1 Natural units

Almost all units in nature are derived. For instance, in the cgs system of
units one chooses the unit of length to be cm, the unit of mass to be g and
the unit of time to be s. All other units can be expressed in terms of these
three. For instance, the unit of force can be found from Newton’s law to
be ML where M,L and T represent the particular units chosen for mass,

T2
length and time respectively. Similarly, the unit of charge can be found from
1l 3
Coulomb’s law to be #2E=. 'We see that sometimes odd-looking fractional

powers appear which is probably one reason why people have invented new
names for these units. Anyway, the choice of units which are regarded as
fundamental is by no means unique. For instance, instead of choosing M, L
and T, we can choose as fundamental, the unit of energy E, the unit of
velocity V' and the unit of “action” A. The last unit is somewhat unusual.
It is the unit that the action functional in mechanics or quantum mechanics
carries. Since the action is [ dt (K — V') we see that the unit is energy-time,
the same as the constant A carries. (It would also be possible to view A as
the unit of angular momentum.) If we choose the units for velocity such that
the speed of light, ¢ = 1 and the unit of action such that 2 = 1, then we
have something that is called “natural units”. It only remains to choose a
unit for energy, which we usually will choose to be eV.

To be able to convert between these two systems of units, we express the
new units in terms of the old ones. It is not difficult to find that

V = % M = £

2
E:]‘%2 or TZ%V (1)
A = ML L = &

Using these relations we can make a small table

Quantity CGS Natural

ML E?
Force T3 AV

3
Charge MZLZ  (AV)3

M3L3 (AV)
T E

Magnetic moment

From the table we see that for instance charge is dimensionless in natural
units (it is given in €V?). Force has dimensions eV? while length, time and
magnetic moment all have the same dimension eV ~!. If you are given a



number in natural units and you want to change it into CGS units you just
have to insert the proper powers of & and c to restore the dimensions. Here
is an example: the charge of the electron in natural units is

en = 8.543-10 2 eV’ (2)

Converting this to CGS we have to consult the table to see that we need to
multiply this with Vhe to restore the dimensions. Note here that the units
you choose for A and ¢ will also give you the units of the final result. Since
we are interested in CGS units we have to give h and ¢ in cm, g and s instead
of the more usual m, kg and s. For reference I give them here

2
ho= 1.05459-107% 8
¢ = 29979.101 (3)
S

Multiplying together gives

€cgs = enVhe = 4.803 - 10710 esu (4)
Another example is is the expression for the Bohr radius in natural units
(0)y =~y eV )
ag), = e
0 T el

To transform this to an expression of dimension length we multiply with hc
to get

he

mne2

(6)

The formula still depends on the values of e and m in natural units though.
We can convert these also by using the relation between the charges derived
above and the relation between the masses as m, = mchCQ. This gives
h2c? R
(00) egs = = (7)

202 2
MegsC ecgs ngSecgs

(ao)cgs =

Comment 1: The definition and even the unit of charge differs between
different systems of units. This comes about because there are different
conventions about how to write Coulomb’s law. We have

Cogs = Var  \/Ame,

2

€hnl €s1 (8)



en represents the charge in the Heaviside-Lorentz system of units. It clearly
has the same dimension as the CGS charge. However, in the SI system
there is an additional constant €y which has the dimension of inverse velocity
squared. Charge in the SI system therefore has a different dimension than in
CGS.

Comment 2: There exists other systems of units with only one basic
unit. For instance, in relativistic gravitational physics it is often advanta-
geous to choose a system of units where the speed of light ¢ = 1 and Newton’s
gravitational constant G = 1. The remaining unit is the unit of length which
can be chosen arbitrarily (light-year, m, ¢m etc.). This system of units is
called geometrical units.

2 The Dirac equation
There is a curious way to “derive” the Schrodinger equation. Namely, take
the relation for the energy in classical physics
2
p
EF=—+V. 9
o T (9)

One gets the Schrodinger equation by making the replacement

0

E h—

= g,
i — —th—s, 10
P U (10)

and then letting the relation (9) “act” on a wavefunction one gets
iBQQﬁ = —h—282 +V | (11)
ot”  \ 2m * '

This derivation inspired many people to try to derive a relativistic analog
of the Schrodinger equation by starting with the relativistic energy relation
E? = p?c® +m?c! (or E? = p? +m? in natural units) instead of starting with
(9). Making the same substitution (10) as before we get a relativistic wave
equation

—0}¢ = — (02 + 02 + 02) ¢ + m?. (12)



This can be written in a more relativistic fashion by introducing a metric
g = diag(l,—1,—1,—1) as

9" 0,0,6 +m’$ =0, (13)

an equation which is known as the Klein-Gordon equation.
To find out more about its properties, we now go on to find solutions to
the Klein-Gordon equation. For instance, there is a complete set of plane-

wave solutions as we will now show. First we make the ansatz ¢ = e~ #u",
Acting on this with a four-derivative 0, gives us
Ope " = ik ek, (14)

Using this result twice we may insert the ansatz into the Klein-Gordon equa-
tion to get

0,0"¢ +m’p = (—k,k" +m?)s. (15)

We see that for ¢ to be a solution to the Klein-Gordon equation we need the
four momentum k, to satisfy the relation

kK" =m?, (16)

and rewriting the four momentum £, in terms of its components k* = (E, k)
where k is the ordinary three momentum, we recover the relativistic energy
relation E? = k? +m2. Let us recapitulate; the Klein-Gordon equation has a
complete set of plane wave solutions ¢(x) = e?* where the four momentum
has to satisfy the relativistic energy condition k- ¥ = m?. Any solution
can then be written as a linear combination of these plane waves. There is
however a funny new feature of these solutions. If the four vector £* = (E, k)
gives a solution, then the four vector k* = (—FE, k) with negative energy is
also a solution! Thus, for every solution with positive energy, there is a
solution with negative energy which seems physically unacceptable since it
would lead to an unstable theory (there would be no state with lowest energy
= vacuum state).

Dirac identified the root of this problem in the fact that the Klein-Gordon
equation is quadratic in time derivative whereas the Schrodinger equation is
linear. He tried to get around this by making an equation which would be
linear in time derivatives. To achieve this he used some interesting properties
of the Pauli matrices

e ($h) (0] (3 8) e



which fulfill the relation o‘c* = ie?*'o! +§%*1. This made it possible for Dirac
to write

kukt = B =K'k = (E1-X'0') (E1+Ko'). (18)

That is, by writing the equation in terms of two by two matrices, he was able
to split it into factors linear in energy. The price he had to pay was that
the wave function now become two dimension column vectors (or spinors as
they are more commonly known). Thus our second try for a relativistic wave
equation looks like this

(130, — 0%id;) (10, + 0'i0)) g4 = m*¢a, (19)

$1

where ¢4 = < 6 ) is a two dimensional column vector. By introducing a
2

second two dimensional column vector
mep = (1i0, + 0'i0)) ¢, (20)

we can write an equation (well, really a system of equations) which is linear
in time derivatives

mep = (1i0, + 0'id)) pa,
ms = (1z'at—a%ai) b5 (21)

For purely conventional reasons one often redefines the column vectors as
¢+ = ¢4 £ ¢p which makes it possible to write the above equation as

meo, = 1idipy + d'idb_
me_ = —1i0,¢_ — 0'i0,¢,, (22)

or, defining a four component column vector 1) = ( O+ ) and four by four

b

we may write the resulting equations in a very compact form as

Y0 = ma. (24)

matrices
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Notice that this is a matrix equation (it is really four equations written in
a very nice and compact form using matrices) and that it is linear in time
derivatives which is exactly what Dirac wanted to achieve. This equation
is known as the Dirac equation. To make the comparison to the ordinary
Schrodinger equation more prominent, we can rewrite it as

1010 = =10 + map, (25)
and using that 7v°° = 1 we find
100 = —7°9Yidph + mAyPep. (26)

We thus see that the Hamiltonian operator that we get from the Dirac equa-
tion is H = —v%44i0;, + m~°.

