113) we need only
states with m1 + m2 = m on the right hand side. It is useful to know exactly
how many states with m1 +m2 = m there are for each fixed m. To find this we
draw the allowed states as points in the (m1,m2) plane. Here each diagonal line

Figure 3.1 The allowed states for j1 = 7/2 and j2 = 2

going from upper left to lower right goes through points with the same value of
m1 + m2. From the picture it is immediately obvious that there is always only
one state with maximal value of mmax = m1 + m2 = j1 + j2. When we go
down one level to states with m = j1 + j2 − 1 there are two states, |j1 − 1, j2⟩⟩
and |j1, j2 − 1⟩⟩. Going down in m once more gives us one more state and so on.
However, from the picture we see that something happens when we get to the
diagonal which hits the lower right corner (that is, assuming that j1 ≥ j2 as is
true in the picture, for m = (j1 + j2) − 2j2 = j1 − j2 ≥ 0). After that, going
down in m does not give new states but the number of states is constant for each
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new m. When we get to the diagonal which hits the upper left corner (this is for
m = j2− j1 ≤ 0) something again happens, after that the number of states starts
to decrease with one each time until we reach the single state in the lower left
corner which has m = −j1 − j2. Thus we can write for the number of |m1,m2⟩⟩
states (in the j1 ≥ j2 case)

0 if |m| > j1 + j2,

j1 + j2 + 1− |m| if j1 + j2 ≥ |m| ≥ j1 − j2, (3.116)
2j2 + 1 if j1 − j2 ≥ |m| ≥ 0.

Let us now look at the |j,m⟩ states. From the above discussion we found that
the maximal m that we can have is mmax = j1 + j2. Therefore we see that there
can be no |j,m⟩ states with j > j1+ j2 (if there were, there would be states states
with m = j > j1 + j2 which we just showed that there are not). The question is
how many of each states with j ≤ j1+j2 we can have. Let us start with the unique
state with maximalm = j1+j2. From our discussion we know that it has to be the
state |j1 + j2, j1 + j2⟩ or, in other words, that it is the highest weight state in the
j = j1+j2 representation. We can get all the states in the representation by acting
repeatedly with Ĵ− on this state. At the next level withm = mmax−1 we already
have one state, namely the state we got by acting with Ĵ− on |j1 + j2, j1 + j2⟩ (that
is |j1 + j2, j1 + j2 − 1⟩). However, we know from our counting of |m1,m2⟩⟩ states
that at this level there should be two states. The other state thus have to be the
highest weight state in a representation with j = j1+ j2−1, that is a state which
we can write as |j1 + j2 − 1, j1 + j2 − 1⟩. We can continue in this fashion going
down in m and filling out the states we find in the figure When we get to the
point where m = j1 − j2 we know that there are no new states at the next m
level. This we have to interpret that we do not get any new representations going
lower inm. In fact, we can check that what we have is everything by counting the
states. Since we know that we have (2j1 + 1)(2j2 + 1) states of |m1,m2⟩⟩ type,
we should have the same number of states of |j,m⟩ type. In fact we have (again
we assume j1 ≥ j2)

j1+j2∑
j=j1−j2

(2j + 1) =

2j2+1∑
j′=1

(
2
(
j′ + j1 − j2 − 1

)
+ 1
)
= (2j1 + 1)(2j2 + 1),(3.117)

so everything seems to work out.
We have thus learned that in a system with two independent angular momenta

j1 and j2 the total angular momenta j of the system has to satisfy |j1 − j2| ≤ j ≤
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j1 + j2 and that there is one and only one state with a particular value of j and
m.

3.6 Clebsh-Gordan coefficients

Let us continue what we did in the last section and try to find explicitly the ex-
pansion coefficients cm1,m2 in the expansion (3.113). Actually, the notation we
will use is ⟨⟨m1,m2|j,m⟩. These numbers are called Clebsh-Gordan coefficients.
Sometimes one also sees in the literature the so called 3j-symbols. They are related
to the Clebsh-Gordan coefficients by

⟨⟨m1,m2|j,m⟩ = (−1)j1−j2+m
√
2j + 1

(
j1 j2 j

m1 m2 −m

)
, (3.118)

but we will not use them here. The Clebsh-Gordan coefficients are conventionally
chosen to be real so that

⟨⟨m1,m2|j,m⟩ = ⟨j,m|m1,m2⟩⟩. (3.119)

Also, since the states |m1,m2⟩⟩ or the states |j,m⟩ form a complete basis in the
subspace of states of two angular momenta j1 and j2 we have the following rela-
tions (in this subspace)

1̂ =
∑

m1,m2

|m1,m2⟩⟩⟨⟨m1,m2| =
∑
j,m

|j,m⟩⟨j,m|, (3.120)

where the sums are over the “allowed” values of the eigenvalues only. This leads
to the following relations between the Clebsh-Gordan coefficients

δj,j′δm,m′ = ⟨j,m|j′,m′⟩ =
∑

m1,m2

⟨j,m|m1,m2⟩⟩⟨⟨m1,m2|j′,m′⟩ =∑
m1,m2

⟨⟨m1,m2|j,m⟩⟨⟨m1,m2|j′,m′⟩, (3.121)

and similarly

δm1,m′
1
δm2,m′

2
= ⟨⟨m1,m2|m′

1,m
′
2⟩⟩ =

∑
j,m

⟨⟨m1,m2|j,m⟩⟨j,m|m′
1,m

′
2⟩⟩ =∑

j,m

⟨⟨m1,m2|j,m⟩⟨⟨m′
1,m

′
2|j,m⟩.(3.122)

It is certainly possible to calculate arbitrary formulas for the Clebsh-Gordan
coefficients. For instance, the 3j-symbols are often listed in tables. However, I will
not present such a formula which is often hard to read and does not say very
much. Instead I will give you a prescription how to calculate them yourselves in
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any given case. The method is built on the way we calculated the allowed states in
the previous section. To be concrete, let us use our example of the previous section
of adding a spin 7

2 and a spin 2. The state with the highest value of m = j1 + j2
(112 in our case) is given to us for free. Since there is only one |j,m⟩ state as well
as |m1,m2⟩⟩ state they must be equal. That is

|11
2
,
11

2
⟩ = |7

2
, 2⟩⟩, (3.123)

and the Clebsh-Gordan coefficient is of course

⟨⟨7
2
, 2|11

2
,
11

2
⟩ = 1. (3.124)

Notice that the arbitrary phase factor that could have appeared in (3.123) was
eliminated by requiring that the Clebsh-Gordan coefficients are real (and in this
case positive). To find the other states in the 11

2 representation we can act on
(3.123) with the lowering operator Ĵ− = Ĵx − iĴy . The action on the left hand
side is easy to find. Using the regular formulas we get

Ĵ−|
11

2
,
11

2
⟩ = ℏ

√
11|11

2
,
9

2
⟩. (3.125)

To find the action of Ĵ− on the right hand side of (3.123) we have to use that

Ĵ− = Ĵx − iĴy =
(
Ĵ1x + Ĵ2x

)
− i
(
Ĵ1y + Ĵ2y

)
= Ĵ1− + Ĵ2−, (3.126)

which tells us that

Ĵ−|
7

2
, 2⟩⟩ =

(
Ĵ1−|

7

2
,
7

2
⟩
)
⊗ |2, 2⟩+ |7

2
,
7

2
⟩ ⊗

(
Ĵ2−|2, 2⟩

)
=(

ℏ
√
7|7
2
,
5

2
⟩
)
⊗ |2, 2⟩+ |7

2
,
7

2
⟩ ⊗ (ℏ2|2, 1⟩) = ℏ

(√
7|5
2
, 2⟩⟩+ 2|7

2
, 1⟩⟩

)
.(3.127)

Equating the left and right hand sides we find

|11
2
,
9

2
⟩ =

√
7

11
|5
2
, 2⟩⟩+

√
4

11
|7
2
, 1⟩⟩, (3.128)

which gives us the non-zero Clebsh-Gordan coefficients

⟨⟨5
2
, 2|11

2
,
9

2
⟩ =

√
7

11
,

⟨⟨7
2
, 1|11

2
,
9

2
⟩ =

√
4

11
. (3.129)

It is gratifying to see that the state (3.128) comes out automatically normalized
as it should. Using Ĵ− we could now continue to find all 12 states in the spin 11

2

representation but we will not do so here. Instead let us look at the next to highest
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m = j1+j2−1 (92 in our case). We know that there are two states with this value
of m but we have only found one so far (3.128). We also know that the second
state is the highest weight state in a new (in this case spin 9

2 representation. We
should therefore be able to write

|9
2
,
9

2
⟩ = a|5

2
, 2⟩⟩+ b|7

2
, 1⟩⟩, (3.130)

for some unknown constants a and b. The constants we can determine by acting
with Ĵ+ on both sides of the equation. Exactly similar to how we found the Ĵ−
action we now find

0 = Ĵ+|
9

2
,
9

2
⟩ = ℏ

(
a
√
7|7
2
, 2⟩⟩+ b2|7

2
, 2⟩⟩

)
. (3.131)

In order for this to be true we have to have
√
7a+ 2b = 0 (3.132)

Together with the requirement that the state should be normalized we get

|9
2
,
9

2
⟩ =

√
7

11
|7
2
, 1⟩⟩ −

√
4

11
|5
2
, 2⟩⟩, (3.133)

where we again have fixed an arbitrary phase by the requirement that the Clebsh-
Gordan coefficients should all be real and by the convention that the state with
the maximum m1 value should also be positive. Notice that this state comes out
automatically orthogonal to (3.128) as it should. This result gives rise to the non-
zero Clebsh-Gordan coefficients

⟨⟨7
2
, 1|9

2
,
9

2
⟩ =

√
7

11
,

⟨⟨5
2
, 2|9

2
,
9

2
⟩ = −

√
4

11
. (3.134)

By using the ladder operators Ĵ± in this way we can go on and find all the non-
zero Clebsh-Gordan coefficients. You can as an exercise try to find the expression
for the |32 ,

1
2⟩ state in terms of the |m1,m2⟩⟩ states. The calculation is not too

difficult. You need to act once with Ĵ+ once with Ĵ− and use the normalization
condition. The answer I believe should be |32 ,

1
2⟩ =

√
3
14 |

5
2 ,−2⟩⟩−

√
2
7 |

3
2 ,−1⟩⟩+√

9
35 |

1
2 , 0⟩⟩ −

√
6
35 |−

1
2 , 1⟩⟩+

√
1
14 |−

3
2 , 2⟩⟩.

An application

As an application of the above formalism, let us consider a system of two nucleons
(a nucleon is particle that you find in the nucleus of the atom, that is a neutron
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or a proton). The system is described by the relative coordinate of the two nucle-
ons r and furthermore each of the two nucleons carry spin 1

2 (let us call the spin
operators acting on each spin Ŝ1 and Ŝ2 respectively). The nucleons interact in
several ways. First of all there is a regular (strong) force between them, second of
all their spins interact with the orbital angular momenta L = r × p and finally
there is an interaction between the spins themselves. The system should be rota-
tionally invariant so that the Hamiltonian should be rotationally invariant. If the
mass of a nucleon is M and with the definition Ŝ = Ŝ1 + Ŝ2 then we can write
the Hamiltonian as

Ĥ =
p̂2

M
+ V1(r) + V2(r)L̂ · Ŝ+ V3(r)Ŝ1 · Ŝ2, (3.135)

for some functions Vi(r). V1(r) describe the force interaction, V2(r) describes
the spin-orbit interaction and V3(r) describes the spin-spin interaction. There
are other possible interaction terms but we will not consider them here. This is
a pretty complicated system so it is important to find the “correct” variables in
which the description is as simple as possible. To do this we will try to find as
many (hermitian) operators as possible which commute with the Hamiltonian.
Then these can be used to classify the eigenstates, or in other words, using eigen-
states of these operators, the Hamiltonian will take the simplest possible form. We
see that the Hamiltonian commutes with the operators L̂2, Ŝ2

1, Ŝ
2
2, Ŝ

2 and defin-
ing the operator Ĵ = L̂+ Ŝ we see that the Hamiltonian also commutes with Ĵ2

and Ĵz . Notice however that it does not commute with the operators Ŝ1z, Ŝ2z or
L̂z since the L̂ · Ŝ term contains for instance L̂x(Ŝ1x+ Ŝ2x). We can therefore use
the states

|l, s; j,m⟩, (3.136)

which are eigenstates of L̂2, Ŝ2, Ĵ2, Ĵz (and also of Ŝ2
1, Ŝ

2
2) as our basis. Now we

use that we can write

2Ŝ1 · Ŝ2 = Ŝ2 − Ŝ2
1 − Ŝ2

2

2L̂ · Ŝ = Ĵ2 − L̂2 − Ŝ2. (3.137)

That means that when we act with the Hamiltonian on one of the basis states we
get

Ĥ|l, s; j,m⟩ =(
p̂2

M
+ V1(r) +

ℏ2

2
V2(r) (j(j + 1)− l(l + 1)− s(s+ 1))+ (3.138)

ℏ2

2
V3(r) (s(s+ 1)− s1(s1 + 1)− s2(s2 + 1))

)
|l, s; j,m⟩. (3.139)
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From our discussion about addition of angular momenta we know that since s1 =
s2 =

1
2 , s can be only 0 or 1. Thus when the Hamiltonian acts on s = 0 states we

have

Ĥ =
p̂2

M
+ V1(r) +

ℏ2

2
V2(r) (j(j + 1)− l(l + 1))− 3ℏ2

4
V3(r), (3.140)

and when it acts on s = 1 states we have

Ĥ =
p̂2

M
+ V1(r) +

ℏ2

2
V2(r) (j(j + 1)− l(l + 1)− 2) +

ℏ2

4
V3(r), (3.141)

which is a considerable simplification. Thus we will try to find eigenfunctions of
the Hamiltonian which are also eigenstates of L̂2, Ŝ2, Ĵ2 and Ĵz An ansatz would
be

|ψ⟩ = |El,s,j,m⟩ ⊗ |l, s; j,m⟩. (3.142)

The state |El,s,j,m⟩ contains all the radial dependence of the wave function while
the |l, s; j,m⟩, since it contains all the information about rotations, contain all
the angular dependence. We can now take the coordinate representation of the
eigenvalue equation

⟨x|Ĥ|ψ⟩ = ℏ2
∑

ml,ms

{
− 1

M

(
1

r

d2

dr2
r − l(l + 1)

r2

)
+ Vl,s,j

}
×

fl,s,j,m(r)⟨θ, ϕ|l, s, j,m⟩, (3.143)

where fl,s,j,m(r) = ⟨r|El,s,j,m⟩ is the coordinate representation of radial part of
the wave function and where Vl,s,j(r) is an effective potential of the form

Vl,s,j =
1

ℏ2
V1(r) +

V2(r)

2
(j(j + 1)− l(l + 1)− s(s+ 1))

+
V3(r)

2

(
s(s+ 1)− 3

2

)
. (3.144)

To derive this result we also used that the coordinate representation of the oper-
ator p̂2 can be written

⟨x|p̂2|ψ⟩ = −ℏ2

r

d2

dr2
(r⟨x|ψ⟩) + 1

r2
⟨x|L̂2|ψ⟩, (3.145)

and that the action of L̂2 on the state is known. When we want to find the eigen-
functions of the Hamiltonian what is left for us to do is therefore solve the one
dimensional differential equation(

− 1

M

1

r

d2

dr2
r + Vl,s,j(r)

)
fl,s,j,m(r) =

E

ℏ2
fl,s,j,m(r). (3.146)
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where the potential depends on the quantum number j, s and l

V (r) =

(
V1
ℏ2

− 3V3
4

)
+ l(l + 1)

(
1

Mr2
− V2

2

)
+s(s+ 1)

(
V3
2

− V2
2

)
+ j(j + 1)

V2
2
. (3.147)

Since the effective potential do not depend on the quantum number m the wave
functions fl,s,j,m will also not depend on m and the spectrum will be degenerate
in m, that is, each energy eigenvalue will be (2j + 1) times degenerate.

To find the explicit angular dependence of the states ⟨θ, ϕ|l, s; j,m⟩ one has
to use the Clebsh-Gordan composition of the state |l, s; j,m⟩ = |j,m⟩ into the
|l, s;ml,ms⟩ = |ml,ms⟩⟩ basis. Namely, since we know ⟨θ, ϕ|l,ml⟩ = Y ml

l (θ, ϕ)

we have

⟨θ, ϕ|l, s; j,m⟩ =
∑

ml,ms

Y ml
l (θ, ϕ)|s,ms⟩⟨⟨ml,ms|j,m⟩, (3.148)

where the last factor are the Clebsh-Gordan coefficients for the decomposition of
the |j.m⟩ states into |ml,ms⟩⟩ states.

3.7 Tensor operators

Until now we have been interested in how states transform under rotations. Now
we will take a look at how operators transform under rotations. A tensor operator
is really a set of operators whose expectation values transform into each other
in exactly the same way as classical tensors when one performs a rotation of
the system. The simplest case is a scalar operator. In this case the set contains
only one operator which consequently transforms into itself under rotation (i.e.
it does not transform at all). The simplest non-trivial example is given by a vector
operator. It is given by a set of three operators, let us call them V̂x, V̂y and V̂z , or,
collectively as V̂i. To find out how it transforms under rotations we first notice
that under a rotation any state |α⟩ transforms into R̂|α⟩ and thus we find the
quantum mechanical transformation of an arbitrary expectation value as

⟨α|V̂i|α⟩ → ⟨α|R̂†V̂iR̂|α⟩. (3.149)

The requirement that this should transform as a classical vector for the expecta-
tion value of any state |α⟩ now gives us

R̂†V̂iR̂ =
∑
k

R k
i V̂k, (3.150)
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where R k
i is the classical rotation matrix. To be concrete, let us do this explicitly

for an infinitesimal rotation around the z-axis. We have(
1 +

i

ℏ
ϵĴz

)
V̂x

(
1− i

ℏ
ϵĴz

)
= V̂x − ϵV̂y,(

1 +
i

ℏ
ϵĴz

)
V̂y

(
1− i

ℏ
ϵĴz

)
= V̂y + ϵV̂x, (3.151)(

1 +
i

ℏ
ϵĴz

)
V̂z

(
1− i

ℏ
ϵĴz

)
= V̂z.

Expanding and equating terms of order ϵ on both sides gives us the commutation
relations [

Ĵz, V̂x

]
= iℏV̂y,[

Ĵz, V̂y

]
= −iℏV̂x, (3.152)[

Ĵz, V̂z

]
= 0.

The same calculation for infinitesimal rotations around the x and the y axis gives
the complete commutation relations[

Ĵi, V̂j

]
= iℏϵijkV̂k. (3.153)

In fact, we can now turn things around and take this as the definition of a vector
operator. Here it is interesting to observe that the classical rotation matrix is the
same as the spin 1 representation of the quantum operator R̂† (notice the hermi-
tian conjugation) although written in complex notation. Namely, if we reshuffle
the components of V̂i a bit and define

V̂+1 = − 1√
2
(Vx + iVy) ,

V̂0 = Vz, (3.154)

V̂−1 =
1√
2
(Vx − iVy) ,

we can write the classical rotation as

R̂†V̂qR̂ =
1∑

q′=−1

V̂q′ ⟨1, q′|R̂†|1, q⟩. (3.155)
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Let us try it explicitly in the rotation around the z-axis that we computed in
(3.151). Classically we can compute that the rotation should give

V̂+1 → V̂+1 + iϵV̂+1,

V̂0 → V̂0, (3.156)
V̂−1 → V̂−1 − iϵV̂−1,

which we can write in matrix form

(
V̂+1 V̂0 V̂−1

)
→
(
V̂+1 V̂0 V̂−1

) 1 + iϵ 0 0

0 1 0

0 0 1− iϵ

 ,(3.157)

in which we indeed recognize the infinitesimal form of the spin 1 representation
of the rotation matrix R̂†

z = e
i
ℏ Ĵzϵ ≈ 1 + i

ℏ Ĵzϵ. This property can similarly be
checked for the other rotations around the x or the y axis. (Do it as an exercise!)

We may now similarly define other types of tensor operators. For instance, a
classical tensor Tijk... transform under classical rotations as

Tijk... →
∑
i′j′k′

R i′
i R j′

j R k′
k · · ·Ti′j′k′..., (3.158)

so the definition of a tensor operator would be that

R̂†T̂ijk...R̂ =
∑
i′j′k′

R i′
i R j′

j R k′
k · · · T̂i′j′k′..., (3.159)

or, infinitesimally[
Ĵa, T̂ijk...

]
= iℏ

(
ϵ i′
ai T̂i′jk... + ϵ j′

aj T̂ij′k... + ϵ k′
ak T̂ijk′... + . . .

)
. (3.160)

This is all fine except for one thing. It turns out that the components of an arbi-
trary tensor operator T̂ijk... do not transform into each other irreducibly. That is,
there are subgroups of components which transform into each other and do not
mix with the other components. This indicates that the tensor operators defined
in this way are not the tensors we should use if we want to consider operators
that transform as simple as possible under rotations. In other words, we need to
decompose the tensor operators as defined above into their irreducible subsets
just as we needed to decompose the angular momentum states into irreducible
subsets. However, the example above with the vector operator teaches us how to
find the irreducible subsets. Namely, we need tensors such that the classical ro-
tation can be written using an irreducible representation of the rotation operator.
That is that we can write

T̂ (k)
q →

∑
q′

T̂
(k)
q′ ⟨k, q′|R̂†|k, q⟩, (3.161)
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for some fixed k so that the rotation operator is in the k (that is the 2k + 1 di-
mensional) representation. A tensor T̂ (k)

q that transforms in this irreducible way
is called an irreducible tensor or a spherical tensor. Thus, the defining equation for
spherical tensors of rank k is

R̂†T̂ (k)
q R̂ =

∑
q′

T̂
(k)
q′ ⟨k, q′|R̂†|k, q⟩, (3.162)

or infinitesimally [
Ĵi, T̂

(k)
q

]
=
∑
q′

T̂
(k)
q′ ⟨k, q′|Ĵi|k, q⟩. (3.163)

Since the matrix elements of Ĵ± are nicer, let us write the commutation relations
in terms of them as [

Ĵ±, T̂
(k)
q

]
=
∑
q′

T̂
(k)
q′ ⟨k, q′|Ĵ±|k, q⟩ =∑

q′

ℏ
√
k(k + 1)− q(q ± 1)T̂

(k)
q′ ⟨k, q′|k, q± 1⟩, (3.164)

and using the orthogonality of the angular momentum eigenstates we have[
Ĵ±, T̂

(k)
q

]
= ℏ

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1. (3.165)

For Ĵz we similarly have[
Ĵz, T̂

(k)
q

]
=
∑
q′

T̂
(k)
q′ ⟨k, q′|Ĵz|k, q⟩ =

∑
q′

T̂
(k)
q′ ℏq⟨k, q′|k, q⟩ = ℏqT̂ (k)

q .(3.166)

Thus we see that the commutation relations are very similar to the way the an-
gular momentum operators act on the angular momentum eigenstates.

One may ask if it is always possible to decompose an ordinary tensor opera-
tor transforming according to (3.158) into “sub tensors” transforming according
to (3.161). That this is true one may argue as follows. We know that each R i′

i is
a spin 1 representation of the rotation operator. Thus Tijk... actually transform
like a collection of independent spin 1 spins so that the problem of decompos-
ing the tensor is the same as finding the total angular momenta when one adds
a number of independent spin 1 spins. This we have shown how to do in the
previous section, it is essentially done by finding the Clebsh-Gordan coefficients.
Let us illustrate this with a simple example. We can make a two index tensor by
multiplying two vectors. That is define

Tij = UiVj . (3.167)
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This is usually decomposed in the following suggestive way

Tij =
U ·V
3

δij +
(UiVj − ViUj)

2
+

(
(UiVj + ViUj)

2
− U ·V

3
δij

)
.(3.168)

The first term in this “expansion” is just the scalar product of the two vectors U
and V. It is clear that it is invariant under rotations. Thus, it forms an invariant
subgroup of tensor components. The second term is nothing but the cross product
U×V which transforms like a vector so it also forms an irreducible subcompo-
nent. The third term is a symmetric and traceless tensor. It can be shown to form
a spin 2 representation. Now let us try to see the same thing by using the “sum of
spins” idea. The spin 0 wave function that we get when we add two spin 1 spins
we find using the methods introduced earlier to be

|0, 0⟩ = 1√
3
(|1,−1⟩⟩ − |0, 0⟩⟩+ |−1, 1⟩⟩) . (3.169)

Thus we expect that the combination

T+1,−1 − T0,0 + T−1,+1, (3.170)

should transform like a scalar (that is, not transform at all). Using (3.154) we can
see that this combination is indeed equal to (minus) the scalar product of U and
V so that this is indeed true. The other components can be verified similarly
(exercise!).

3.8 The Wigner-Eckart theorem

So far we have been looking at how the spherical tensor operators transform un-
der rotations. Now let us take a look at how they act on states. This information is
contained in (infinitesimal version of) their definition as derived in the previous
section [

Ĵ±, T̂
(k)
q

]
= ℏ

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1,[

Ĵz, T̂
(k)
q

]
= ℏqT̂ (k)

q . (3.171)

Using these relations we may first of all, find the rotational properties of states
created by T̂ (k)

q acting on states that do not transform under rotations (that is on
the state |0, 0⟩). Namely, using the commutation relations above and that Ĵ acts
trivially on |0, 0⟩, we have

Ĵ±T̂
(k)
q |0, 0⟩ =

[
Ĵ±, T̂

(k)
q

]
|0, 0⟩ = ℏ

√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|0, 0⟩,

ĴzT̂
(k)
q |0, 0⟩ =

[
Ĵz, T̂

(k)
q

]
|0, 0⟩ = ℏqT̂ (k)

q |0, 0⟩. (3.172)
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Thus we see that the angular momentum operators act on T̂ (k)
q |0, 0⟩ in exactly the

same way as on a state |j,m⟩ with j = k and m = q. That also tells us something
about the matrix elements of the operator T̂ (k)

q . Namely, since ⟨j,m|k, q⟩ ≠ 0 only
if j = k and q = m we have

⟨j,m|T̂ (k)
q |0, 0⟩ ≠ 0 iff j = k, m = q. (3.173)

This (including the generalization to other states than |0, 0⟩) is essentially the
Wigner-Eckart theorem. To be able to state it in all generality, we need now study
what T̂ (k)

q does to an arbitrary state |j,m⟩. In the same way as above we find

ĴzT̂
(k)
q |j,m⟩ = T̂ (k)

q Ĵz|j,m⟩+
[
Ĵz, T̂

(k)
q

]
|j,m⟩ =

ℏmT̂ (k)
q |j,m⟩+ ℏqT̂ (k)

q |j,m⟩ (3.174)

Ĵ±T̂
(k)
q |j,m⟩ = T̂ (k)

q Ĵ±|j,m⟩+
[
Ĵ±, T̂

(k)
q

]
|j,m⟩ =

ℏ
√
j(j + 1)−m(m± 1)T̂ (k)

q |j,m± 1⟩+

ℏ
√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|j,m⟩.