Again, to get a feeling for the physics we can try to solve the equation.
Since the wavefunction is a four component column vector we make the ansatz
for a plane wave

¥ = u(p)e 7, (27)

where u(p) is a four component column vector possibly dependent on p.
Inserting this into the Dirac equation we get

(iv"0, — m)yp = (v*pu — m)u(p)e” P, (28)

so we see that for this to be a solution of the Dirac equation we need the
four column vector u to satisfy the matrix equation

(V'Pu = m)u(p) = 0. (29)

Using the expressions for the gamma matrices found earlier we can rewrite
this in an even more explicit form

E—m 0 —p3 —p_ Up
0 E-m  —py D3 ug | _
Ps3 p- —-E-m 0 us | 0 (30)
j —ps3 0 —-FE—-m Uy

where we have defined the complex combinations p+ = p;+ip,. This equation
has four independent solutions. We will find one of them, but I recommend
that you similarly try to find the other three. Actually, for this equation to



be solvable we need the determinant of the matrix to be zero. We can easily
evaluate it to be (E? — p? — m?)? so we see that a necessary condition for
this equation to have solutions is that the “old” relativistic energy condition
is satisfied. Unfortunately this means that we did not get rid of the solutions
with negative energy. Therefore we first need to assume that the condition
holds, then we can go on and try to find a solution. To make it a little bit
simpler, let us first try in the case where p = 0. Then the equation looks like

00 0 0 U1
00 0 0 w |
00 —2m 0 us | 0, (31)

00 0 —2m m

for the case of positive energy, i.e. when E' = +m and in the case where the
energy is negative, i.e. when F = —m, it looks like

—2m 0 00 U1
0 —2m 0 0 Uo
0 0 0 0 U3
0 0 0 0 Uy

In the positive energy case we have the two independent solutions

= 0. (32)

1 0
0 1
0|’ 0|’ (33)
0 0
and in the negative energy case the solutions look like
0 0
0 0
R R (34)
0 1

Turning on the three momentum p we have to solve the full equations (30)
but we can expect that the solutions should not differ too much from the
zero p solutions, at least when p is small. Then we should be able to find a
solution of the form

) (35)

SR O =



where a and b are small of order p (or possibly smaller). Inserting this
. . . . o 0

ansatz into the equation immediately gives us that a = £%~ and b = 7.

For reasons to be explained later we choose the normalization to be ufu = 2F

which leads to the final answer

1
0 ik-x
p=VE+m| 5, |e* (36)
E+m
P+
E+m

3 The non-relativistic limit of the Dirac equa-
tion

One check that one should always do is to see how the new physics one is
investigating reduces in known situations. In the case at hand this means
that we should try to see how the physics of the Dirac equation looks in a
non-relativistic situation. To do this, let us have a look at it in the form
given in (22) but in momentum space. The equation looks like

(E_m)¢+ = O-lpl(bfa
(BE+m)p- = o'pids. (37)

The non-relativistic limit means the limit where p < m. This in turn implies
that £ = /p?2 +m? = m + % + ... =m+ EVE where EN® ig the non-
relativistic energy. This immediately tells us that the quantity EVF) = E—m
is small (of order m (%)2 or Z—szQ in ordinary units) while the quantity F+m
is large (of order m). A look at the equations now tell us that ¢, is of order
one while ¢_ is of order 2 so it goes to zero in the non-relativistic limit. We
can now solve for the “small” component ¢ _ to get an equation for ¢, only
since ¢, is what is left in the non-relativistic limit. Solving for ¢_ gives us

b 1 ooy, (38)

- 2m + E(NR

which, when inserted back into the equation gives us

ENPg, —p. D00, (39)

02m+ EWNR



In the non-relativistic limit m > E™®) 5o we can expand the denominator
to get
1 E(NR)
ENR) g —pn.g—(1—
¢ =p-o 2m( om

and to lowest order we get back the non-relativistic Schrodinger equation

.. )p-od,, (40)

2

EWRg, =2 g (41)
2m

This is maybe not a very exciting result but it is gratifying to see that we

get the correct non-relativistic limit of our equation.

A slightly more interesting result we get if we include a potential from
an external electromagnetic field. This is done in a relativistically covariant
fashion in the Dirac equation, introducing the relativistic electromagnetic
vector potential A* = (¢, A), by replacing 0, — i0, — eA,. This changes
the Dirac equation to

Y (0, — eAy) Y = map, (42)
or, if we Fourier transform as
V¥ (Pu — €Ay) u(p) = mu(p). (43)

When rewriting this in terms of the large and small components we get

(E—ep—muy = o-(p—eA)u,
(E—ep+m)u. = o-(p—eA)uy, (44)
and solving for the small component we get
- = 2m+E(NR) _ GQOO- ) (p —€ )u-i—:
1

EWNRy, = <e<p +0-(p—eA) o-(p— eA)) .4 (45)

2m + ENE) — e

Notice that we have to be careful in which order we write things since ¢
and A depend on x and thus do not commute with p. Using the same
approximations as before we get and equation for u

1
EWNRy,, = (egp + 50 (p—eA)o-(p— eA)> Uy (46)
m
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To evaluate this we again need to use the properties of the Pauli matrices to
be able to write

o-(p—eA)o-(p—eA)=0"0"(p—eA)i(p - eA); =
(6" + ie*ot) (p — eA)i(p — eA) = (47)
(p—€eA)-(p—€eA)+ioc-(p—eA) x (p—eA).

The cross product can be evaluated as

ik (p — cA)i(p — eA)y = ~e* [(p — cA),, (p — eA)y] =

2
1, :
§€hk (—e[pi, Ag] — e[Ai, pr]) = —€™e[pi, Ay] = (48)
iee™0; Ay, = ieB', (49)
which gives us the non-relativistic equation
—eA)?
2m 2m

This is exactly the Schrodinger equation for a non-relativistic spin half par-
ticle with an intrinsic magnetic moment y = =s where s = Z is the spin
operator. This is a very interesting result. We see that only from the re-
quirement that the theory should be relativistically invariant, we find that
particles carry an intrinsic magnetic moment. This is not something that
we can turn off or change in any way. It is fundamentally built into the
theory and comes from the relativistic invariance. Furthermore, it cannot
be understood in any classical sense as “something charged going around
in circles”. In fact, you can easily verify by yourself that if we have some
charged particle moving in a circle of radius R it produces a magnetic mo-
ment which is y = ;=L and what we get out of our equation is twice this
value. We say that the electron has a gyromagnetic ratio of 2. In fact this is
not completely true and this value receives quantum corrections which can
be computed with great accuracy (moreover, you will in principle be able to
do it yourself using what you learn in this course).

One can go on and keep higher order corrections to this result. This will
result in extra terms in the Hamiltonian. The calculation is slightly more
involved since now it will not be justified to neglect ¢_ any more. Anyway, it
is still possible to write a non-relativistic Hamiltonian for a two component

10



spinor. If one puts A = 0 (no magnetic field) the Schrédinger equation
becomes

p2 p* eo-(Exp) e — (VR)
<2m +ep Py A2 8m2v : E) P = EW Y. (51)
The first two terms are the lowest order terms which we have already derived
(remember that we put A = 0). The next three terms are higher order cor-
rections. If we for instance apply this Hamiltonian to the hydrogen atom they
will give small corrections to the spectrum (known as fine structure). The
third term is simply the first non-trivial correction to the non-relativistic en-
ergy (from expanding v/p2 + m2—m). The fourth term is called the Thomas
term and it has the interpretation as an interaction between the spin of the
electron and the effective magnetic field it sees when moving through the
electric field. It can be rewritten as a spin-orbit interaction (proportional to
S - L). The last term is known as the Darwin term. It represents an interac-
tion with the charge density that produces the electric field. In the hydrogen
atom it gives a shift in energy of the s-states. There is also something called
hyperfine structure of the hydrogen spectrum. It comes from the interaction
of the magnetic moments of the proton and the electron but is a much smaller
effect than is the fine structure.
I would like to point out once again that all these terms one get auto-
matically from the Dirac equation when going to the non-relativistic limit.
There are no additional assumptions involved. Quite a nice little equation!