Compare this to how the angular momentum operators act on a product state
|j,m⟩ ⊗ |k, q⟩ (that is, on a state describing two independent spins, one with spin
j and one with spin k). Then we have

Ĵz (|j,m⟩ ⊗ |k, q⟩) =
(
Ĵz|j,m⟩

)
⊗ |k, q⟩+ |j,m⟩ ⊗

(
Ĵz|k, q⟩

)
=

(ℏm+ ℏq) |j,m⟩ ⊗ |k, q⟩, (3.175)

Ĵ± (|j,m⟩ ⊗ |k, q⟩) =
(
Ĵ±|j,m⟩

)
⊗ |k, q⟩+ |j,m⟩ ⊗

(
Ĵ±|k, q⟩

)
=

ℏ
√
j(j + 1)−m(m± 1)|j,m± 1⟩ ⊗ |k, q⟩+
ℏ
√
k(k + 1)− q(q ± 1)|j,m⟩ ⊗ |k, q± 1⟩. (3.176)

Comparing these two results we see that they are exactly analogous!! This means
that we can expect that the state T̂ (k)

q |j,m⟩ behaves (from the point of view of
rotations) like the product state |m, q⟩⟩ = |j,m⟩ ⊗ |k, q⟩. From our previous dis-
cussion we know that we can decompose this into irreducible components

|J,M⟩ =
∑
m,q

cm,q|m, q⟩⟩, (3.177)

where the constants cm,q are the Clebsh-Gordan coefficients. Thus we may for in-
stance expect that ⟨J,M|T̂ (k)

q |j,m⟩ ≠ 0 iff the Clebsh-Gordan coefficient ⟨⟨m, q|J,M⟩
is non-zero. As we know, this requires that |j − k| ≤ J ≤ j+ k and M = m+ q.
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Let us now try to prove this a little bit more carefully. To this end define

|A(J,M)⟩ =
∑
q′,m′

T̂
(k)
q′ |j,m′⟩⟨⟨m′, q′|J,M⟩. (3.178)

Then we have ∑
J,M

|A(J,M)⟩⟨J,M|m, q⟩⟩ = (3.179)

∑
m′,q′

T̂
(k)
q′ |j,m′⟩⟨⟨m′, q′|

∑
J,M

|J,M⟩⟨J,M|

 |m, q⟩⟩.

and since
∑

J,M |J,M⟩⟨J,M| = 1̂ in each subspace of fixed J , we have

T̂ (k)
q |j,m⟩ =

∑
J,M

|A(J,M)⟩⟨J,M|m, q⟩⟩, (3.180)

or, that

⟨J,M|T̂ (k)
q |j,m⟩ =

∑
J ′,M ′

⟨J,M|A(J′,M′)⟩⟨J′,M′|m, q⟩⟩. (3.181)

We need to find what kind of state |A(J,M⟩ is. This we do by acting with the
angular momentum operators on it. Using the commutation relations of Ĵ with
T̂ we get

Ĵz|A(J,M)⟩ =
∑
q,m

ℏ (q +m) T̂ (k)
q |j,m⟩⟨⟨m, q|J,M⟩. (3.182)

Since we know that the Clebsh-Gordan coefficient is non-zero if and only if q +
m =M we may write this as

Ĵz|A(J,M)⟩ = ℏM |A(J,M)⟩. (3.183)

Similarly we have

Ĵ±|A(J,M)⟩ =
∑
q,m

(
ℏ
√
j(j + 1)−m(m± 1)T̂ (k)

q |j,m± 1⟩⟨⟨m, q|J,M⟩+

ℏ
√
k(k + 1)− q(q ± 1)T̂

(k)
q±1|j,m⟩⟨⟨m, q|J,M⟩

)
.(3.184)

By shifting the sums we may write this as∑
q,m

T̂ (k)
q |j,m⟩

(
ℏ
√

(j(j + 1)−m(m∓ 1)⟨⟨m∓ 1, q|J,M⟩

+ℏ
√
k(k + 1)− q(q ∓ 1)⟨⟨m, q∓ 1|J,M⟩

)
. (3.185)



3.8 The Wigner-Eckart theorem 79

Now we can use a property of the Clebsh-Gordan coefficients which can be easily
proved using the angular momentum commutation relations√

j(j + 1)−m(m∓ 1)⟨⟨m∓ 1, q|J,M⟩+√
k(k + 1)− q(q ∓ 1)⟨⟨m, q∓ 1|J,M⟩ =√
J(J + 1)−M(M ± 1)⟨⟨m, q|J,M± 1⟩. (3.186)

This gives us

Ĵ±|A(J,M)⟩ = ℏ
√
J(J + 1)−M(M ± 1)|A(J,M± 1)⟩. (3.187)

Thus we see that |A(J,M)⟩ fulfills exactly the same relations as the state |J,M⟩.
Thus |A(J,M)⟩ must be proportional to |J,M⟩ with a constant of proportionality
that does not depend onM but only on J ! That is, the constant of proportionality
can be different for different J but for each fixed J it is the same for all M . We
thus have

⟨J,M|A(J′,M′)⟩ = δJ,J ′δM,M ′
⟨J ||T̂ (k)||j⟩√

2j + 1
, (3.188)

where we (conventionally) have introduced the so called reduced matrix element
⟨J ||T̂ (k)||j⟩ to write the constant of proportionality. As indicated it depends on
the j, J quantum number and of course on the tensor T̂ (k), but it does not de-
pend on the particular M,m and q quantum numbers. The factor 1

2j+1 is purely
conventional. This enables us to state the Wigner-Eckart theorem

⟨J,M|T̂ (k)
q |j,m⟩ = ⟨J ||T̂ (k)||j⟩√

2j + 1
⟨⟨m, q|J,M⟩. (3.189)

This tells us many important things about the matrix elements of spherical ten-
sors. First of all, the matrix element is zero unless |j − k| ≤ J ≤ j + k and
M = m + q and secondly, for fixed J and j, the rotational properties of the
spherical tensor T̂ (k) are completely contained in the Clebsh-Gordan coefficients
⟨⟨m, q|J,M⟩. In particular, we need only to calculate one matrix element for some
given (preferably particularly simple) values of M,m and q and the other matrix
elements follow automatically.

Exercise 3

1. Calculate



4
Scattering theory

Let us now turn our attention to scattering theory. In scattering theory we study
quantum mechanical problems where we have some incoming free particles (state)
which scatter on something located at some particular point in space. This means
that the Hamiltonian in these problems is always of the type

Ĥ =
p2

2m
+ V (x), (4.1)

where the potential V (x) is non-zero only in the small region of space where the
interaction (scattering) takes place. Thus the Schrödinger equation can almost
everywhere be written

p2

2m
|ψ⟩ = iℏ

∂

∂t
|ψ⟩, (4.2)

which is just the Schrödinger equation for a free particle with the usual plane
wave solutions. We thus expect that the full solution should look very much like
a plane wave. We will study only elastic scattering which means that the energy
(and probability) will be conserved in the process and we will study the static
problem by throwing a continuous stream of particles at the target rather than
particles one by one. The question will thus be: if I have a certain incident stream
of particles, what out-coming stream of particles will I have. This makes it possi-
ble to study the time independent Schrödinger equation which simplifies things
considerably.

4.1 The Lippman-Schwinger equation

Let us thus study the (time independent) Schrödinger equation(
Ĥ0 + V̂

)
|ψ⟩ = E|ψ⟩, (4.3)
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where V̂ is non-zero only in a small region of space. Formally, if we knew how to
“divide” by an operator, we could write the (implicit) solution to this equation as

|ψ⟩ = 1

E − Ĥ0

V̂ |ψ⟩+ |ϕ⟩. (4.4)

Here |ϕ⟩ is an arbitrary state which satisfies Ĥ0|ϕ⟩ = E|ϕ⟩. This ensures that
when we hit both sides of the equation with the operatorE− Ĥ0 we get back the
original equation. In the limit where the potential vanishes we get that |ψ⟩ =

|ϕ⟩. This way of writing the Schrödinger equation is known as the Lippman-
Schwinger equation. In the form it has now it is purely formal since the operator

1
E−Ĥ0

is singular when acting on for instance |ϕ⟩. To make sense of it, we need to
give a prescription how make the inverse operator always well defined. This we
do in a fashion inspired by the propagator in the first section. Namely, we let

1

E − Ĥ0

→ lim
ϵ→0

1

E − Ĥ0 ± iϵ
, (4.5)

which means that we do all calculations with ϵ ̸= 0, giving us a well defined
inverse operator, and only in the end do we let ϵ→ 0. The sign of ϵ we will have
to determine from the physical situation, just as in the propagator case in the first
section. In the coordinate basis we can therefore write this equation as

⟨x|ψ⟩ = ⟨x|ϕ⟩+ ⟨x| 1

E − Ĥ0 ± iϵ
V̂ |ψ⟩, (4.6)

and, inserting the unit operator in the form 1̂ =
∫
d3x|x⟩⟨x| we get

⟨x|ψ⟩ = ⟨x|ϕ⟩+
∫
d3x′⟨x| 1

E − Ĥ0 ± iϵ
|x′⟩⟨x′|V̂ |ψ⟩. (4.7)

To be able to use this expression we need to know the form of the inverse operator
in the coordinate basis

⟨x| 1

E − Ĥ0 ± iϵ
|x′⟩ =

∫
d3pd3p′⟨x|p⟩⟨p| 1

E − Ĥ0 ± iϵ
|p′⟩⟨p′|x′⟩. (4.8)

Using the explicit form of the wave function ⟨x|p⟩ = e
i
ℏx·p and that the states

|p⟩ are eigenstates of the Hamiltonian Ĥ0 =
p2

2m we get

⟨x| 1

E − Ĥ0 ± iϵ
|x′⟩ =

∫
d3pd3p′ e

i
ℏp·x

(2πℏ)
3
2

δ(3) (p− p′)(
E − p′2

2m ± iϵ
) e i

ℏp
′·x′

(2πℏ)
3
2

=

1

(2πℏ)3

∫
d3p

e
i
ℏp·(x−x′)(

E − p2

2m ± iϵ
) . (4.9)
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It is easy to see that this is in fact the Fourier transform of the free space propa-
gator of the first section. Namely, in the first section we computed

K(x, t) = K(x, t;x′, 0) =

∫
d3p

(2πℏ)3
e−

i
ℏ t

p2

2m
+ i

ℏp·(x−x′) t > 0,

K(x, t) = 0 t < 0. (4.10)

The Fourier transform (in the time coordinate) of this is

L(x,E) =

∫ ∞

0
dtK(x, t)e

i
ℏEt, (4.11)

and performing the integral gives exactly the inverse operator (4.9). The expres-
sion we have found is thus the propagator, but not from one particular time to
another but rather for particles with a fixed energy. This is appropriate for our
problem where we study the static situation with a steady flow of particles, all
with the same energy E.

The integral in (4.9) can be performed using exactly the same methods as when
we found the original propagator. The result is

⟨x| 1

E − Ĥ0 ± iϵ
|x′⟩ = − 2m

4πℏ2
e±i|x−x′|k

|x− x′|
. (4.12)

Here the ± signs refer to the ±iϵ signs and k is related to the energy byE = ℏ2k2
2m .

Using this we may now write the Lippman-Schwinger equation as

⟨x|ψ⟩ = ⟨x|ϕ⟩ − 2m

ℏ2

∫
d3x′ e

±i|x−x′|k

4π |x− x′|
⟨x′|V̂ |ψ⟩. (4.13)

Written in this form, the equation has a very nice interpretation but to emphasize
it more clearly, let us make the assumption that the potential is local. This means
that ⟨x|V̂ |x′⟩ = V (x)δ(3) (x− x′). This is not a very severe restriction, for in-
stance, all potentials which depend only on coordinates are in this class. For local
potentials, we may write

⟨x|V̂ |ψ⟩ =
∫
d3x′⟨x|V̂ |x′⟩⟨x′|ψ⟩ =

V (x)

∫
d3x′δ(3)

(
x− x′) ⟨x′|ψ⟩ = V (x)⟨x|ψ⟩, (4.14)

which, inserted in the Lippman-Schwinger equation, leads to

⟨x|ψ⟩ = ⟨x|ϕ⟩ − 2m

ℏ2

∫
d3x′ e

±i|x−x′|k

4π |x− x′|
V (x′)⟨x′|ψ⟩. (4.15)

The interpretation is as follows, on the left hand side we have the full wave func-
tion observed at the point x. It is given, on the right hand side as the sum of ⟨x|ϕ⟩
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which is the coordinate representation of a free wave, representing the incoming
particles1, and the second term which represent the interaction with the poten-
tial. The integral is over points where V (x′) ̸= 0 since if V = 0 there are no
interactions. The interaction also depends on the magnitude of the wave function
at the point x′. If the wave function is zero at x′, there is no particle there which
can interact with the potential. After the wave function has interacted with the
potential at x′ it is propagated out to x using the free propagator. The integral
sums over all possible points of interaction.

With this interpretation in the back of our minds, we can go on and simplify the
Lippman-Schwinger equation even further. That is, let us assume that the point
x where we observe the wave function is far away from the region where the
potential is non-zero. We can choose the origin of our coordinates precisely in this
region which, since x′ is also in this region, leads to the assumption |x| ≫ |x|′.
In this limit we have∣∣x− x′∣∣ =√r2 + r′2 − 2rr′ cosα = r

√
1− 2

r′

r
cosα+

r′2

r2
≈

r − r′ cosα = r − x · x′

r
. (4.16)

Using this approximation, the expression for the propagator simplifies to

e±i|x−x′|k

4π |x− x′|
≈ e±ikre∓ik x·x′

r

4πr
. (4.17)

Since we know that the energy is not changed in the scattering process (elastic
scattering, remember) we know that the momentum of the outgoing wave is the
same as the momentum of the incoming wave. The only thing that changes is
the direction of the momenta. Thus we know that the outgoing wave-number
k′ = kx

r . Using this and that the incoming wave function is a plane wave Neik·x

with wavenumber k, we can write2

⟨x|ψ⟩ = eik·x − 2m

ℏ2
e±ikr

4πr

∫
d3x′e∓ik′·x′

V (x′)⟨x′|ψ⟩. (4.18)

The first term on the right hand side is the incoming plane wave with momentum
p = ℏk. The second term is a spherical wave (times the integral which does not
depend on x anymore). The sign in the exponential of the spherical wave tells us if
it is moving outwards (+ sign) or inwards (− sign) and since the physical situation
1 Remember that |ϕ⟩ is a solution to the free Schrödinger equation Ĥ0|ϕ⟩ = E|ϕ⟩. We will choose it to be

|ϕ⟩ ∝ |k⟩, that is, an incoming plane wave with wavenumber k related to the momentum k = p
ℏ

2 Notice that we in principle should choose the normalization factor N to represent the actual incoming flux
of particles, however, since this will just multiply the outgoing flux by the same parameter, we may
without loss of generality choose N = 1
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that we want to describe is that the second term represents the wave coming out
after scattering on the potential we have to choose the + sign (which also tells
us to choose the + sign in the original expression for the inverse operator). Thus
we see that Lippman-Schwinger tells us that in any scattering problem the wave-
function (at large distance from where the scattering takes place) must take the
following form

⟨x|ψ⟩ =
[
eik·x +

eikr

r
f(k,k′)

]
, (4.19)

where the first term on the right hand side is the incoming wave and the second
term represents the scattered, outgoing wave. The function f(k,k′) is a function
of the incoming (k) and outgoing (k’) wave numbers. In fact, since |k| = |k′| = k

it is just a function of k and the angle between the vectors k and k′. The explicit
expression for it is given by

f(k,k′) = − 1

4π

2m

ℏ2

∫
d3x′e−ik′·x′⟨x′|V̂ |ψ⟩ (4.20)

4.2 The cross section

In the experimental situation one is usually interested in shooting a continuous
stream of particles at a target and then measuring how much of the stream of par-
ticles is deflected. However, the outgoing flow of particles is of course dependent
on the incoming flow. The more particles we throw in, the more we get out. To get
a number which is independent of the particular flow we chose to use in the ex-
periment, people have invented the concept of cross-section. Simply said it is just
the outgoing flow divided by the incoming flow. That is, we define the differential
cross section as

dσ

dΩ
dΩ =

# outgoing particles going through dΩ per unit time

# incoming particles per unit time and unit area
(4.21)

To be able to calculate the cross section for any process that we are interested
in, we need to figure out what the incoming and outgoing flows are in our case.
To be able to do this we remember that the density of probability (which can
be interpreted as the density of particles) is given by ρ(x) = |ψ(x)|2. The time
derivative of the probability density is

∂ρ

∂t
=
∂ψ†

∂t
ψ + ψ†∂ψ

∂t
, (4.22)
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and using the Schrödinger equation (for the free particle) and its complex conju-
gate

iℏ
∂ψ

∂t
= −ℏ2∇2

2m
ψ,

−iℏ∂ψ
†

∂t
= −ℏ2∇2

2m
ψ†, (4.23)

we can write this as
∂ρ

∂t
=

iℏ
2m

(
−
(
∇2ψ†

)
ψ + ψ† (∇2ψ

))
=

iℏ
2m

∇
(
ψ†∇ψ −∇ψ†ψ

)
. (4.24)

We see that if we define the current j = iℏ
2m

(
∇ψ†ψ − ψ†∇ψ

)
, the above equation

takes the suggestive form

∂ρ

∂t
+∇ · j = 0. (4.25)

This is nothing but the equation of continuity for the probability density so we
must interpret j as the probability current which is what measures the flow of
particles. To see this even more explicitly, let us write the integral form of the
continuity equation. If we call the number of particles in a volume N it takes the
form

dN

dt
+

∮
A
n · j = 0. (4.26)

This we interpret to mean that the change of the number of particles per unit term
(the first term) equals the flow of particles per unit time through the surface (the
second term). We read off from the second term that the flow per unit time and
unit area must be n · j. This is therefore the flux! This we can use to compute the
incoming flux for a wave function3 eikz representing a free particle moving in the
z direction

jz =
iℏ
2m

((
−ike−ikz

)
eikz − e−ikz

(
ikeikz

))
=

ℏk
m
,

jx = jy = 0. (4.27)

On the other hand, if we have a wave function

eikr

r
f(k,k′), (4.28)

which represents a spherical wave propagating outwards, we can compute the
flux through the area element r2dΩ by computing r̂ · j at some large value of r.
3 The precise normalization of the incoming wave represents the flux of incoming particles and in fact drops

out when calculating the cross section
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Using

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ ϕ̂

1

r sin θ

∂ψ

∂ϕ
, (4.29)

we find

n̂ · j = ℏk
m

|f |2

r2
. (4.30)

This is the flux through the area element r2dΩ which means that through the
space angle dΩ we have ℏk

m |f |2 particles per unit time giving us the expression
for the differential cross section

dσ

dΩ
= |f |2 . (4.31)

Thus we see what we have to do to calculate the cross section. We just find the
full static wave function of the problem with the correct boundary conditions (the
incoming wave is a plane wave) and write it in such a way that we can identify
f(k,k′). This we now proceed to do in various ways.

4.3 The Born approximation

The simplest and most intuitive way to find the wave function is when the poten-
tial V̂ is in some sense “small” and can be thought of as a perturbation. Then we
make the ansatz

|ψ⟩ = |ψ(0)⟩+ |ψ(1)⟩+ |ψ(2)⟩+ . . . , (4.32)

where |ψ(n)⟩ should be thought of as being of order V̂ n. Inserting this into the
Lippman-Schwinger equation we get

|ψ(0)⟩+ |ψ(1)⟩+ |ψ(2)⟩+ . . . = |ϕ⟩+
1

E − Ĥ0 + iϵ
V̂
(
|ψ(0)⟩+ |ψ(1)⟩+ |ψ(2)⟩+ . . .

)
. (4.33)
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Equating terms of the same order on each side of the equations gives us a set of
recursion relations

|ψ(0)⟩ = |ϕ⟩,

|ψ(1)⟩ = 1

E − Ĥ0 + iϵ
V̂ |ψ(0)⟩,

|ψ(2)⟩ = 1

E − Ĥ0 + iϵ
V̂ |ψ(1)⟩,

...
... (4.34)

|ψ(n)⟩ = 1

E − Ĥ0 + iϵ
V̂ |ψ(n−1)⟩,

...
...

which can be easily solved to any given order since we know that |ϕ⟩ is a plane
wave. Then we have

|ψ(0)⟩ = |ϕ⟩,

|ψ(1)⟩ = 1

E − Ĥ0 + iϵ
V̂ |ϕ⟩,

|ψ(1)⟩ = 1

E − Ĥ0 + iϵ
V̂

1

E − Ĥ0 + iϵ
V̂ |ϕ⟩, (4.35)

...
...

Written in this way the expansion have a very nice interpretation. Namely, since
we know that 1

E−Ĥ0+iϵ
is the free particle propagator we get the interpretation

that |ψ(0)⟩ is just the non-interacting incoming wave, |ψ(1)⟩ is the incoming wave
interacting once with the potential and then propagating to the position where we
observe the wave function. In general |ψ(n)⟩ is interpreted as the incoming wave
interacting for the first time with the potential, propagating like a free particle,
interacting for the second time with the potential, propagating like a free particle,
interacting again and so on n times.

Let us compute the explicit form of the cross section (or rather of f(k,k′)) to
lowest non-trivial order. This result is known as the first Born approximation. In
the coordinate basis we have

⟨x|ψ(1)⟩ = ⟨x| 1

E − Ĥ0 + iϵ
V̂ |k⟩ =

∫
d3x′⟨x| 1

E − Ĥ0 + iϵ
|x′⟩⟨x′|V̂ |k⟩,(4.36)

where we have inserted a unit operator. This is easy to evaluate since we have
already calculated the coordinate space representation of the propagator (4.12).
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Furthermore using that the potential is local we write

⟨x|ψ(1)⟩ = − 2m

4πℏ2

∫
d3x′ e

ik|x−x′|

|x− x′|
V (x′)eik·x

′
, (4.37)

which, in the |x| ≫ |x′| can be further simplified to

⟨x|ψ(1)⟩ ≈ − 2m

4πℏ2
eikr

r

∫
d3x′ei(k−k′)·x′

V (x′). (4.38)

Thus, to this order of approximation, the full wave function in the coordinate
representation and far away from the center of scattering is

⟨x|ψ(0)⟩+ ⟨x|ψ(1)⟩ =
(
eik·x − 2m

4πℏ2
eikr

r

∫
d3x′ei(k−k′)·x′

V (x′)

)
, (4.39)

which, when we compare it to the general form of the wave function (4.19) we
can read off what f is

f(k,k′) = − 2m

4πℏ2

∫
d3x′ei(k−k′)·x′

V (x′). (4.40)

We see that f to lowest non-trivial order is essentially the Fourier transform of
the potential.

This procedure can of course be continued. At the next order we get

⟨x|ψ(2)⟩ =
∫
d3x′

∫
d3x′′⟨x| 1

E − Ĥ0 + iϵ
|x′⟩V (x′)×

⟨x′| 1

E − Ĥ0 + iϵ
|x′′⟩V (x′′)⟨x′′|k⟩. (4.41)

Notice that here we can only simplify the propagator between x′ and x since
both x′ and x′′ is in the region where V ̸= 0 and thus are of the same order of
magnitude.

Let us evaluate the cross section at lowest order for a concrete potential. We
take the potential to be

V (r) = V0
e−µr

µr
. (4.42)

This potential is local and for small r (r ≪ 1
µ ) it looks just like the Coulomb

potential 1
r . For large r (r ≫ 1

µ ) however, the exponential suppression makes it
effectively zero. Thus the range where the potential is non-zero is for r < 1

µ . Now
let us calculate the cross-section. We have

f(k,k′) = − 1

4π

2m

ℏ2

∫
d3xei(k−k′)·xV (x), (4.43)
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which, since V is a function only of r, we can write as

f(k,k′) = − 1

4π

2m

ℏ2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
drr2eiqr cos θV (r) =

−2mV0
µℏ2q

∫ ∞

0
dre−µr sin qr, (4.44)

where we have introduced the vector q = k−k′. The final integral over r can be
performed by using that we know that eiqr = cos qr+ i sin qr and thus rewriting
the integral as

f(k,k′) = −2mV0
µℏ2q

ℑ
[∫ ∞

0
dre−µreiqr

]
= −2mV0

µℏ2q
ℑ
[

1

µ− iq

]
=

− 2mV0
µℏ2 (µ2 + q2)

. (4.45)

To calculate q2 we use that we know that |k| = |k′| = k and assume that the
scattered angle is θ, that is that the angle between k and k′ is θ. This gives us

q2 =
∣∣k− k′∣∣2 = k2 + k′2 − 2kk′ cos θ = 2k2 − 2k2 cos θ = 4k2 sin2

θ

2
.(4.46)

Everything together now gives us the differential cross section

dσ

dΩ
= |f |2 =

(
2mV0
µℏ2

1

µ2 + 4k2 sin2 θ
2

)2

(4.47)

We can compare this with something we know (scattering on the Coulomb po-
tential or Rutherford scattering) by taking the limit µ→ 0 keeping V0

µ fixed. Then
our potential reduces to the Coulomb potential and the cross section goes to(

2mV0
µℏ2

)2 1

16k4 sin4 θ
2

, (4.48)

which indeed is the Rutherford cross section.
Since this way of solving the scattering problem is an approximation, it is im-

portant to ask ourselves how far we can trust it. Our basic assumption was all the
time that the successive wave functions |ψ(n)⟩ become smaller and smaller for
each successive n. In particular this has to hold in the region where the potential
is non zero since what we do in the first Born approximation is really to replace |ψ⟩
in (4.13) with |ϕ⟩. Therefore, to check this we should evaluate the wave functions
at x = 0 for a “typical” potential and see for which data (range of the potential,
energy of the incoming particles etc) the approximation breaks down (i.e. where
the perturbation to the wave function |ψ(1)⟩ becomes of the same order as the
whole wave function. To this end let us assume that we have a potential which is
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non-zero for r < a for some number a and in the non-zero region it has average
value V0. We have ∣∣∣⟨x|ψ(0)⟩

∣∣∣ = ∣∣∣eik·x∣∣∣ = 1∣∣∣⟨x = 0|ψ(1)⟩
∣∣∣ = ∣∣∣∣∣2mV04πℏ2

∫ a

0
d3x′ e

ik|x|′

|x|′
eik·x

′

∣∣∣∣∣ . (4.49)

We see that for the approximation to be good, we need that
∣∣⟨x = 0|ψ(0)⟩

∣∣ ≫∣∣⟨x = 0|ψ(1)⟩
∣∣ or, in other words, that∣∣∣∣∣2mV04πℏ2

∫ a

0
d3x′ e

ik|x|′

|x|′
eik·x

′

∣∣∣∣∣≪ 1 (4.50)

First let us assume that the energy of the incoming particles (given by k) is small
compared to the range of the potential (given by a). That is, assume that ka≪ 1.
Since |x′| in the integral is always less than a we can put eik|x|

′
≈ eik·x

′ ≈ 1.
Then the integral is easily done∣∣∣∣∣2mV04πℏ2

∫ a

0
d3x′ e

ik|x|′

|x|′
eik·x

′

∣∣∣∣∣ ≈
∣∣∣∣2mV04πℏ2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ a

0
dr′r′2

1

r′

∣∣∣∣ =∣∣∣∣mV0a2ℏ2

∣∣∣∣ .(4.51)

The requirement is therefore |V0| ≪ ℏ2
ma2

which means that the potential cannot
be too strong (i.e. V0 big) or of too long range (i.e. a big) if the Born approximation
should be good at low energy. At high energy (ka ≫ 1) on the other hand, we
have the requirement

1 ≫

∣∣∣∣∣2mV04πℏ

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ a

0
dr′r′2

eikr
′ cos θeikr

′

r′

∣∣∣∣∣ . (4.52)

Doing the integral over the angles, we get∣∣∣∣mV0ikℏ2

∫ a

0
dr′
(
e2ikr

′ − 1
)∣∣∣∣ , (4.53)

and then the integral over r′ gives us∣∣∣∣ mV02k2ℏ2
(
2ika− e2ika + 1

)∣∣∣∣ ≈ ∣∣∣∣V0makℏ2

∣∣∣∣ , (4.54)

where we have used that ka≫ 1. This leads to the requirement

|V0| ≪
ℏ2

ma2
ka. (4.55)
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Notice that this is the same requirement as in the low energy case, but multiplied
with the (large) factor ka. Thus we see that the Born approximation becomes
better and better when we increase the energy. This can be intuitively under-
stood since for high energy (which is equivalent to high velocity) the particles
go through the potential region very fast and there is no time to interact many
times with the potential. Thus the first order Born approximation (which is, as
you remember, given by restricting the number of interactions to one) should be
good.

4.4 Partial waves

In view of the above restrictions of the Born approximation, it is important to
find other, non equivalent, approximations in which the scattering problem can be
solved. One such methods starts by the assumption that the potential is spherically
symmetric (but there is no assumption that the potential is “small” or of finite
range as in the Born approximation). That the potential is spherically symmetric
means that it is invariant under rotations, which, as we know from our discussions
on angular momenta means that V̂ commutes with L̂ and in particular with L̂2

and L̂z . Since Ĥ = p̂2

2m + V̂ and p̂2 also commutes with the angular momentum
operator we can choose energy eigenstates that are simultaneously eigenstates of
L̂2 and L̂z . Therefore, let us use these eigenstates to expand an arbitrary wave
function with energy E = ℏ2k2

2m in the coordinate basis as

ψk(x) =
∑
l,m

Rk,l(r)Y
m
l (θ, ϕ). (4.56)

In fact, in our problems, since we can always choose the incoming wave to be
a plane wave moving in the z direction, the fact that the potential is spherically
symmetric tells us that no wave function can depend on ϕ. The only Y m

l indepen-

dent of ϕ is Y 0
l =

√
2l+1
4π Pl(cos θ) so the wave function can actually be written

even simpler as

ψk(x) =
∑
l

fk,l(r)Y
0
l (θ, ϕ) =

∑
l

Rk,l(r)

√
2l + 1

4π
Pl(cos θ). (4.57)

In fact, any function of only θ can be decomposed in such a way, in particular
f(k,k′) which depends only on θ in the case where the potential is spherically
symmetric is usually expanded in the following way

f(k,k′) = f(θ) =
∞∑
l

(2l + 1)fl(k)Pl(cos θ). (4.58)
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The factor (2l+1) is purely conventional and could be included in fl for instance.