4 Transformation properties of the Dirac equa-
tion

You are familiar with how covariant and contravariant vectors transform
when we change coordinate systems (we also say “when we do Lorentz ro-
tations” or “boost” the coordinate system) in special relativity. The typical
contravariant vector is the coordinate vector z* itself. When we do a Lorentz
boost it transforms into z'* = A* ¥ where, if we for instance boost to a co-
ordinate system which is moving with speed v in the = direction we have

1 v
V1i—v? T V12 00
__v 1 00
Mo 8" 10 (52
0 0 01

11



We may define the matrix A * = g,,A” g’ and we can check that A? A =
0,. All covariant quantities (for example the momentum vector p, or a
vector field A, or the ordinary derivative operator J, transform as A) =
A, A,. Therefore the scalar product is invariant z'#p), = z*p,. Using this
information it is easy to see that for a scalar field ¢ (a scalar field is defined by
the property that it does not transform at all under Lorentz transformations)
the Klein-Gordon equation is invariant under Lorentz transformations

0,0"¢ +m’p =0 (53)

A spinor is not invariant under Lorentz transformations but transforms
as ¢, = Sap for some matrix S which we will not need the exact form of.
The Dirac equation itself transforms as

Py —mp =0 — " A7 0, (SY) —mSyY =0 (54)
or
iSTIMSA, T 0ptp — map = 0 (55)
We see that for the Dirac equation to be invariant we need that
STIyMS = At 7 (56)

Taking the hermitian conjugate of this equation and using that we know from
the explicit representation of the gamma matrices that (’y“)T = YOykA0 we
get

08140 = 571 (57)

Having this formula we may investigate how for instance 9! transforms under
Lorentz transformations. We get

Pt =iy 57140 (58)

So the hermitian conjugate does not transform as the inverse of the original
object. However, if we check how ¢ = 1!4? transforms we find

Y =98 (59)

which is indeed “nicer” since we can form objects with simple Lorentz trans-
formation properties from it, for instance

Y = Py (scalar)
PP = PSTINMSY = APy (vector) (60)
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5 Second quantization

To be able to describe quantum systems where the number of particles is able
to change (for instance, an electron and a positron annihilates into two pho-
tons) we use a formalism called “second quantization”. Notice that the name
second quantization is rather badly chosen since it is not a question about
“quantizing again”. It is simply yet an alternative formalism for describing
the states we have in the quantum world. It is not only used in relativistic
quantum mechanics, but also in for instance solid state physics or anywhere
were our quantum system consists of many types of particles which can also
change into each other.

As a technical detail to simplify computations, let us imagine that our
universe is a box with side length L. Then the universe has finite volume V' =
L? and if we impose periodical boundary conditions the allowed momenta
form a countable set. In this universe the allowed momenta can be written
as

k=— (nl, 712,713) y (61)

for any integers m1,n9, n3. In the end of each calculation we may let L — oo
(if we have done the calculation correctly, nothing should depend on L).

Imagining that we have ordered the allowed momenta in some particular
way, we may write them as ki, ko, ..., k;,.... This gives us the possibility to
write an arbitrary state of the system as

\nkl,nkw...,nki,...), (62)

which we interpret as meaning: there are ny, particles with momenta k;
(that means plane waves), there are ny, particles with momenta k, and so
on. These states in fact form a complete basis so any state can be written
as a linear combination of these basis states. To be able to write down how
operators act on these states we consider the “basic” operators ax and a,t
satisfying the commutation relations [ap,a}:] = 0pk. That is, if p and k

are different then a, and a}; commute but if they are the same they satisfy

the usual harmonic oscillator algebra. Then, remembering the harmonic
oscillator, we have that

aki\nkl,nkz, ey Ny .),: ,mki\nkl,nkz, N (T 1, .. .>,

aL|nk1,nk2, ey Dy e o)y = A/ + 1N, Ny -+ oy D, + 1,4 00). (63)
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Thus, the a, a’ operators describe the basic operations which take us between
different states. For instance, a process where we a particle with momentum
k; is scattered into a particle with momentum ks would be accomplished by
the operator a}:2ak1 acting on the state |1y,,0,...). Explicitly, using (63), we
would have

af, iy |11y, 0, .. ) = af 10,0,...) = [0, 1, . ..). (64)

As in the harmonic oscillator, any state in the basis can be constructed by
acting with the a' operators on the vacuum

a,T (0% aT Ty a,T nk;
G W

Mg,y Ty s - - -5 T - - ARy TR e

Let us now look at the coordinate representation of these states. Since
we know the total number of particles in each state we know how many
coordinates we need, i.e. one particle have three coordinates x, two particles
have six coordinates xi, Xy etc. Therefore we have

(x|l) = ox(x)
<X1:X2|1k171k2> = ¢k1(xl)¢k2(x2)7 (66)

where we have denoted the coordinate representation of the state with mo-
mentum k as ¢, = 1V e’®*_ The factor \ﬁ is a normalization factor.

Now consider the operator

X) = ; 1P (). (67)

When its hermitian conjugate acts on the vacuum, it creates a state

0)0) = 5 e all0) = 3 ) e (69)

k

In the coordinate representation, the resulting state looks like

1 .
<X‘¢T X() |0 Z<X|1k Te_Zk *0 — v Zelk.(x_x(]). (69)
k

The final expression may seem a little bit strange but it is really a delta
function. If x # x, the exponential oscillates for each k and on average

14



it is zero. For x = xg however, all exponentials are 1 independent of k
so the sum diverges. The integral over x of this function gives zero for
all terms with k # 0 and V for the k = 0 term. The factor % ensures
that the final result of the integration is 1. Thus we see that the operator
#'(x) creates a wavefunction which in coordinate representation is a delta
function located at xq or in other words, the operator ¢f(xo) creates a particle
completely localized at xo complementary to aL which creates a particle with
fixed momentum k. In the same way, the operator ¢(x) annihilates a particle
located at xq.

Now consider any operator on the full system that can be thought of as
being composed of operations on the single particles. In formulas we would
write

0= Z Oa: (70)

where the sum is over all particles in the system. This is a very general
expression. Many operators of physical interest are of this type. For instance,
the total energy is the sum of the energy of the single particles. The total
momentum is the sum of the momenta of the single particles etc.

The operator O, is a “normal” one particle operator. Its action on a
one particle state can be expanded into a linear combination of one particle
states

O:0a(x) = Y $5(X) foas (71)
b
where, as usual

fra = / dx 65 (x) 0y 64 (x). (72)

Thus the action of each of the one particle operators in (70) can be seen as
a reshuffling of the particles. The total number of particles is not changed,
but they are moved between different states.

If we want to write how the operator (70) acts on the basis (62) we
know that since it does not change the total number of particles but rather
shuffles them around, it has to be written as a linear combination of the
operators ala, since this operator first annihilates a particle in state b but
then immediately creates a particle in state a. Explicitly we write

0= Z fabalab, (73)
ab
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and you should check that the coefficients f,, are really the same as in (72)
by for instance check how O acts on one particle states. Thus we may write

0= Zb / dx ¢} (x)Opba(x)alay = (74)

fox (3 aaqsa(:o)T 0, (Sastn(x)) = [ ax o' 10000,

where we have used the operator ¢(x) defined in (67). From this we read of
the procedure for writing operators (this works only for operators that can
be thought of as being composed of operations on the single particles) in the
second quantized formalism. Take the one particle operator (here written
O.) and compute what looks like an expectation value but instead of a wave
function we use the operator ¢(x). Since we know what the operator ¢(x)
does we know how to interpret this expression intuitively. First the operator
¢ annihilates a particle located at x (if there is a particle there, otherwise the
result is zero), then the operator O, computes whatever it should compute
(the energy, momentum or something else) and finally the particle is created
again by ¢f. The integral means that this process is repeated for each point
in space and then summed.

Notice also that here is the origin of the awkward term “second quanti-
zation”. It comes from the fact that the operator ¢ looks like an arbitrary
wavefunction but with the coefficients in the expansion replaced by the an-
nihilation operators a,. Thus it looks like the wave function is “quantized
again” which of course is not true and is the source of much confusion. Second
quantization is just a formalism, within the framework of ordinary quantum
theory, to describe systems with many particles and in particular where the
types of particles may change.

There is a pleasant surprise incorporated in the second quantized formal-
ism. Since the creation operators al commute with themselves, any wavefunc-
tion is automatically symmetric with respect to interchange of these particles
as should be the case for bosons. This naturally leads to the question what
one should do if one would like like to instead describe fermions since in
that case the wavefunctions should be anti-symmetric with respect to inter-
change of particles. The natural thing to try is to use operators which do
not commute, but anti-commute. That is, operators b,, b] which satisfy

{ba, b} } = bub + blbu = du,
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{ba, by} = {f, b} } = 0. (75)

In this case, since the creation operators anti-commute, we get an extra
minus sign when we interchange particles bflb}; = —b};bfl giving us the required
behavior under interchange of particles. Furthermore we see that if we try
to put more than one particle in each state

2) = 8181]0) = 5 {#',57} o) = 0 (76)

This means that the Pauli principle is automatically incorporated when we
use anti-commuting creation/annihilation operators.