The resolution of a plane wave

Also the incoming wave function∝ eikz = eikr cos θ is a function of only θ and can
be expanded in this way. There are quick and dirty ways to find this expansion,
but let us do it more carefully. Let us first find the basis functions we want to use.
That is, let us solve the free Schrödinger equation in spherical coordinates

− ℏ2

2m
∇2ψk(x) =

ℏ2k2

2m
ψk(x). (4.59)

Making the ansatz ψk(x) = Rkl(r)Y
m
l (θ, ϕ) and using that the Laplacian in

spherical coordinates can be written

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂r

)
+

1

sin2 θ

∂2

∂ϕ2

)
=

1

r2
∂

∂r

(
r2
∂

∂r

)
− L̂2

ℏ2r2
, (4.60)

we see that the Schrödinger equation reduces to the radial equation(
− 1

r2
d

dr

(
r2
d

dr
Rkl

)
+
l(l + 1)

r2
Rkl

)
= k2Rkl, (4.61)

or

d2Rkl

dr2
+

2

r

dRkl

dr
+

(
k2 − l(l + 1)

r2

)
Rkl = 0. (4.62)

This equation has the solution

R
(1)
kl = (−1)l(kr)l

(
1

kr

d

d(kr)

)l sin kr

kr
≡ jl(kr), (4.63)

and the linearly independent solution

R
(2)
kl = (−1)(l+1)(kr)l

(
1

kr

d

d(kr)

)l cos kr

kr
≡ nl(kr), (4.64)

which is however singular for r = 0. These functions are known as spherical
Bessel functions. They are related to the ordinary Bessel functions by

jl(x) =
( π
2x

) 1
2
Jl+ 1

2
(x),

nl(x) = (−1)(l+1)
( π
2x

) 1
2
J−l− 1

2
(x). (4.65)
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Their asymptotic properties are given by

lim
x→0

jl(x) =
xl

(2l + 1)!!
,

lim
x→0

nl(x) = −(2l − 1)!!

xl+1
,

(4.66)

and

lim
x→∞

jl(x) =
1

x
cos

[
x− π(l + 1)

2

]
,

lim
x→∞

nl(x) =
1

x
sin

[
x− π(l + 1)

2

]
. (4.67)

Thus we have found that any solution with energyE = ℏ2k2
2m of the free Schrödinger

equation can be written as

ψk(x) =
∑
lm

(
c
(1)
lmjl(kr) + c

(2)
lmnl(kr)

)
Y m
l (θ, ϕ). (4.68)

In the cases we are interested in there is no dependence on ϕ so m = 0 and since
nl is singular at the origin we can set c(2) = 0 for solutions which are non singular
at the origin. In particular, turning back to our plane wave, we can write

eikz = eikr cos θ =
∑
l

cljl(kr)Pl(cos θ), (4.69)

for some constants cl. The coefficients can be determined by comparing terms on
both sides of the equation. To make it simpler, let us compare for r → 0. On the
left hand side we have a power series in (kr cos θ) which the coefficient of the
l-th term being il

l! . On the right hand side jl goes like (kr)l

(2l+1)!! and from Pl we need
the cosl θ term which can be found from the formula

Pl(cos θ) =
1

2ll!

dl

d(cos θ)l
(cos2 θ − 1)l, (4.70)

to have coefficient (2l)!
2ll!l!

which tells us that on the right hand side the coefficient
multiplying the (kr cos θ)l term is cl (2l)!

(2l+1)!!2ll!l!
= cl

(2l)!
(2l+1)!l! . Equating this we get

cl = il(2l + 1), (4.71)

which gives us the final expression

eikz =
∑
l

(2l + 1)iljl(kr)Pl(cos θ). (4.72)
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It is interesting to see how this expression looks like for large r. Using the asymp-
totic expressions for the spherical Bessel functions we can write

eikz ≈
∑
l

(2l + 1)il

kr
cos

[
kr − π(l + 1)

2

]
Pl(cos θ) =

∑
l

(2l + 1)il

2kr

(
eikr−i

π(l+1)
2 + e−ikr+i

π(l+1)
2

)
Pl(cos θ) = (4.73)

∑
l

(2l + 1)il

2kr

(
(−i)l+1eikr + il+1e−ikr

)
Pl(cos θ) =

∑
l

(2l + 1)

2ikr

(
eikr − e−i(kr−πl)

)
Pl(cos θ).

We thus see the interesting fact that a plane wave can be written as a linear com-
bination of one incoming and one outgoing spherical wave.

General formalism

Having everything written in spherical coordinates we can now proceed and solve
the scattering problem. The general solution of the wave function (4.19) can now
be written, using (4.72) to write the incoming part and (4.58) to write the outgoing
part, as

⟨x|ψ⟩ =
∑
l

(2l + 1)Pl(cos θ)

(
iljl(kr) +

eikr

r
fl(k)

)
. (4.74)

At large values of r (we observe the wave function far away from the scatterer
remember), using (4.73) this simplifies to

⟨x|ψ⟩ =
∑
l

(2l + 1)

2ik
Pl(cos θ)

(
−e

−i(kr−lπ)

r
+
eikr

r
(1 + 2ikfl(k))

)
.(4.75)

We see that the full wave function is, in the same way as the plane wave in the
previous section, just a linear combination of an incoming and an outgoing spher-
ical wave. The only thing which changed as compared to the plan wave (4.73) is
that the coefficient of the outgoing wave changed from 1 to Sl = 1 + 2ikfl(k).

One way to get some hold on what fl(k) can be without doing any calculation
is to observe the simple principle that “what goes in must come out” (in the case
of elastic scattering of course). This means that the flow of probability into the
region must be the same as the flow out. Now we can use that in (4.30) we found
an expression for the radial probability current for an arbitrary wave function.
That is, for a general spherical wave g e±ikr

r (g cannot depend on r) the probability
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current is

jr =
ℏk
mr2

|g|2 , (4.76)

or, the flow through the area element r2dΩ is ℏk
m |g|2 dΩ. From this we find that the

requirement that the probability is conserved leads in our case to the requirement
that the coefficient in front of the outgoing wave has the same absolute value
as the coefficient in front of the incoming wave. Because of angular momentum
conservation, this has to be true for each l separately. This means that for each l
we have

1 = |1 + 2ikfl(k)| . (4.77)

This condition is easily solved by saying that Sl is a pure phase, i.e. that

Sl = 1 + 2ikfl(k) = e2iδl . (4.78)

Inserting this back in the wave function we have

⟨x|ψ⟩ =
∑
l

(2l + 1)

2ik
Pl(cos θ)

(
−e

−i(kr−lπ)

r
+
eikr+2iδl

r

)
. (4.79)

We see that the only thing that the potential does is to change the phase of the
outgoing wave with δl being the phase shift. To be complete we also express fl in
terms of the phase shift. We have

fl =
Sl − 1

2ik
=
e2iδl − 1

2ik
=
eiδl sin δl

k
=

1

k cot δl − ik
. (4.80)

As a consequence of this we can relate the imaginary part of f(θ = 0) to the
total cross section. It is known as the optical theorem and it follows from just the
conservation of probability (which is the only thing we have used) so it holds
quite generally. Namely, since the differential cross section is dσ

dΩ = |f |2 we may
calculate the total cross section as

σ =

∫
dΩ

dσ

dΩ
=

∫
dΩ
∑
ll′

(2l + 1)(2l′ + 1)f⋆l′flPl′(cos θ)Pl(cos θ). (4.81)

Then we may use the orthogonality properties of the Legendre polynomials∫
dΩPl′(cos θ)Pl(cos θ) = δl,l′

4π

2l + 1
, (4.82)

to find

σ = 4π
∑
l

(2l + 1) |fl|2 . (4.83)
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On the other hand we can calculate the imaginary part of f evaluated at θ = 0

(forward scattering). This we calculate to be

ℑf(θ = 0) =
∑
l

(2l + 1)Pl(1)ℑfl(k) =
∑
l

(2l + 1)ℑfl(k). (4.84)

But now comes the trick. We have used the conservation of probability to show
that we may write fl as

fl =
eiδl sin δl

k
, (4.85)

and from this we derive

|fl|2 =
sin2 δl
k2

,

ℑfl =
sin2 δl
k

= k |fl|2 . (4.86)

Thus we find that

ℑf(θ = 0) =
kσ

4π
, (4.87)

which is known as the optical theorem.

It is now clear how to find the cross section using the method of partial waves.
We need to find the wave function far away from the scattering area. We have
shown that it always looks like in (4.79) so writing it in this form we can just read
off the phase shift δl and then we have

f(θ) =
∑
l

(2l + 1)
eiδl sin δl

k
Pl(cos θ), (4.88)

which gives us the cross section through dσ
dΩ = |f |2. To find the wave function

we have to solve the (radial) Schrödinger equation which can be done in many
ways. If the potential is simple enough it might be possible to do it exactly. If the
potential has finite range so that for large r it is equal to zero, we can solve the
radial Schrödinger equation (even numerically, if necessary) in the region where
the potential is non-zero and in the region where it is zero separately. In the re-
gion where it is zero we have in fact already solved it since in that region the
Schrödinger equation is the equation for a free particle which has as its most
general solution (4.68). To get the full solution we need the inner solution with
the outer solution (wave functions and their derivatives should be equal) at some
point r = R and we are done. In formulas we have the outer wave function (we
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conventionally redefine the constants as compared to (4.68))

ψk(x) =
∑
l

(2l + 1)il
(
c
(1)
l jl(kr) + c

(2)
l nl(kr)

)
Pl(cos θ), (4.89)

where we find c(1)l and c(2)l by matching to the inner solution. The asymptotic ex-
pressions for the spherical Bessel functions give us an expression for the asymp-
totic form of the wave function

ψk(x) =
∑
l

(2l + 1)(c
(1)
l + ic

(2)
l )

2ikr
Pl(cos θ)(

−e
−i(kr−lπ)

r
+
c
(1)
l − ic

(2)
l

c
(1)
l + ic

(2)
l

eikr

r

)
. (4.90)

Comparing this to (4.75) we find that

Sl = 1 + 2ikfl =
c
(1)
l − ic

(2)
l

c
(1)
l + ic

(2)
l

(4.91)

or

fl = −1

k

c
(2)
l

c
(1)
l + ic

(2)
l

(4.92)

so finding the coefficients c(1)l and c(2)l immediately gives us the cross section. If
we assume that c(1) and c(2) are real we also have

Sl =
(
eiδl
)2

=
(c

(1)
l − ic

(2)
l )2

(c
(1)
l )2 + (c

(2)
l )2

(4.93)

so that

sin δl = −
c
(2)
l√

(c
(1)
l )2 + (c

(2)
l )2

(4.94)

cos δl =
c
(1)
l√

(c
(1)
l )2 + (c

(2)
l )2

(4.95)

or more conveniently

tan δl = −
c
(2)
l

c
(1)
l

(4.96)
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The hard sphere

As an illustration of this let us find the scattering on a “hard sphere” potential

V (r) =

{
∞ for r < R,

0 for r > R.
(4.97)

Solving for the wave function in the inner region r < R is easy. Because the
potential is infinite there the wave function has to be zero. Matching the outer
wave function to the inner one tells us that we have to find c(1)l and c(2)l such that

c
(1)
l jl(kR) + c

(2)
l nl(kR) = 0, (4.98)

and using (4.96) we find

tan δl = −
c
(2)
l

c
(1)
l

=
jl(kR)

nl(kR)
. (4.99)

We can now find the phase shift (and thus the cross section) for each l separately
but to keep it simple, let us do so in the low energy (kR≪ 1) limit only. Then we
have

tan δl = lim
kR→0

jl(kR)

nl(kR)
=

(kR)l

(2l+1)!!

− (2l−1)!!
(kR)l+1

= − (kR)2l+1

(2l + 1)!!(2l − 1)!!
. (4.100)

Since kR is small we see that δ0 ≈ −kR and all higher δl rapidly become smaller
for larger l. Therefore to a good approximation f(θ) is given by the l = 0 term as

f(θ) ≈ f0P0(θ) =
eiδ0 sin δ0

k
≈ −R, (4.101)

giving us the differential cross section

dσ

dΩ
= |f |2 = R2. (4.102)

Notice that this gives a total cross section (by integrating over dΩ) of 4πR2 which
is four times as large as the geometrical cross section that one would expect clas-
sically. Notice also that the differential cross section is independent of any angles.
This is the case for all scattering where only l = 0 contributes sinceP0(cos θ) = 1.

The spherical well potential

Another interesting potential that we may consider is the spherical well potential

V (r) =

{
V0 for r < R,

0 for r > R.
, (4.103)
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where V0 is some positive or negative constant. If V0 is positive, the potential
is repulsive and if V0 is negative the potential is attractive. For attractive enough
potential (V0 negative enough) the potential develops bound states. For simplicity,
let us study only the attractive potential case with l = 0 which should be most
relevant at low energy. We already know that the outer wave function (valid in
the r > R region where V = 0) may be written

ψk(x) =
(
c
(1)
0 j0(kr) + c

(2)
0 n0(kr)

)
. (4.104)

Inserting the expressions for the Bessel functions and using (4.96) we can rewrite
this as

ψk(x) =
eiδ0 sin (kr + δ0)

kr
. (4.105)

In the r < R region where the potential is non-zero, the radial Schrödinger equa-
tion becomes (also assuming l = 0)

d2Rk0

dr2
+

2

r

dRk0

dr
+

2m(E − V0)

ℏ2
Rk0 = 0. (4.106)

which can be rewritten even more nicely as

d2

dr2
(rRk0) +

2m(E − V0)

ℏ2
(rRk0) = 0. (4.107)

We see immediately that the solution which is regular at r = 0 can be written as

rRk0 = b sin k′r k′2 =
2m(E − V0)

ℏ2
=

2m(E + |V0|)
ℏ2

, (4.108)

for some constant b. To find the phase shift we match the inner wave function
b sin k′r

r and the outer wave function eiδ0 sin(kr+δ0)
kr at r = R. That is, their values

need to be equal there

b sin k′R

R
=
eiδ0 sin (kR+ δ0)

kR
, (4.109)

and their first derivatives also need to be equal there

b

(
k′ cos k′R

R
− sin k′R

R2

)
= eiδ0

(
cos(kR+ δ0)

R
− sin(kR+ δ0)

kR2

)
.(4.110)

Dividing these two equation with each other b and eiδ0 drop out and we get

k′R cot k′R− 1 = kR cot(kR+ δ0)− 1, (4.111)

or
tan(kR+ δ0)

kR
=

tan k′R

k′R
. (4.112)
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This is a rather complicated equation which we need to solve for δ0. We can sim-
plify it a bit by using the addition formula for the tangent

tan(A+B) =
tanA+ tanB

1− tanA tanB
, (4.113)

to write

tan δ0 =
kR tan k′R− k′R tan kR

k′R+ kR tan kR tan k′R
. (4.114)

4.5 Resonances

This formula allows us to analyze the scattering behavior qualitatively as a func-
tion of V0.

Remembering that

k2 =
2mE

ℏ2
(4.115)

k′2 =
2m(E + |V0|)

ℏ2
(4.116)

we start at V0 = 0 which means no potential at all we have k = k′ and thus
tan δ0 = 0 which means that δ0 = 0 and there is no scattering as should be
expected. Increasing |V0| (that is decreasing V0 or making the potential more at-
tractive) one will get k′ > k and tan δ0 ̸= 0 which gives a non-zero value for δ0
and thus for the cross section. The cross section

dσ

dΩ
= |f(θ)|2 ≈ f0(k)P0(cos θ) =

sin2 δ0
k2

, (4.117)

σ = 4π
sin2 δ0
k2

(4.118)

will increase and reach its maximum at δ0 = π
2 . This happens when tan δ0 = ∞,

which means that the denominator in (4.114) k′R+kR tan kR tan k′R = 0. As we
will see later, the maximum of the cross section is connected with the appearence
of a bound state in the potential.

Increasing |V0| even more we again will come to a point where kR tan k′R −
k′R tan kR = 0 (this means that δ0 = π and k′R ≈ 3π

2 which paradoxically leads
to the fact that the cross section is zero even though the potential is far from being
zero! This is known as the Ramsauer-Townsend effect and can be experimentally
observed in scattering of electrons on rare gas atoms. As an illustration we can
look at figure 4.1

On the other hand, we may ask what happens if we instead fix the depth of the
potential V0 and change the energy of the incoming particles. The cross section
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Figure 4.1 The change of the cross section σ when we change the depth of the
potential V0 at fixed energy (kR = 2). We see how the maxima and minima
alternate.

Figure 4.2 Here we fix the depth of the potential V0 so that
√
2mV0R

ℏ = 10 and
plot σ as a function of the energy of the incoming particles E measured in units
of V0. The cross section is monotonously decreasing.

typically looks like in figure 4.2 falling off monotaneously with increasing energy.
However, the effect of bound states can be seen from investigating the value of the
cross section in the low energy limit as in figure 4.3. We see that an appearance of
a bound state in the potential increases the total low energy cross-section which
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Figure 4.3 We take the value of the cross section in the low energy limit as a
measure of the strength of the scattering. The first bound state of the potential
appears when

√
2mV0R

ℏ ≈ 1.57 and there is a maximum for the low energy cross
section close to this point.

has a maximum roughly when V0 is such that the bound state appear. Making
the potential deeper by decreasing V0 (increasing |V0|) makes the influence of the
bound state go away (its energy also decreases).

More concretely, for a given energy (constant kR) we may find the value of k′R
where the cross-section is zero by solving the equation

tan(x) = αx (4.119)

where α = tan(kR)
kR . Similarly, values of k′R where the cross-section has a maxi-

mum we get by solving

tan(x) = −βx (4.120)

where β = 1
kR tan(kR) . When the energy is small, α is slightly larger than 1 and β

is large. Schematically the solutions will look like in figure 4.4

4.6 The scattering length

The l = 0 part of the wavefunction outside of the potential region looks like

A = eiδ0
sin(k′r + δ0)

kr
(4.121)
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Figure 4.4 Points where the cross-section is maximal or minimal

When the energy is very small, we can rewrite the wavefunction as

A =
eiδ0

r
(sin(kr) cos δ0 + cos(kr) sin δ0) (4.122)

≈ eiδ0

r
(kr cos δ0 + sin δ0) (4.123)

=
eiδ0k cos δ0

r

(
r +

tan δ0
k

)
(4.124)

which means that rA(r) = b (r − a) for some constants a and b. The constant
a = − limk→0

tan δ0
k is called the scattering length. There is a nice physical inter-

pretation of the scattering length. Using the identification tan δ0 = −ka we find
that we can write sin δ0 = − ka√

1+(ka)2
. Then the cross section can be written as

σ = 4π
sin2 δ0
k2

=
4π

k2
(ka)2

1 + (ka)2
≈ 4πa2 (4.125)

which is the cross-section of a hard sphere with radius a. Remember that for the
hard sphere scattering δ0 = −kR which is the reason why we defined a with an
extra minus. We see that for a very repulsive potential (i.e. a hard sphere), the
scattering length is equal to R. Making the potential less repulsive the scattering
length decreases and after a while goes negative. We are now in the attractive



104 Scattering theory

Figure 4.5 The scattering length

Figure 4.6 Repulsive potential

regime and the scattering length becomes more and more negative which also
means that the cross-section grows. At some point the wave function "flips over"
and the scattering length becomes positive and very large. With this value of V0
the cross-section has a maximum and this is also the V0 for which a bound state
developes in the potential. One can view the increase in the cross-section as an
effect of the interaction between the incoming particle and the bound state of the
potental.

As a final check we may search for the bound state explicitly. The situation we
are investigating is with an attractive potential V0 = − |V0| but now the energy
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Figure 4.7 Attractive potential

Figure 4.8 A bound state appears

is small and negative. For l = 0 we therefore have the wavefunctions

rAI(r) = α sin(kr) (4.126)
rAII(r) = βe−κr (4.127)

where

k2 =
2m

ℏ2
(E − V0) =

2m

ℏ2
(|V0| − |E|) > 0 (4.128)

κ2 = −2m

ℏ2
E =

2m

ℏ2
|E| small (4.129)

The sign of a bound state is that there is no part of the wavefunction escaping to
infinity. All of the particle is localized around the center of attractive potential.
Therefore the wavefunction in the outer region decreases exponentially. Again
matching the values of the wavefunctions and their derivatives at the boundary
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(r = R) we get an equation of the same type as we solved to find the maxima of
the cross section

tan(kR) = − 1

κR
kR (4.130)

where 1
κR is large which means that we will find the bound states at approximately

the same energy as where the cross-section has its maximum according to the
previous analysis.

4.7 Sl(k) as a meromorphic function

We have seen that that when a bound state develops, the wavefunction in the
outside region is a decreasing exponential

ψ ∝ e−κr

r
(4.131)

where κ is related to the energy of the bound state κ2 = 2m|EB |
ℏ2 << 1/R. Since

κR is small we can write the wavefunction for r larger but close to R as

ψ ≈ 1

r
(1− κr) (4.132)

which allows us to identify the scattering length a = 1
κ . This means that if we

measure the scattering length we at the same time measure the energy of the
bound state

EB = − ℏ2

2ma2
(4.133)

the minus sign appears since the energy is negative for a bound state.
What does this imply for the scattering? Since we know the general form of the

wavefunction in the region far away from the scatterer

ψl ∝
(
−e

−ikr

r
+ Sl(k)

eikr

r

)
(4.134)

where

Sl(k) = 1 + 2ikfl(k) = e2iδl =
1

k cot δl − ik
(4.135)

This general form of the wavefunction agrees with the bound state form of the
wavefunction if we choose k = iκ and at the same time requires that S0(iκ)
goes to infinity so that we can ignore the incoming part of the wavefunction.
This tells us that it might be interesting to investigate the properties of S0(k) as
a meromorphic function. This function must have poles at imaginary values of k
given by the energy of the bound state.
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Thinking of Sl(0) as an analytic function with poles it should satisfy some
conditions

• It should have poles on the imaginary axis k = iκ corresponding to bound
states, where κ2 = 2mEB

ℏ2 and EB is the energy of the bound state.
• Since Sl = e2iδl it should satisfy |Sl| = 1.
• At low energies, close to k = 0, we know that

lim
k→0

k cot δl = −1

a
(4.136)

so that limk→0 tan δl = 0 which happens at δl = ±nπ which means that
limk→0 Sl = 1.

It is not hard to find a function that satisfies these criteria

Sl(k) =
h(k)

k − iκ
(4.137)

has a pole in the right place if h(iκ) ̸= 0. In order for Sl to be a phase factor which
is not zero at k = iκ we have to choose h(k) ∝ k + iκ. To find the correct low
energy limit we finally find the proportionality factor so that

Sl(k) =
−k − iκ

k − iκ
(4.138)

Notice that this function has a zero at k = −iκwhere the outgoing wave vanishes
and the ingoing wave looks like a bound state wave function.

It is straightforward to calculate that (4.138) implies fl=0 = i
k−iκ which gives

us a contribution to the total cross section

σ(k) ∝ 4π

k2 + κ2
(4.139)

in good agreement with the previous graph. It is interesting to observe that al-
though the poles are at the "unphysical" imaginary k axis, they still affect the
cross section at the "physical" real k axis.

We may also have quasistationary states in the game. They are unstable bound
states that exist only a short while before falling apart. This is usually modelled
by giving the energy of the state a small imaginary part so that the time evolution
will lower the probability of finding the system in the particular quasistable state

e−
i
ℏEt → e−

i
ℏ (E0−iΓ

2
)t = e−

i
ℏE0te−

Γ
2ℏ t (4.140)

so the probability of finding the state changes with time according to
∣∣∣e− i

ℏEt
∣∣∣2 →

e−
Γt
ℏ .
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Figure 4.9 Analytic properties of the scattering amplitude

Thus, to include the effect of a quasistationary state in the cross section, we
assume that Sl(k) will have a pole at

k =

√
2m

ℏ2
(E0 − i

Γ

2
) (4.141)

This complex number lies below the positive real axis between the angles 7
82π

and 2π.
Again we can try to find an analytic function that respects the general principles

stated above. A function with a pole in the right place is given by

Sl =
h(E)

E − (E0 − iΓ2 )
(4.142)

To make Sl into a pure phase we have to choose h(E) = E − (E0 + iΓ2 ). Then

fl = − Γ/2

k
(
(E − E0) + iΓ2

) (4.143)

Which leads to a cross section

σ =
4π

k2
(Γ/2)2

(E − E0)2 + (Γ2 )
2

(4.144)

This is the well-known Breit-Wigner formula.
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Figure 4.10 The cross section from a quasistationary state

4.8 Inelastic scattering

In the case when some of the particles get captured by the potential the collisions
are called inelastic. In this case the outgoing flux is smaller than the incoming flux.
We can model this by assuming that Sl is a complex number but with moduli less
than one. The scattering amplitude is still given by

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(cos θ) (4.145)

This expression describes the particles that still come out and integrating it we
get the total elastic cross section

σe =
π

k2

∞∑
l=0

(2l + 1) |1− Sl|2 (4.146)

However, in order to also keep track of the particles that got captured we in-
troduce the inelastic cross section σi which makes sense only for the total cross
section since there can be no angular dependence. Before we argued that since
"what comes in must come out", Sl has to be a total phase. Now the situation is
different; since |Sl|2 represents the flux of the outgoing wave. Then 1−|Sl|2, "the
missing flux", must represent the particles that got captured. Therefore, they can

be represented by an fl =
√
1− |Sl|2, which would be a scattered wave with

precisely the flux of the missing particles. This would correspond to an (inelastic)
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cross section

σi =
π

k2

∞∑
l=0

(2l + 1)(1− |Sl|2) (4.147)

From this we may define a total cross section representing the probability of either
scattering or capture

σ = σe + σi =
2π

k2

∞∑
l=0

(2l + 1)(1− re(Sl)) (4.148)

Notice that althout it is possible to have elastic scattering without inelastic scat-
tering (when |Sl| = 1), the opposite is not possible. The only way to make the
elastic cross section zero would be to have Sl = 1 in which case also the inelastic
cross section would be zero. If we define

σel =
π

k2
(2l + 1) |1− Sl|2 (4.149)

σil =
π

k2
(2l + 1)(1− |Sl|2) (4.150)

σl =
2π

k2
(2l + 1)(1− re(Sl)) (4.151)

Since σel is proportional to |1− Sl|2 we see that

(1− |Sl|)2 ≤
k2

π(2l + 1)
σel ≤ (1 + |Sl|)2 (4.152)

where the minimum happens when Sl is real and positive and the maximum is
when Sl is real and negative and since

|Sl|2 = 1− k2

π(2l + 1)
σil , (4.153)

both the maximum and minimum value can be given in terms of the inelastic cross
section.

Exercise 4

1. Analysis of the scattering of particles of mass m and energy E = ℏ2k2
2m

from a fixed scattering center with characteristic length a finds the pase
shifts

sin δl =
(iak)l√
(2l + 1)!

(4.154)

• Derive a closed expression for the total cross section as a function of the
incident energy E.
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• At what values of E does the S-wave (l = 0) scattering give a good
estimate of σ?

2. Using the Born approximation, obtain an expression for the total cross
section for scattering of particles of mass m from the attractive Gaussian
potential

V (r) = −V0e−
r2

a2 (4.155)

3. Consider a scattering situation in which only the l = 0 and l = 1 partial
waves have appreciable phase shifts. Discuss how the contribution of the
l = 1 wave affects the total cross section. How does it affect the angular
distribution of scattered particles? What sort of measurements should be
made to obtain an accurate value of δ0 and δ1 respectively?

4. Determine in the first Born approximation the differential cross-section
for the potential

V =

{
0 for r > R

−V0 for r < R
(4.156)

with V0 > 0. Sketch the dependence (using a computer if you wish) of the
cross-section on 1) the angle θ and 2) the energy.