6 Dyson’s method

Since we have found the time dependent plane wave solutions of the Dirac
equation we completely know how time evolution of any state if there are
no interaction (the theory without interactions we call the free theory). Just
Fourier expand the full wavefunction at any given time and then let the
individual plane waves evolve in time. The problem comes when we consider
an interacting theory. Then the Hamiltonian can be written as a sum of
two operators H = Hy + H; where Hy is the free Hamiltonian which is
responsible for the (almost trivial) time evolution of the free theory (i.e. the
plane waves are eigenstates of Hy) and H; is the interaction Hamiltonian
which does not necessarily commute with Hy or even with itself at different
times. This makes the time evolution problem quite involved. However,
Dyson has invented a nice little trick which “hides” the (almost trivial) time
evolution of the free theory so that we may concentrate on the (slightly more
complicated) time evolution given by the interaction Hamiltonian H;. We
want to solve the “Schrodinger” equation

(Ho+ Hy) [9) = i ). (1)

Now define a new state [1)) = e~*0!|y). Inserting this we get

; 0 W 0
(H() + H]) 6_ZH0t‘X> = ZE <6 HM‘X)) =e Hot <’la + ’lH()) |X> (78)
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1Hot

Multiplying from the left with e and using that Hy commutes with itself

we get
iHot 1y —iHot 0
e Hre " x) = i |x)- (79)
ot
If we define a time dependent interaction Hamiltonian H;(t) = e*o! He~*Ho!
this equation takes a very simple form

Hi()]x) = i 50, (%0)

i.e. it looks just like the Schrodinger equation but with the Hamiltonian
H;(t). The “trivial” time dependence generated by Hj is taken care of by
making the operators in H; develope in time like in the free theory. Notice
that since |x) is a solution to the time dependent Schrédinger equation it
depends on time as in the so called Schrodinger representation while the op-
erator H;(t) = e'o' H e~ 0! depends on time as an operator in the Heisen-
berg representation! This is a funny mix of representations known as the
interaction representation. Anyway, from our studies of Quantum Mechanics
we know how to solve the time dependence of |x). The solution is given as

x(t)) = U(#,t0) | x(t0)), (81)

where we have introduced the time evolution operator
.t
Ult,t) = T [e—zfto Hz(t)dt] ’ (82)

where T[] represents the time ordering operator.

One may worry that it is really the wave function |¢)) which is the “cor-
rect” wave function which one should use to calculate probability amplitudes
but it is not difficult to show using what you know about the time evolution
operator (exercise) that the expressions

(| T [~ S ot O] [y, (83)
and
(e T [e= S HAOM] [y, (84)

are equal.
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7 The second quantized Dirac field

We would now like to write the equivalent of the field operators (67) for
the Dirac field. Since we know that electrons are fermions, we know that
we should use anti-commuting creation/annihilation operators rather than
commuting ones. With this in mind we may immediately write down a
candidate for the field operators

1 1

b u™) () e, (85)

Here r € {1,2,3,4} is an index which runs over the four independent spinor
solutions. Since we are using the interaction representation, we now need to
make this operator transform in time according to the free theory. That is,
P(t) = etfolypeHol Tf one then uses the formula eABe 4 = B + [A, B] +
% [A[A, Bl + ... and the fact that [Ho,bL,| = E(k)b,!, one find that
bir(t) = bi.e~*F* which tells us that

by ru k)e—iE(k)t—Hk-x

1
t)zﬁ§<z¢z—fz

- L u( (k) e TiE ) [t+ikx
L

Notice that we had to separate the positive energy solutions (r = 1, 2) from
the negative energy solutions (r = 3,4) since they will have a time depen-
dence of different type! In fact, the time dependence of the negative energy
annihilation operators look more like the time dependence of a creation opera-
tor. Loosely one can reason as follows; if the operator O(t) creates something
the final state should have bigger energy than the initial state. Thus we have

(Et|O(t) |E:) = (EqleotOe 0! ;) = (E¢|OeiPr—Fit|Ey), (87)

so we see that a creation operator should have the time dependence e**¥t. If,
on the other hand, the operator © would annihilate something, then F; < F

1 This follows from the fact that Ho|lx) = E(k)|1x) and that Hy|0) = 0. Alternatively
one may explicitly evaluate the (second quantized) Hamiltonian which turn out to be

HO = Ek,r EbL,Tbkvr
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and the time dependence going together with annihilation should thus be of
the type e *P!. This gives us a hint on how to treat the problematic negative
energy solutions which we seem to be inherent in any relativistic theory.
Namely we define
dL,l = _b_k=4’

di, = bys. (88)
The annihilation of a negative energy electron is thus reinterpreted as the
creation of a new positive energy particle, a positron. The new particle has
exactly the same properties as the electron (mass etc) except that the charge
is opposite. It is known as the anti-particle of the electron. To go together
with this we also redefine the spinors

vO(k) = —u(-k),

v@ (k) = u®(=k). (89)

With these new definitions we may rewrite the field operator in the interac-
tion representation as

S5 L (bl e 01
k
+dLT’U(T) (k)e-{—iE(k)t—ik-x) . (90)

According to what we know about second quantization, this operator will
annihilate an electron at point x and create a positron at x.

8 Scattering of electrons in the field of a nu-
cleus (Rutherford/Mott scattering)

We will consider the scattering of an electron in the field of a positively
charged heavy particle, typically in the field of a nucleus, so we will take the
potential to be:

p=A = — (91)
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The incoming state will of course be a state describing the incoming electron
with momentum p and spin r. That is, it will be described by the state

[i) = b,10) (92)

since the bf operator creates a state of one electron with the specified mo-
mentum and spin. The outgoing, final state is also a state with only one
electron, but since the electron has scattered it has a different momentum k&
and a (possibly) different spin s. This is given by the state

f) = bf ,|0) (93)

The probability amplitude for this process (scattering of an electron with
momentum p and spin 7 to an electron with the momentum £ and spin s
we get by taking the initial state [i) and evolve it with the time evolution
operator and finally taking the overlap with the state (f|. The probability
amplitude is therefore given by the expression

M = (£|T e=i S Hii) (94)

and the probability is of course the absolute square of the probability ampli-
tude.

We know that Hj is small (since e is a small number) so we can evaluate
the probability amplitude in perturbation theory

(T e i HIiy = (£[i) — dedf] /d%&fhﬁ\i) . (95)

Notice here that the time ordering operator 7' is trivial since all operators
are at the same time. Only in the higher order terms is the 7" operator
important. If £ # p which means that scattering has taken place, the first
term is zero.

Inserting the information we have we can compute

_ 4, 2¢
M = VZZ/dxr (O[b.

q1,t1 q2,t2

1 . 1 .
7d(11¢16(h ,t1e_lq1 e 4 713;1 it ﬂqntl e x)
(@ V2B
0 1 T iga-x 1 i) ot
V| =g 15 Vo126 ==y, t, Ugs 1, € by,0)

(96)
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There are in principle four different terms but clearly only terms with the
same number of creation and annihilation operators will survive. There are
two such terms, the first being the one where we select the positron cre-
ation/annihilation operators from the parenthesis. The operators squeezed
between the vacuum states in that case are

<0|bk stqi,t1 dqz,tz > (97)

and using the anti-commutation relations we can transform this into

(517,1657",55%,(125751,752 (98)

We see that this term does not give anything unless p = k£ which means
that no scattering is taking place. It would represent a process where the
electron is just passing by when a positron is created and annihilated out of
the vacuum. This clearly have no effect on the scattering process and we will
therefore drop this term.

The second term is the one with only electron creation/annihilation op-
erators which, writing only the operators, gives us

<0 | bk,sb}; i1 bq2,t2 b;;r;,r ‘0> = 5k,q1 58,t1 5(12 ,p(stz,r (99)

This is the type of term we expect. The interpretation is that the incoming
electron gets annihilated and there is a new electron (with new momentum
and spin) created, i.e. the electron gets “scattered”. We thus get the formula

Ze e ql (12)

Z > / N (ﬂql,tﬁouqz,h) Ok,q105,t1 0go p0t, r (100)
41,t1q2,t2 r \J4E, E,,

We can use the Kronecker deltas to get rid of the summations

Ze? ez(’c p)
= —— d4 U S’YOu r] =
/ r\JAE,E, g, )
U k — T/2 :
( p) ( ksf)/ up 7-)/ dt ez(Ek—Ep)t (101)
'y AE, E, —1/2

where we have introduced the 3-dimensional Fourier transform of the coulomb
potential

” A Ze?
P2 iex _ 102
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When we let the interaction time 7" go to infinity, the last integral in (101)
is just (27 times) a delta function of the energy telling us that the energy is
conserved in the scattering process.

Now the actual probability, let us call it P, is given by the absolute square
of the probability amplitude

up oo
P = |./\/l|2 = L uk,s’YOup,r

2 2
— TN 1276(Ey, — E)| (103)

Here the last term, the delta function square, may seem a little bit odd, but
we can treat it using a trick, namely, we may write it as
S(E E 2 _ li S(E E T/2 i(Ep—Ep)t
200(B, — E,)[* = Jim 0B, ~ B,) [ dte (104)
Due to the presence of the delta function, the Ej — E, in the integrand can
be replaced by 0. This means that the integrand can be replaced by 1 and
thus the integral is equal to 7. We therefore get the result
U 2
P = lim L ﬂk,sfyoup,r

> Ton8(E, — E 105
T—o0 4V2EpEk m ( ko p) ( )

which gives us an expression for the probability per unit time

£=7|U|2 |ﬂ 7o
T ~ 4V2E,E, I ™ 7

w ’ 218(Ey — E) (106)

Since we cannot experimentally separate scattering into final energy and
momenta which are close to each other, we need to sum over all these proba-
bilities to get a total probability for scattering into a state with final energy
Ej or into a state with energy close to it. This we do by multiplying the
probability with the density of states p(Ejy) and then integrate over energy

2
Wiot = /dEk L ‘ﬂ'k 37071' T
4VZE,E, I"H ™
L
422

“2m8(Ey — Ey)p(Ey) =

“2mp(E,) (107)

— 0
|Uk,57 up,r

This expression now depends only on the energy of the incoming electron
E, which we will hereafter denote by just . Note however that the spinors
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u still depend on the 3-dimensional final momentum k. Because of energy
conservation k = p but the direction can still be different.

The density of states function p(E) we find in the following way. We have
assumed that the universe is a (large but finite) box with length, width and
hight L. In such a box the allowed 3-momenta are not arbitrary but rather
discrete points momentum space. Only momenta with values k; = %nz 1=
1,2,3, where n; are integers are allowed. This gives a density of states in
momentum space as p(k) = (2L733 = (2‘;)3. Since the energy is a function of
the 3-momenta we can write

v
(27)°

where we have introduced spherical coordinates in momentum space. From
this it follows that

p(E)dE = p(k)dk =

k?d |k| dSy (108)

Vv d |k|
E)= ——k?2—140 109
p( ) (27’(’)3 dE k ( )
and since % = % we have
v
FE) = FE k| d) 110
:0( ) (27T)3 | ‘ k ( )
We thus have the number
o . 2 V
W= e |uk,570up,r WE k| d€, (111)

representing the probability per unit time that a particle gets scattered into
the space angle df);. More precisely, since the incoming wave-function is
extended in all space and is normalized to one, which means that there is
only one particle in the whole universe, we have calculated the probability
for scattering if we have an incoming flux (= the number of particles per
unit time and unit area) of {; (where v = % is the speed of the incoming
particle). Since we would like to get a number which is not dependent on
the particular incoming flux that we have chosen, we divide the probability
w with the flux and get a number called the (differential) cross section.
This number characterize the physical process and is not dependent on any
particular choice of flux used in the experiment. It is given by

_ Uk p)?

1) S, (112)

do

- 0
‘Uk,s’y Up,r
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To get the actual number of scattered particles per unit time that we will
measure in our detector, we have to multiply this number with the incoming
flux we are using in the experiment. If we are interested here in the cross
section when the incoming particle has some particular spin and the outgoing
particle also has some fixed spin we just insert their corresponding spinors u
and @ in the expression for the cross-section above and we are done.

However, if we assume that the initial state is unpolarized which means
that half of the particles have spin up and the other half have spin down,
but that the relative phases of the particles are totally random, then the
resulting probability (cross section) is given by averaging over the spin of the
initial wave-function. In this case that means summing the final result over
r and multiplying by % If we also do not measure the spin of the outgoing
particle we have to sum the final probability (cross section) over the separate
probabilities to measure an outgoing particle with spin up and an outgoing
particle with spin down. This gives us

Z Z ‘uk 57 Upyr
The sums over the different spins can be written

S (57 uprTip 7 s (114)
T S

IU(k pl 1

o (113)

or, writing out the matrix indexes explicitly

(S (0. 00) (), 2 (0 00 (0),)

which, defining the matrix M (k) = X (uk,s), (tUr,s),, can be written

Te (M (k)" M (p)°) (116)
Using the explicit representation of the spinors one can find that
Mk)=Fk+m (117)
so we have

= T (o m)y + ) ds (118)
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Using the gamma-matrix anti-commutation relations we can compute
Tr ((f +m)°(p+m)y°) = 4 (m? + ExE, + k- p) (119)

Finally using that Ey = E, and |k| = |p| we can choose a coordinate system
so that p is along the z-axis and k is pointing in the (6, ¢) direction. Inserting
this we get the final formula for the relativistically corrected Rutherford
formula also called the Mott cross section.

VAT X ( (0))
do=—"" " _[1—v?sin? | =] | dQ 120

9 Pair creation

What is the probability that an electron/positron pair is created in the po-
tential

A, = (0,0,0, Vdracos (wt)) (121)

This 4-potential represents an electric field directed in the 3 direction and
oscillating with frequency w. In this case the initial and final states are of
course given by

D = 10) (122)
‘f> = erl k2r2‘0>

representing the fact that initially we do not have any particles at all but we
will end up with both an electron with momentum k; and a positron with
momentum k5. As usual the probability amplitude is given by

= (£|T e~ H1 i) (123)
which, to lowest order in the expansion parameter e can be written as
M = —ie(t] [ d'wipi|0) = ~ie [ d'wAy(Olbeypidrrab7*910)  (124)

It is quite clear that the only piece that will survive is the piece containing
the operator b from 1 and the operator d' from ). What remains is
i(q1+q2)

Z Z / $A3 5 (aq1,51731’q2,52) (0[bky 4 s, T2bq1 S1d;2 510)

qlasl q2,52 q1 q2

(125)
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which, using the anti-commutation relations simplifies to

7;6 / . ei(kl-}-k‘g)-z‘ ~ 5
= [d ‘/EA37 Uky,r1 Y Vkayra (126)
4 \AEy, Ey, ( )
Inserting the expression for the potential we write
reav/ 4w

V\/AEy, Ex,

The integral can be performed by rewriting cos(wt) in terms of exponentials
as

(ﬂkh”’y?’vkz,m) /d4x cos(wt)eltkrthe)e (127)

jwt | —iwt
/d% cos(wt)elk1th)e — /d3xe_i(k1+k2)'x/dte“EkﬁEkz)tiew te™ =

2
@2m)t
T(S (k1 + ko) (6 (Ek, + Ek, +w) + 6 (Ey, + Eg, — w)(128)

The term containing 6 (F, + Ej, + w) will clearly not give any contribution
since Ey,, By, and w are all positive. Therefore we have for the probability
amplitude

Mo i(2m)*ear/4m (
oV /4By, Ex,

Again we see that the delta functions express energy conservation w = Ej, +
Ey, and momentum conservation k; + ko = 0. Namely, the frequency of the
electric field has to represent an energy which precisely matches the energy of
the created electron/positron pair. Also, the electron/positron has to come
out back-to-back so that momentum is conserved. This also means that
E,, =E;, =E.

The probability is the absolute square of the probability amplitude

kg 1Y Vhs s ) 0° (K1 + K2) 6 (B, + Ep, —w)  (129)

2.2

meas | _ g 2
= AV2E? ‘uk1,7“17 Ukg,ry ‘

(21)°6° (ks + ko) (2m)6 (2E —w)| (130)

By a similar trick as in the last section we evaluate the square of the delta
functions to be

(27)°6° (k1 + ko) (27) (2F — w)

‘ 2

= VT(27)'8® (k; + ks) 6 (2F — w) (131)
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giving us

me?a?(2m)*
4V E?