5. Consider the scattering of a particle by a repulsive delta function shell
potential

V (r) =
ℏ2γ2

2m
δ(r −R), (4.157)

• Set up an equation that determines the s-wave phase shift δ0 as a func-
tion of k (remember that E = ℏ2k2

2m ).
• Assume now that γ is very large,

γ ≫ 1

R
, k. (4.158)

Show that if tan kR is not close to zero, the s-wave phase shift resem-
bles the hard-sphere result discussed in the lectures. Show also that for
tan kR close to (but not exactly equal to) zero, resonance behavior is
possible; that is, cot δ0 goes through zero from the positive side as k in-
creases. Determine approximately the positions of the resonances keep-
ing terms of order 1

γ .

6. The capture cross section of a certain nucleus for neutrons having an en-
ergy of 0.1 eV is measured to be 2.5 · 10−18 cm2. Give upper and lower
bounds for the elastic scattering cross section.
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7. What is the maximum capture cross section for monoenergetic 0.025 eV
neutrons? What is the accompanying elastic scattering cross section?



5
Relativistic Quantum Mechanics

5.1 The Dirac equation

There is a curious way to “derive” the Schrödinger equation. Namely, take the
relation for the energy in classical physics

E =
p2

2m
+ V. (5.1)

One gets the Schrödinger equation by making the replacement

E → iℏ
∂

∂t
,

pi → −iℏ ∂

∂xi
, (5.2)

and then letting the relation (5.1) “act” on a wavefunction one gets

iℏ
∂

∂t
ψ =

(
− ℏ2

2m
∂2x + V

)
ψ. (5.3)

This derivation inspired many people to try to derive a relativistic analog of
the Schrödinger equation by starting with the relativistic energy relation E2 =

p2c2 +m2c4 instead of starting with (5.1). Making the same substitution (5.2) as
before we get a relativistic wave equation

−ℏ2∂2t ϕ = −ℏ2c2
(
∂2x + ∂2y + ∂2z

)
ϕ+m2c4ϕ. (5.4)

This can be written in a more relativistic fashion by introducing coordinates x0 =
ct, x1 = x, x2 = y, x3 = z and a metric gµν = diag(1,−1,−1,−1) as

gµν∂µ∂νϕ+
m2c2

ℏ2
ϕ = 0, (5.5)

an equation which is known as the Klein-Gordon equation.
To find out more about its properties, we now go on to find solutions to the
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Klein-Gordon equation. For instance, there is a complete set of plane-wave solu-
tions as we will now show. First we make the ansatz ϕ = e−

i
ℏpµx

µ . Acting on this
with a four-derivative ∂µ gives us

∂µe
− i

ℏpνx
ν
= − i

ℏ
pµe

− i
ℏpνx

ν
. (5.6)

Using this result twice we may insert the ansatz into the Klein-Gordon equation
to get

∂µ∂
µϕ+

m2c2

ℏ2
ϕ = (− 1

ℏ2
pµp

µ +
m2c2

ℏ2
)ϕ. (5.7)

We see that for ϕ to be a solution to the Klein-Gordon equation we need the four
momentum pµ to satisfy the relation

pµp
µ = m2c2, (5.8)

and rewriting the four momentum pµ in terms of its components pµ = (Ec ,p)

where p is the ordinary three momentum, we recover the relativistic energy re-
lation E2 = p2c2 +m2c4. Let us recapitulate; the Klein-Gordon equation has a
complete set of plane wave solutions ϕ(x) = e−

i
ℏp·x where the four momentum

has to satisfy the relativistic energy condition p · p = m2c2. Any solution can
then be written as a linear combination of these plane waves. There is however a
funny new feature of these solutions. If the four vector pµ = (Ec ,p) gives a solu-
tion, then the four vector pµ = (−E

c ,p) with negative energy is also a solution!
Thus, for every solution with positive energy, there is a solution with negative
energy which seems physically unacceptable since it would lead to an unstable
theory (there would be no state with lowest energy = vacuum state).

Dirac identified the root of this problem in the fact that the Klein-Gordon equa-
tion is quadratic in time derivatives whereas the Schrödinger equation is linear.
He tried to get around this by making an equation which would be linear in time
derivatives. To achieve this he used some interesting properties of the Pauli ma-
trices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ1 =

(
1 0

0 −1

)
, (5.9)

which fulfill the relation σiσk = iϵiklσl + δik1. This made it possible for Dirac to
write

pµp
µ =

(
E

c

)2

− pipi =

(
E

c
1− piσi

)(
E

c
1+ plσl

)
. (5.10)

That is, by writing the equation in terms of two by two matrices, he was able to
split it into factors linear in energy. The price he had to pay was that the wave
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function now become two dimension column vectors (or spinors as they are more
commonly known). Thus our second try for a relativistic wave equation looks like
this (

1
iℏ
c
∂t − σiiℏ∂i

)(
1
iℏ
c
∂t + σliℏ∂l

)
ϕA = m2c2ϕA, (5.11)

where ϕA =

(
ϕ1
ϕ2

)
is a two dimensional column vector. By introducing a sec-

ond two dimensional column vector

mcϕB =

(
1
iℏ
c
∂t + σliℏ∂l

)
ϕA, (5.12)

we can write an equation (well, really a system of equations) which is linear in
time derivatives

mc

ℏ
ϕB =

(
1
i

c
∂t + σli∂l

)
ϕA,

mc

ℏ
ϕA =

(
1
i

c
∂t − σii∂i

)
ϕB. (5.13)

For purely conventional reasons one often redefines the column vectors as ϕ± =

ϕA ± ϕB which makes it possible to write the above equation as
mc

ℏ
ϕ+ = 1

i

c
∂tϕ+ + σli∂lϕ−

mc

ℏ
ϕ− = −1

i

c
∂tϕ− − σli∂lϕ+, (5.14)

or, defining a four component column vector ψ =

(
ϕ+
ϕ−

)
and four by four

matrices

γ0 =

(
1 0

0 −1

)
; γi =

(
0 σi

−σi 0

)
, (5.15)

we may write the resulting equations in a very compact form as

γµi∂µψ =
mc

ℏ
ψ. (5.16)

Notice that this is a matrix equation (it is really four equations written in a very
nice and compact form using matrices) and that it is linear in time derivatives
which is exactly what Dirac wanted to achieve. This equation is known as the
Dirac equation. To make the comparison to the ordinary Schrödinger equation
more prominent, we can rewrite it as

γ0i∂0ψ = −γli∂lψ +
mc

ℏ
ψ, (5.17)



116 Relativistic Quantum Mechanics

and using that γ0γ0 = 1 we find

iℏ∂0ψ = −γ0γliℏ∂lψ +mcγ0ψ. (5.18)

We thus see that the Hamiltonian operator that we get from the Dirac equation
is H = −cγ0γliℏ∂l +mc2γ0.

Again, to get a feeling for the physics we can try to solve the equation. Since
the wavefunction is a four component column vector we make the ansatz for a
plane wave

ψ = u(p)e−
i
ℏp·x, (5.19)

where u(p) is a four component column vector possibly dependent on p. Inserting
this into the Dirac equation we get

(iγµ∂µ − mc

ℏ
)ψ = (

1

ℏ
γµpµ − mc

ℏ
)u(p)e−

i
ℏp·x, (5.20)

so we see that for this to be a solution of the Dirac equation we need the four
column vector u to satisfy the matrix equation

(γµpµ −mc)u(p) = 0. (5.21)

Using the expressions for the gamma matrices found earlier we can rewrite this
in an even more explicit form

E
c −mc 0 −p3 −p−

0 E
c −mc −p+ p3

p3 p− −E
c −mc 0

p+ −p3 0 −E
c −mc




u1
u2
u3
u4

 = 0, (5.22)

where we have defined the complex combinations p± = p1 ± ip2. This equation
has four independent solutions. We will find one of them, but I recommend that
you similarly try to find the other three. Actually, for this equation to be solvable
we need the determinant of the matrix to be zero. We can easily evaluate it to be
(
(
E
c

)2−p2−m2c2)2 so we see that a necessary condition for this equation to have
solutions is that the “old” relativistic energy condition is satisfied. Unfortunately
this means that we did not get rid of the solutions with negative energy. Therefore
we first need to assume that the condition holds, then we can go on and try to find
a solution. To make it a little bit simpler, let us first try in the case where p = 0.
Then the equation looks like

0 0 0 0

0 0 0 0

0 0 −2mc 0

0 0 0 −2mc




u1
u2
u3
u4

 = 0, (5.23)
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for the case of positive energy, i.e. when E = +mc2 and in the case where the
energy is negative, i.e. when E = −mc2, it looks like

−2mc 0 0 0

0 −2mc 0 0

0 0 0 0

0 0 0 0




u1
u2
u3
u4

 = 0. (5.24)

In the positive energy case we have the two independent solutions
1

0

0

0

 ,


0

1

0

0

 , (5.25)

and in the negative energy case the solutions look like
0

0

1

0

 ,


0

0

0

1

 . (5.26)

Turning on the three momentum p we have to solve the full equations (5.22)
but we can expect that the solutions should not differ too much from the zero p

solutions, at least when p is small. Then we should be able to find a solution of
the form 

1

0

a

b

 , (5.27)

where a and b are small of order p (or possibly smaller). Inserting this ansatz into
the equation immediately gives us that a = p3c

E+mc2
and b = p+c

E+mc2
. For reasons

to be explained later we choose the normalization to be u†u = 2E which leads to
the final answer

ψ =
√
E +mc2


1

0
p3c

E+mc2
p+c

E+mc2

 e−
i
ℏp·x. (5.28)

5.2 The non-relativistic limit of the Dirac equation

One check that one should always do is to see how the new physics one is in-
vestigating reduces in known situations. In the case at hand this means that we
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should try to see how the physics of the Dirac equation looks in a non-relativistic
situation. To do this, let us have a look at it in the form given in (5.14) but in
momentum space (and multiply with a factor of c). The equation looks like

(E −mc2)ϕ+ = c σ · p̂ϕ−,
(E +mc2)ϕ− = c σ · p̂ϕ+. (5.29)

The non-relativistic limit means the limit where |p| ≪ mc. This in turn implies
that E =

√
p2c2 +m2c4 = mc2 + p2

2m + . . . = mc2 + E(NR) where E(NR) is
the non-relativistic energy. This immediately tells us that the quantity E(NR) =

E − mc2 is small (of order m
( p
m

)2 or equivalently v2

c2
mc2) while the quantity

E +mc2 is large (of order mc2). A look at the equations now tell us that if ϕ+ is
of order one then ϕ− is of order p

mc = v
c so it goes to zero in the non-relativistic

limit. We can now solve for the “small” component ϕ− to get an equation for ϕ+
only since ϕ+ is what is left in the non-relativistic limit. Solving for ϕ− gives us

ϕ− =
1

2mc2 + E(NR)
cp̂ · σϕ+, (5.30)

which, when inserted back into the equation gives us

E(NR)ϕ+ = cp̂ · σ 1

2mc2 + E(NR)
cp̂ · σϕ+. (5.31)

In the non-relativistic limit mc2 ≫ E(NR) so we can expand the denominator to
get

E(NR)ϕ+ = p̂ · σ 1

2m
(1− E(NR)

2mc2
+ . . .)p̂ · σϕ+, (5.32)

and to lowest order we get back the non-relativistic Schrödinger equation

E(NR)ϕ+ =
p̂2

2m
ϕ+. (5.33)

This is maybe not a very exciting result but it is gratifying to see that we get the
correct non-relativistic limit from our equation.

A slightly more interesting result we get if we include a potential from an ex-
ternal electromagnetic field. This is done in a relativistically covariant fashion in
the Dirac equation, introducing the relativistic electromagnetic vector potential
Aµ = (φ,A), by replacing i∂µ → i∂µ − e

ℏcAµ. This changes the Dirac equation
to

γµ
(
i∂µ − e

ℏc
Aµ

)
ψ =

mc

ℏ
ψ, (5.34)

or, if we Fourier transform as

γµ
(
pµ − e

c
Aµ

)
u(p) = mc u(p). (5.35)
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When rewriting this in terms of the large and small components we get

(E − eφ−mc2)u+ = σ · (p̂c− eA)u−,

(E − eφ+mc2)u− = σ · (p̂c− eA)u+, (5.36)

and solving for the small component we get

u− =
1

2mc2 + E(NR) − eφ
σ · (p̂c− eA)u+, (5.37)

E(NR)u+ =

(
eφ+ σ · (p̂c− eA)

1

2mc2 + E(NR) − eφ
σ · (p̂c− eA)

)
u+.

Notice that we have to be careful in which order we write things since φ and A

depend on x and thus do not commute with p̂. Using the same approximations as
before we get and equation for u+

E(NR)u+ =

(
eφ+

1

2mc2
σ · (p̂c− eA)σ · (p̂c− eA)

)
u+. (5.38)

To evaluate this we again need to use the properties of the Pauli matrices to be
able to write

σ · (p̂c− eA)σ · (p̂c− eA) = σiσk(p̂c− eA)i(p̂c− eA)k =

(δik + iϵiklσl)(p̂c− eA)i(p̂c− eA)k = (5.39)
(p̂c− eA) · (p̂c− eA) + iσ · (p̂c− eA)× (p̂c− eA).

The cross product can be evaluated as

ϵlik(p̂c− eA)i(p̂c− eA)k =
1

2
ϵlik [(p̂c− eA)i, (p̂c− eA)k] =

1

2
ϵlik (−e [p̂i,Ak] c− e [Ai, p̂k] c) = −ϵlike [p̂i,Ak] c = (5.40)

ieℏcϵlik∂iAk = ieℏcBl,

which gives us the non-relativistic equation

E(NR)u+ =

(
(p̂− e

cA)2

2m
+ eφ− eℏ

2mc
σ ·B

)
u+. (5.41)

This is exactly the Schrödinger equation for a non-relativistic spin half particle
with an intrinsic magnetic moment µ = eℏ

mcs where s = σ
2 is the spin operator.

This is a very interesting result. We see that only from the requirement that the
theory should be relativistically invariant, we find that particles carry an intrin-
sic magnetic moment. This is not something that we can turn off or change in
any way. It is fundamentally built into the theory and comes from the relativistic



120 Relativistic Quantum Mechanics

invariance. Furthermore, it cannot be understood in any classical sense as “some-
thing charged going around in circles”. In fact, you can easily verify by yourself
that if we have some charged particle moving in a circle of radius R it produces
a magnetic moment which is µ = eℏ

2mcL and what we get out of our equation is
twice this value. We say that the electron has a gyromagnetic ratio of 2. In fact
this is not completely true and this value receives quantum corrections which can
be computed with great accuracy.

One can go on and keep higher order corrections to this result. This will result
in extra terms in the Hamiltonian. The calculation is slightly more involved since
now it will not be justified to neglect ϕ− any more. Anyway, it is still possible
to write a non-relativistic Hamiltonian for a two component spinor. If one puts
A = 0 (no magnetic field) the Schrödinger equation becomes(

p2

2m
+ eφ− p4

8m3c2
− eℏσ · (E× p)

4m2c2
− eℏ2

8m2c2
∇ ·E

)
ψ = E(NR)ψ.(5.42)

The first two terms are the lowest order terms which we have already derived
(remember that we put A = 0). The next three terms are higher order correc-
tions. If we for instance apply this Hamiltonian to the hydrogen atom they will
give small corrections to the spectrum (known as fine structure). The third term
is simply the first non-trivial correction to the non-relativistic energy (from ex-
panding

√
p2c2 +m2c4 −mc2). The fourth term is called the Thomas term and

it has the interpretation as an interaction between the spin of the electron and
the effective magnetic field it sees when moving through the electric field. It can
be rewritten as a spin-orbit interaction (proportional to S · L). The last term is
known as the Darwin term. It represents an interaction with the charge density
that produces the electric field. In the hydrogen atom it gives a shift in energy
of the s-states. There is also something called hyperfine structure of the hydrogen
spectrum. It comes from the interaction of the magnetic moments of the proton
and the electron but is a much smaller effect than is the fine structure.

I would like to point out once again that all these terms one get automatically
from the Dirac equation when going to the non-relativistic limit. There are no
additional assumptions involved. Quite a nice little equation!

5.3 Transformation properties of the Dirac equation

You are familiar with how covariant and contravariant vectors transform when we
change coordinate systems (we also say “when we do Lorentz rotations” or “boost”
the coordinate system) in special relativity. The typical contravariant vector is
the coordinate vector xµ itself. When we do a Lorentz boost it transforms into
x′µ = Λµ

νxν where, if we for instance boost to a coordinate system which is
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moving with speed v in the x direction we have

Λµ
ν =


1√

1− v2

c2

− v/c√
1− v2

c2

0 0

− v/c√
1− v2

c2

1√
1− v2

c2

0 0

0 0 1 0

0 0 0 1

 (5.43)

We may define the matrixΛ ν
µ = gµρΛ

ρ
σgσν and we can check thatΛρ

µΛ ν
ρ = δνµ.

All covariant quantities (for example the momentum vector pµ or a vector field
Aµ or the ordinary derivative operator ∂µ transform as A′

µ = Λ ν
µ Aν . Therefore

the scalar product is invariant x′µp′µ = xµpµ. Using this information it is easy to
see that for a scalar field ϕ (a scalar field is defined by the property that it does
not transform at all under Lorentz transformations) the Klein-Gordon equation is
invariant under Lorentz transformations

∂µ∂
µϕ+

m2c2

ℏ2
ϕ = 0 (5.44)

A spinor is not invariant under Lorentz transformations but transforms asψ′
a =

Sabψb for some matrix S which we will not need the exact form of. The Dirac
equation itself transforms as

i/∂ψ − mc

ℏ
ψ = 0 → iγµΛ σ

µ ∂σ (Sψ)−
mc

ℏ
Sψ = 0 (5.45)

or

iS−1γµSΛ σ
µ ∂σψ − mc

ℏ
ψ = 0 (5.46)

We see that for the Dirac equation to be invariant we need that

S−1γµS = Λµ
σγ

σ (5.47)

Taking the hermitian conjugate of this equation and using that we know from the
explicit representation of the gamma matrices that (γµ)† = γ0γµγ0 we get

γ0S†γ0 = S−1 (5.48)

Having this formula we may investigate how for instance ψ† transforms under
Lorentz transformations. We get

ψ′† = ψ†γ0S−1γ0 (5.49)

So the hermitian conjugate does not transform as the inverse of the original object.
However, if we check how ψ̄ ≡ ψ†γ0 transforms we find

ψ̄′ = ψ̄S−1 (5.50)
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which is indeed “nicer” since we can form objects with simple Lorentz transfor-
mation properties from it, for instance

ψ̄′ψ′ = ψ̄ψ (scalar)

ψ̄′γµψ′ = ψ̄S−1γµSψ = Λµ
νψ̄γ

νψ (vector) (5.51)

From this it is clear that ψ†ψ transforms as the zeroeth component of a null vector
which has the interpretation as a density (similar to the ordinary non relativistic
wave function).

5.3.1 The relativistic propagator

Remember that we defined the propagator as the Green function of the Schrödinger
operator (

iℏ
∂

∂t
− Ĥ

)
GNR(t,x) = iℏδ(t)δ(3)(x) (5.52)

In the relativistic case, the propagator can still be defined as a Green function,
but now with the operator giving the relativistic equations of motion. In the most
natural form we have((

iℏ
∂

∂t

)2

− c2
(
−iℏ ∂

∂x

)2

+m2c4

)
GR(t,x) = iℏδ(t)δ(3)(x) (5.53)

where on the right hand side we need an ℏ because it is a quantum effect. Thus,
for the Klein-Gordon field, we are led to define

−

(
1

c2

(
∂

∂t

)2

−
(
∂

∂x

)2

+
m2c2

ℏ2

)
GR(t,x) =

i

ℏc2
δ(t)δ(3)(x) (5.54)

Let us try to calculate it explicitly for the simple case of 1+1 dimensions. We will
use the coordinates

xµ = (ct, x) (5.55)

pµ = ℏ(
ω

c
, k) (5.56)

gµνx
µpν = ℏωt− ℏkx (5.57)

In Fourier space we have

GR(t, x) =

∫
dωdk

(2π)2
L(ω, k)e−iωteikx (5.58)
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Inserting this into the equation we find that

L(ω, k) =
i/ℏ

ω2 − k2c2 − m2c4

ℏ2
(5.59)

To simplify writing we introduce the notation ωk =
√
k2c2 + m2c4

ℏ2 and we see
that the propagator can be written as

GR(t, x) =
i

ℏ

∫
dωdk

(2π)2
e−iωteikx

(ω − ωk)(ω + ωk)
(5.60)

The ω integral can be performed exactly as in the non-relativistic case but there
are now two poles that needs to be avoided. This leads to several choices but the
correct one is the so called Feynman propagator where we choose the contour
such that we get contributions from the pole at ωk when t > 0 and contributions
from the pole at −ωk when t < 0. Doing this we find

GR(t, x) =
i

ℏ

∫
dk

2πi

eikx−iωk|t|

2ωk
(5.61)

valid for all values of t. To perform the k integral it is useful to introduce a new
integration variable l such that

k =
mc

ℏ
sinh l (5.62)

dk =
mc

ℏ
cosh ldl (5.63)

which means that ωk = mc2

ℏ

√
sinh2 l + 1 = mc2

ℏ cosh l which allows us to
rewrite the propagator as

GR(t, x) =
1

4πℏc

∫
dlei

mc
ℏ (x sinh l−c|t| cosh l) (5.64)

To calculate the propagator inside the lightcone where c|t| > |x| we may intro-
duce the new variables r and α such that

c|t| = r coshα (5.65)
x = r sinhα (5.66)

so that r =
√
c2t2 − x2. Then the propagator can be written as

GR(t, x) =
1

4πℏc

∫
dlei

mcr
ℏ (sinhα sinh l−coshα cosh l) (5.67)

=
1

4πℏc

∫
dle−imcr

ℏ cosh(l−α) (5.68)
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Since we are integrating from −∞ to ∞ we can shift the integration variable to
get rid of α. The integral is a known form for a version of a Bessel function called
a Hankel function so that

GR(t, x) =
1

4iℏc
H

(2)
0 (

mcr

ℏ
) (5.69)

If on the other hand |x| > c|t|, which means that we are outside the lightcone,
where a particle would need to travel with a velocity higher than the speed of
light to reach, then we have to define

ct = r̃ sinhα (5.70)
x = ±r̃ coshα (5.71)

so that r̃2 = x2 − c2t2 (the ± sign depends on if we are to the right or to the left
of the light cone). The propagator can then be written as (assuming the plus sign)

GR(t, x) =
1

4πℏc

∫
dlei

mcr̃
ℏ (coshα sinh l−sinhα cosh l) (5.72)

=
1

4πℏc

∫
dle−imcr̃

ℏ sinh(l−α) =
1

4πℏc

∫
dle−imcr̃

ℏ sinh(l) (5.73)

which again can be written in terms of Bessel functions, this time a modified
Bessel function

GR(t, x) =
1

2πℏc
K0(

mcr̃

ℏ
) (5.74)

Can we recover the propagator of non-relativistic quantum mechanics from
the relativistic propagator. One could expect that they should be similar for large
times but small distances from the original position of the particle. That means
that we are interested in the region where

√
c2t2 − x2 ≈ ct(1 − x2

2c2t2
). In this

region we can use the known asymptotic formula for the Bessel function

H
(2)
0 (z) =

√
2i

πz
e−iz (5.75)

to write

z ≈ mc2t

ℏ
− mx2

2ℏt
(5.76)

GR(t, x) ≈
1

4iℏc

√
2ℏi

πmc2t
e−imc2t

ℏ ei
mx2

2ℏt (5.77)

=
1

2mc2
e−imc2t

ℏ

√
m

2πiℏt
ei

mx2

2ℏt (5.78)

=
1

2mc2
e−imc2t

ℏ GNR(t, x) (5.79)
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Figure 5.1 The relativistic and the non-relativistic propagators

Figure 5.2 The probability densities of the relativistic and non-relativistic prop-
agators

which is precisely the non-relativistic propagator apart from the pre-factor. It sim-
ply comes from including the rest mass into the energy.

We can draw the two propagators, the relativistic and the non-relativistic to see
how they differ. I we leave out the pre-factor and draw them at a time T = 2π10

we get the behavior in figure 5.1 We see that they look similar for small x but for
larger x they start to differ. At the distance (x = ct) beyond which any relativistic
particle can reach, we see that the relativistic propagator abruptly goes to zero
but the non-relativistic propagator simply continues as if nothing has happened.
More interesting is perhaps the probability density which we plot in figure 5.2

We may also plot the probability densities for very short times after we let the
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Figure 5.3 Probability densities for small times

Figure 5.4 Probability densities for large times

localized particle run away. The result can be found in figure 5.3. Notice that for
short times, the probabilities do not agree close to x = 0 and that the relativistic
particle, although remaining close to the point from which it left, can be found
outside of the light cone, it is as if it can move faster than the speed of light,
but only for a short time. Finally we plot the probability densities for large times
(figure 5.4) where the probabilities at the origin is the same but the relativistic
particle is limited by the lightcone.
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Exercise 5

1. For the Dirac equation written in the ϕA, ϕB basis used in the lecture
notes, find the explicit form of the gamma-matrices and show that they
satisfy the Clifford algebra {γµ, γν} = 2gµν . Find the plane wave solu-
tions.

2. In non-relativistic physics, the transformation between two inertial sys-
tems, moving with a relative speed v, is through the Galileo transforma-
tion

x′ = x+ vt (5.80)
t′ = t (5.81)

Assume that the wave function ψ(x′, t′) is a solution to the Schrödinger
equation

iℏ
∂

∂t′
ψ(x′, t′) = − ℏ2

2m
∇′2ψ(x′, t′) + V (x′, t′)ψ(x′, t′) (5.82)

Show that the wave functionψ(x+vt, t) is not a solution of the Schrödinger
equation in the unprimed system

iℏ
∂

∂t
ψ(x+ vt, t) ̸= − ℏ2

2m
∇2ψ(x+ vt, t) + V (x+ vt, t)ψ(x+ vt, t)(5.83)

However, if we allow for a phase factor in the transformation of the wave
function ψ(x′, t′) → e

i
ℏf(x,t)ψ(x+ vt, t) find the form of f that makes it

a solution. Interpret the result in the case where ψ is a plane wave.
In relativistic physics on the other hand, the transformation between

two inertial systems, moving with a relative speed v (in the x-direction for
simplicity), is through the Lorentz transformation

t′ = γt+ γ
v

c
x (5.84)

x′ = γ
v

c
t+ γx (5.85)

y′ = y (5.86)
z′ = z (5.87)

where γ−2 = 1 − v2

c2
. If ϕ(t′, x′, y′, z′) is a solution to the Klein-Gordon

equation in the primed system, show that ϕ(γt + γ v
cx, γ

v
c t + γx, y, z) is

a solution to the Klein-Gordon equation in the unprimed system without
any phase factor.
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3. A plane wave solution to the Dirac equation can be written as

ψ(x) = u(p)e−
i
ℏp·x (5.88)

where u(p) is a spinor. Find the matrix equation that u(p) has to satisfy
and analogously find an equation for ū = u†γ0. Use this to show

ū(p)q/u(p) =
p · q
mc

(5.89)

if we chose u(p) to be normalized to 1. (q/ = γµqµ).
4. How would the Dirac equation look like in 2,3,4 and 5 space-time dimen-

sions? Find explicit representations of the gamma matrices in all these
cases and show that they satisfy the appropriate Clifford algebra.

5. In three space-time dimensions, verify that one can choose the gamma
matrices as following

γ0 = σ3 γ1 = iσ1 γ2 = −iσ2 (5.90)

i.e., verify that they satisfy the appropriate Clifford algebra. Construct the
matrices

M01 =
1

4i

[
γ0, γ1

]
(5.91)

M20 =
1

4i

[
γ2, γ0

]
(5.92)

M12 =
1

4i

[
γ1, γ2

]
(5.93)

and show that they satisfy the SO(1, 2) algebra[
M01,M20

]
= −iM12 (5.94)[

M12,M01
]
= iM20 (5.95)[

M20,M12
]
= iM02 (5.96)

which exept for the minus sign in the first row is the same as the algebra
of the rotation group SO(3). Show that under a rotation with angle θ in
the 12-plane, the spinors transform as

eiθM
12
ψ =

(
ei

θ
2 0

0 e−i θ
2

)(
ψ1

ψ2

)
(5.97)

whereas under a boost in the 2 direction, the spinor transforms as

eiαM
20
ψ =

(
cosh( θ2) sinh( θ2)

sinh( θ2) cosh( θ2)

)(
ψ1

ψ2

)
(5.98)

How do ψ†ψ and ψ†γ0ψ transform under these transformations?