As in the previous example, we cannot separate final states which are too

close in phase space. Therefore we have to sum over these probabilities to

get a total “effective” probability. As in the previous example, this means

including a factor %d‘“’k for each final particle giving us

P=T "5 (ki + ko) 6 (2F — w) (132)

— 3
‘ukl,T17 Vka,ro

mea®(2m)*

Vo,V
k
AV B2 dky

2 53 (k1 + ko) d (2F — w) ok o)

P=T

5 d%ky

"U’kl,"'l 731)162,7"2
(133)

One of the integrals is easily performed using the first delta function giving us
that k; = —ky = k and the second integral we can perform, as in the previous
case after rewriting d°k = [k|*d |k|dQy, = |k|* “EdEdSQ), = k| EdEdSY,. The
result is (noticing that §(2E — w) = 36(F — ¥))

e?a? k|
167w
Notice that the probability is proportional to the volume (of the region with
the electric field) and the time we let the field act, in accordance to physical
expectations. This makes it more useful to speak about the probability per

unit volume and unit time, %.
If we are not observing the spins of the final particles we have to sum over
the different probabilities of observing the different possible spins. Then we

will get the formula
P e%a’ k|
VT 167w

2
P=VT QY (134)

— 3
‘“kl,rﬁ Vka,ro

2

ko Z ‘akl,T173vk2,T2 (135)

71,72

Using the trick of the last section, this can be rewritten as
P e*a® K|

= dy Tr 2y — m)y? 136

= ST (o m)y (e — ) (136)

or, using the anti commutation relations of the gamma matrices and remem-

bering that k; = (F k), ko = (E, —k)

P ea’ k| 2 2 .2
VT = Tomo dQ2w (1 — v”cos (0)) =
e?a’w? 4m? 5 o
6m 1-— 5 (1 — v”cos (0)) A, (137)
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which gives the probability of an electron/positron pair with a momentum
with angle 6 towards the electric field. If we are interested in the total
probability, irrespective of the angle, we have to integrate over df2 to get

P e’a’w? 4m? ( 2m2)

= 1-— 1+

VT 6 w?
Notice that there is a “threshold” in the energy. The probability is zero for
w < 2m < 2F, i.e. the energy of the photons in the field must be larger than
the mass of the electron/positron pair to be able to create it. In contrast the
probability is non-zero for arbitrary small amplitude a of the field.

(138)

w2

10 The quantized electro-magnetic field

In the two previous examples the elecro-magnetic field was treated classically
as an external field. In order to incorporate photons into the theory we need
to quantize also the electro-magnetic field. We will do this in a relativistically
covariant fashion so let us start by recapitulating some notation. Remember
that we may use a scalar potential ¢ and a vector potential A to describe
the electric and magnetic fields

E = —Vé—0A,
B = VxA. (139)

Introducing the four vector A* = (¢, A) we may write the electric and the
magnetic field in a compact form

0 —-E, —-E, —E,
E, 0 -B, B,

HY . gl AV Qv AL
P =0lAY — 0" A E, B, 0 -B, (140)
E, -B, B, 0
Using F*, Maxwell’s equations can also be written covariantly as
o, F* = 0,
OMFY +0°F* + 9"F°F = 0. (141)

Here we have used Einstein’s summation convention (sum over repeated in-
dexes). It is interesting to observe that A* is not uniquely specified by the
electric and magnetic field. Namely, if we define a new vector potential by

Afew = Agia + 0"x, (142)

new
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for any function x(z), the field strength F*’  and thus the electric and
magnetic fields, remain unchanged. This we can use to simplify the form
of Maxwell’s equations. If we choose x so that J,A%,, = 0, i.e. so that
0,0"x + 0,AL, = 0, then we have

o Fle =0, (0" Ay

new

— 0" AL 0, 0" Ay

new new ) new

=0, (143)

that is, each component of the vector potential has to satisfy the (massless)
Klein-Gordon equation (which we have already solved!). Thus, the vector
potential we will use will have to satisfy two equations

9A" = 0,
9, 0"A” = 0. (144)

However, this still does not completely specify A*. We may still shift it as
Af, = Ab 4+ 0FA with a A satisfying 0,0"A = 0 since this leaves the two
equations (144) invariant. This additional invariance can be used to choose
AY = 0. We have thus seen that we can always choose a vector potential

which satisfies the following three equations

A = 0,
0,A" = 0, (145)
0,0" A¥

This choice of form of the vector potential (or choice of gauge as the jargon
goes) is known as the Coulomb gauge.

Using this information we may now immediately write down the second
quantized electromagnetic field

A= JV Z ( Qf,a€ ,,L) ka+aka Z( )6ikw)- (146)
ka

From the third equation in (145) we find that k,k* = w? — k* = 0. The
second equation tells us that & - €(® = 0 while the first equation tells us that
e(()a) = 0. We thus find that el(f) is a four vector with zero time component
and orthogonal to the four momentum. Thus, out of the four orthonormal
four vectors

e = (1,0),
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) = (0,&V),

¢ = (0,e?), (147)
k

B — (o=

6/.L (0’ |k‘),

only el(}) and el(f) are admissible. Thus we see that the sum over « in (146)
is restricted to & = 1,2 in order for A, to satisfy all three equations in
(145). The egf‘) vectors are known as the polarization vectors of the photon.

As usual, when we second quantize, the ay g, aTk,a become annihilation and
creation operators which annihilate/create a photon with momentum £ and
polarization el(f‘).

11 The electron propagator

If we are interested in the next to lowest order corrections to the scattering
in an external potential, we have to study the term

41 [t [ T [(G0) ) ) 2)] ) (148)

Notice here that the T" operator is non-trivial and important since the two
A7) factors changes place if ty > ;.

Let us first assume that ¢t; > ¢,. Then the ordering given above is the
correct one and we can use the term as it stands. For each 1 factor there
are two different choices for the operator, one associated to the electron and
one associated with the positron. Since there are four v operators, we have
in principle 16 different terms. However, out of these 16 terms, only 2 are
non-trivial. All the others are either zero or they represent “non-connected”
terms in the sense discussed before. For instance, there is one term which
represents an electron getting scattered at z; while at x5 a positron is created
and annihilated but there is no contact between these two points. The first
non-trivial term is schematically

(0[b7b}b1b5babl|0) = 81161202 (149)

representing the incoming electron being scattered first at x5 and then, later
at ;. The second non-trivial term is

(0[bydybybidibl|0) = —8190 f201; + 0190190 (150)
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the second term here is again “non-connected”, representing a process with no
scattering because of the dz; but the first term is interesting and slightly hard
to interpret. Since t; > t» we have to interpret it as the incoming electron
flies past the point x5 where there is an electron/positron pair created and
later annihilates with the positron just created at z5. The electron created
at xp is in fact the final outgoing electron. Graphically we have

X
S
X5
X

) )

Similarly, when t, > t; we have graphically

X
%
- + Xl
X
©) 4)

Using this knowledge we write diagram (1) and (3) (where the initial electron
is annihilated in z5) as

(O1b ptba (1) |0)O|T [0y (1) c(w2) ] [0){0]bal2)b]|0) (151)

and the diagrams (2) and (4) (where the initial electron is annihilated in z;)
as

(01bs1Pe(2)[0)(OIT [t6a(2)tha(w1)] 10)(0]3f5(w1)b0) (152)

and the total amplitude is of course the sum of these two terms. We see that
in this expression the object (0|T [wa(xl)z/_)b(xg)] |0) plays an important role.
It represents the particle going between the points z; and z, and if t; > t,
it is an electron but if ¢t > t; it is a positron. This object is therefore called
the electron/positron propagator and we will now proceed to calculate it.
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Because of the time ordering operator 7' we have to consider two cases.
Assume to begin with that t; > t,. Then we pick out the electron cre-
ation/annihilation operators and the propagator can be written as

*Zk1 T1+1ko-xo

22 R

k1,81 k2,82

(u1)a(@2)5{0]b13]0) (153)

Since (0[byb}]0) = Oky k20515, We can evaluate one of the sums “for free”

eikl-(wzf:tl)

> W(Ul)a(ﬂl)b (154)

k1,51

Using the results of the previous section (¥, ul@” = (J + m)a) we can
calculate the sum over the spin in the expression for the propagator. The
result is

6ik1-($2—$1)

kzl 2VE,

(1 +m),, (155)

For convenience we will here change the summation over momenta }, into
an integral. This we can do since the volume of the universe is large (so that
the distribution of states in momentum space is almost continuous) which
means that ", = % [ d3k. This gives us

3k .
/(ZW)3EZE(t2_t1)6_Zk X2—X1) (k _;gl) (156)

(where we have dropped the index 1 for convenience). Notice here that E is
a function of k.
The same analysis in the case where ¢ty > t; gives

k. : —
_/ (27T)3ezE(tl—tz)e—zk-(xl—xz) (k 2l;n)a,b (157)

where the minus sign comes from the fact that the 7" operator has reordered
two fermionic operators.
We can rewrite the result in a more covariant form by using the integral

—iE|t| 1 oo —ikot
¢ i / ¢ (158)

—lim— [ dkg—
2F e30 2711 J oo k2 — E? +ie
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The first part of the propagator then becomes

/ d’k eiE(tz—t1)€—ik-(x2—x1) (}é + m)ab
(2m)3 2E

d3k eiE(t2 —tl)

(_i’7)2+m)ab/ 2r)3  2E

, Pk . [ dky el
(~ifs +m)yy [ °

—Z e —

(27)3 ) 2m k} — E? +1i¢
Since E = k% + m? the denominator of the integrand can be written k7 —
E? +ie = k2 — k> — m? +ie = k> — m? + ie giving us

e—ik-(x2 —x1)

e~ bama) (159)

d4k eik-(wzf:m)

) (—1 160

Z( Z$2+m)ab/(2ﬁ)4k2—m2+i5 ( )
and pushing the derivative operator back in, we get
d4k (}é =+ m)ab ik-(z2—x1)

) P\ 161

/ (2m)* k2 — m? + ic” (161)

The second part of the propagator (the one with ¢5 > ;) can similarly be
rewritten

. d4]€ (_% + m)ab ik ( - 2)
T 162
’/(27r)4k2—m2+z'56 (162)

and, changing the integration variable from &k to —k, we get

. d4k (}é =+ m)ab ik-(T2—71)
P2 163
Z/(27r)4k2—m2+i66 (163)

which is exactly the same expression as for the part of the propagator with
t; > t,. We thus have a unique expression for the propagator

Clos — 22) Ei/(d ko (F+m)a

2m)4 k2 —m? +ie
independent of whether ¢; or ¢, comes first.
Notice that if we act with the Dirac operator i@ — m on the propagator
we get

e~ tk-(z1-22) (164)

(15?9 - m)G(ac) = z/ d'k (}6 _ m) (k + m) e_ik'“” _

(2m)* k2 —m?+ie

i / (gﬂl;e—““'z — i (x) (165)
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so that G(z) is the kernel of the Dirac operator in accordance with the usual
interpretation of the propagator.

12 Compton scattering

Compton scattering is scattering of a photon on an electron. In the initial
state we therefore have a photon and an electron

[i) = b} .af.o10) (166)

Since the photon is physical the index « takes only the values 1,2 corre-
sponding to the two physical polarizations of the photon. The final state
also contains a photon and an electron but with different spins and momenta

) = b, al [0) (167)
As usual, the probability amplitude is given by

M= (fT ey = (i) — ide] [ Hli) - %(f\T/HI/HIﬁ) - (168)

The first term is non-zero only for the case when no scattering is taking place
(p=1p', k =k'). The second term is zero because it always involves exactly
three photon creation/annihilation operators so the lowest non-trivial term
is the third one. Separating the piece that has to do with electrons/positrons
and the piece that has to do with photons we can write it as

—%/d4$1d4$2<0\bp',s'T [ (Pathe) (1) (Petba) (22)] b, ,10)
()ap (7)o (Ol T [Ap (1) Ay (22)] af ,]0) (169)

The piece associated with the electrons/positrons we have already calculated
in the previous section. It is given by two terms corresponding to the cases
where the electron first goes to the point x5, interacts, then goes to the point
x1 where it is scattered to the final electron state and, oppositely when it
goes first to £; and then continues to z5. Graphically this can be represented
as
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For the second process the expression is

Meip’-ml l/ a M et (@1=m2) (Up,s)d e P2 (170)
VoV E' (2m)* ¢ — m? + ie V2VE

Here we recognize the middle part as the electron/positron propagator corre-
sponding to the piece where the electron propagates from the point z5 to the
point x1. The expression for the first term is similar. Evaluating the photon
piece we get a sum of two terms. The first comes from choosing the creation
operator in A, (1) and the annihilation operator in A, (z3), representing the
case where the incoming photon is annihilated in x5 and the outgoing pho-
ton is created in z;, and the second term (where we also have to ignore
a “non-connected” piece) comes from choosing the annihilation operator in
A, (z1) and the creation operator in A, (z.), representing the case where the
incoming photon is annihilated in x; and the outgoing photon is created in
x9. Explicitly we have

—

Arr (62’,04’ )N ik’-x1 (Ek,a)u e—ik-xz
V2Vw! V2Vw

Graphically we can write this as

52’,0/)'/61‘19’@2 (Sk,a)ﬂe—ik-zl (171)

V2VW! 2Vw

+4r
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Since we are integrating over x; and x5 in the final expression these variables
are really “dummy” variables, meaning that we can anywhere rename them
as we wish. In particular we can interchange them x; <+ x5. From the
pictures we see that two of the pictures change into the other two under this
relabeling so we have really to calculate only two terms, graphically they

look like this
v/

The second term we can write as

7T 4 4 - d*q Up sk o (d + M) Fk,alp,s
—————— | d'z; | dzo2 -
V2V E'Ew'w (2m)? ¢* —m? +ie

7 ’- 7 ’- —q . —7 . — . —
etP zgezk T2 o =Ip-T1 ik 1 o—iq (zo—x1) (172)

and doing the integrals over z; and z5 we get
" l/ d4q ﬂp’,s'¢k’,a’ (d + m)‘%k,a“p,s
VBB ) 2r) @P-miti
(2m)*0* (0 + K — q)(2m)*6* (¢ — p — k) (173)

Notice that the delta functions express momentum conservation at each of
the vertexes. The expression for the first diagram is the same except that
one have to switch positions for the polarization vectors € and switch the
place of k£ and k" in the delta functions. We can get rid of one of the delta
functions by performing the ¢ integral which gives us

ire?(2m) 6t (p' + K —p—k) [_ p+E+m
- U'p’,s’¢k’,a’ 2 2 . ¢k,aup,s+
V2V EFE'ww' (p+ k)2 —m? +ic

p—HF +m
b k/)Q — m2 T iag‘k/,azup,s (174)

ﬂp”s’¢k,a (
Here we notice that the delta function which is left just expresses the momen-

tum conservation of the whole process. To simplify this expression further
we can use the Dirac equation on the spinors

Zéup = My (175)
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which, using the anti-commutation relations of the gamma matrices, leads to
Plup = —gmup + 2p - cuy (176)

and choosing a coordinate system where the initial electron is at rest p =
(m,0,0,0) so that p-e =p-&' =0 we get

_i7re2(27r)4(54(p' +K —p—k) |[@dkfu n u'gf' ¢ u
V2/EE'ww' 2p -k 2p - k'

Now we calculate the probability density by taking the absolute square
of the amplitude. At the same time we say that we are not interested in the
polarization of the final electron, and the initial electron comes in a mixed
state so that we have to include a sum % > s~ We then have the probability

(177)

re2 (245t (p' + k' — p— k) |?

b= 2V EE ww'
1 u'f'kgu R (ugkfu’ | adf g
ig(w + LK )( s p.k,) (178)

where we have used that (fy“)Jr = ~94#40  Performing the spin sums and

noticing that the first term in each parenthesis is equal to the second if we
make the exchange ¢ «» ¢’ and k < —k' we have

me?(2m)4 0t (p' + k' —p — k) 2

P =
2V2\/2EE'ww'

FRAD + MY + m)
Tr( (p-k)? i
PG+ mPE +m) e o o
(- B)(p-F) *{ oo K }) (179)

The reason for the minus sign in the exchange of the photon momenta is
that we do not want p or p’ to change, but since p' = p + k — k' we have to
interchange k£ and k' with an extra minus sign.

Let us perform the trace over the first term explicitly. The fact that the
trace over any odd number of gamma matrices is zero allows us to write it
as

Tr (7' kptke'v) + m™Tx (# keke) (180)
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Using the gamma matrix algebra we know that ¢§f = —§¢ + 2a - b which also
implies that ¢¢ = a - a, and using the cyclicity of the trace, we can show that
the second term is

m*Tr (Fggke'd') = m*(e - €) (' - &) Tx (k§) = 0 (181)
Thus it only remains to calculate the first term. Anti-commuting the pf in
the middle and using that £f = k- £ = 0 we have

Tr (7' kep¢keY) = 2(p- k)T (' }4'P) (182)
Then we can anti-commute ¢} and use that ¢’ - &' = —1 to get
2(k - p)Tr (—f¢' +2(e" - k) #'¥') = 8(k - p) (2(k - £)(" - ¥) + (k- p)) (183)

where we in the last step used that Tr (y#") = 4¢"”.
Similarly the second term in the full trace can be calculated to be

—8(k" - p)(k - p) +16(¢" - )’ (K" - p)(k - p) — 8(k - €")*(K' - p) + 8(K' - £)*(k - 1}184)

and the two last terms are given by the first two by the interchange above.
Summing all the traces together there are a lot of cancellations and the final
result is

k’-p+k-p

or, using that k- p = mw and k' - p = mw’

8[’”3 k"p+4(a'-e)2—2] (185)

!

8 l% + % A ) - 2] (186)

Now let us return to the calculation of the probability, it can be written as

me2(2n)4 6 (0 + K —p— k)| [w w' ]
P = 8| =+ = +4(c-e)?=2| =
2V2\/2EE'ww' wow ( )
et w W
T—— 2m)**(p + kK —p—k) | —+ — +4(c' - )2 = 2| (187
1% V4EE’ww’( m) 0 (p'+k —p—k) L‘Jl-f-w-i- (e"-¢) ] (187)

Calculating the probability per unit time and summing over inseparable final

states we have
P m2et w W
o= 7 24 A 62 =2
T V3EE'ww! Lu' + w +4e-e) ]
\% & %

(2m)*~ © (2m)

(2m)*s*(p' + k' —p—k) A’k (188)
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We get rid of the space-like part of the delta function if we perform one of
the integrals, say the one over p’, which leaves us with

P et woow
i 4 4 e)? -2
T (27)2V EE ww' Lu’ N w +4(e-e) ]
§(E'+w' — E — w)d’K’ (189)
To get rid of the last delta function we can use that w' = |k'| to rewrite

k' = (w')?dw'dQ;. What complicates things slightly is that since we already

used the space-like delta function, E' = /|p'|> + m? = \/|k — ¥’ +m? =

\/wQ + w'? — 2ww’ cos(f) + m? is also a function of w'.
To perform the integration we have to write

dw'
(S(EI + OJI —FE— w)dw' = 6(EI + w' —F - W)md(El + LUI) =
dw'
—F (190
d(E'+ ') (190)
Now
d(E'+w') W' —wcos(f)
= 1 191
dw' E' * (191)
which, using that E' = w — w’' + m, we can write as
d(E'+w')  w(l—cos(@)+m ww'(l~—cos(d))+muw
do' E' B E'w' B
k-E+p-kK (K+p)-k p-k p-k Euw
Elwl = EIUJI = EIUJI = Elwl = Elwl (192)

where we have used that p + k = p' + k' which in turn implies (by squaring)
that p-k =p' - k.

Finally, to get a number which is independent of how often we throw in
photons (i.e. the cross section) we have to divide with the flux. Since the
photon wave-function is normalized to one photon in the whole universe and
since the speed of the photon is 1 (in natural units), the incoming flux is .

%
This gives us an expression for the cross section as
2t v W Bl
do = ——mm— |5 +— +4(' - e)* =2 dQ =
’ (27)2EE'ww' Lu’ * w +4(e-e) ] w
et (@ [w + Y 4 ) — 2| a0 (193)
dm? \ w w o w
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which is the famous Klein-Nishina formula for the cross section of Compton
scattering.

13 The photon propagator

Remember that in a previous section we derived the electron/positron prop-
agator which could be written as

Gap(w1 = ©2) = (OIT [tha(@1)o(w2)] 0) (194)

As we will see in the next section, there is also a photon propagator corre-
sponding to a photon propagating between two points z; and z5. As one can
guess, it can be written as

Dy (21 — 22) = (0T [Ay(21) Ay (22)] [0) (195)

Let us calculate it here so that we can use it when it appears in the next
section. Inserting the expressions for the photon fields we have

1 k1 * —iki-x
(o|T [(alslue YT+ aper, e )

kl,zal kz,zaz V VWil

(afea ™™ + azeg, )] 0) =

— 1) e’{HEQUe_ikl'wleikz'w2 (0|aial|0)

> 2 v =10t
k1,01 k2,02 2V wle{

0(t2 — t1) €5, e1, ™™ (0]azal|0) ) (196)
Remembering that

[ak,aa a]t/,al] = 6/{:,]6’504,0/ o = ]-: 2 (197)
(198)

Dl = 22) = 5 g {01t~ 1) ((e0)" e+ (2" ) - n-29

0 (ty —t1) ((6,}))*68) + (51,2))* 5&2)) eik'(wl_“)}(l%)



This expression does not look too satisfying since the rather messy expression
* *

&(E,(})) e + (5,(,2)) 5,&2)) appears. In fact, using the explicit expressions for

the polarization vectors

e = (1,0,0,0)

gsy (0,,)

e = (0,5) (200)
£ = 05

where £; and &, are two three dimensional unit vectors which are orthogonal
both to k and to each other, one may show that

() () e ()

One way to prove it would be to say that it is a symmetric matrix with
eigenvalues (-1,1,1,1), therefore it is diagonalizable to —g,, using an orthog-

*
@+ () 6D = —gu.  (201)

onal matrix M so that M7 (—eoef + 161 + e965 + e3¢5 )M = —g. But
by multiplying on the left with M and on the right with M? we find that
(—eoeg +e16] +eoes +e3es) = —MgM™ = —g.
Furthermore we may rewrite the — ( (0) )* g0 4 ( ) e(®) piece using the
four vectors k, = (w, —k) and a, = (w, k) as
(= (9)" e + (£9)" ) =~ (auhs + By (202)

We thus find that we may write the propagator

1
Dyy(z1 — 29) = Z <_ng + 202 (auk, + kuCLV)> X

k
4
= _ ik-(z1—x2) _ —ik-(x2—x1)
o {0(t — ta) e ™) 49 (1 — t,) e FEm0)} (203)

Again using the fact that for a high density of states we can switch the sum
over k for an integral over the density of states

d3k

Z Vv / (204)
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and again using the rewriting of the energy dependence as

. 1 00 e—ik‘ot

_e—wltl — _/ dk0—2 - (205)
21 J-o k3 — k| + e

we can write the propagator as

d*k 1
D, (x1 — z2) = /W@r (g,w ~ 5 (auk, + kua,,)) X

1 [ dko . 4
O(t: — to)—— tko(t1—t2) ik (x1—x2)
{ =t)on | v ¢ +
1 dke .
0 to —t1)—— Zko(t1*t2) 7zk-(x17x2) ) 206
o= t)os | i ¢ (206)

and changing the sign of the integration variable k in the second term, we
see that both the term for ¢; > ¢ and the term for ¢, > t; have exactly the
same form, just as for the electron/positron propagator, so we can write it
in a compact form

—ik-(z1—x2)

. d*k 1
Doy — 2) = —idm [ £, (gu,, — — (agh + kua,,)) . (207)

(2m)* 2w

This is very nice except for the “ak + ka” piece which ruins the covariant

form of the propagator. However, the fact that this piece contains explicit

factors of k, which is the same four momentum as the momentum which

flows in the propagator saves us. To see this, let us consider a part of a
Feynman diagram looking like

k2 +ie

p+k
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The electron line corresponds to an expression (up to normalization con-
stants)

u(p + k)y"u(p), (208)

To the 7* is connected the momentum space propagator D, (k). The part of
D,, proportional to k, together with (208) gives a contribution proportional
to

u(p + k)fu(p) = ulp+ k) (F+ 9 —p)ulp) =
{Dirac equation} = @(p + k) (m — m) u(p) = 0. (209)

Therefore the piece proportional to k,a, does not give any contribution to
physical processes and can consequently be dropped. Similarly, the piece
proportional to a,k, cancels in the other end of the propagator. The full
proof of this fact is a little bit involved. One needs to check that it is true
also when the photon propagator ends on an internal electron propagator
and not on an external line as in the simple example above. If you believe
me for now that this is true we can write the photon propagator simply as

d4]€ e—ik-(wl—zg)
(2m)* k%4 ie

Dy (21 — 23) = —idmg,, / (210)

14 Electron-electron scattering

Let us now consider scattering of two electrons. Let us assume that initially
they have momenta and spin p;, s; and ps, so. They are scattered into elec-
trons with momenta and spin ps, s3 and ps.s4. We therefore take as the initial
state

i) = blb}]0) (211)
and as the final state we take

[£) = b}b}|0) (212)
The probability amplitude is given by the usual expression

M = ({{|T e~ H1j) (213)
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and the first non-trivial term is the term which is second order in H;. Since
there are 4 b operators in the initial and final states the only combination
which will give anything is when we choose the b operators from the 4
fields. The expression is therefore

(0]bsbsb 6’0" 0" bibL[0) =
=01y 02,103,708+ 01,p02,5703,p04,pr
01,902,031 04p = 01,702,503 p04p"
+ non-—connected pieces (214)

where we have used a shorthand notation in that each delta function also
comes with a corresponding delta for the spin dependence so that 6, , really
means 01 p0q,,o- Lhese terms can be graphically represented as

3 4
X2 X1 =
1 2

Again using the trick of changing the integration variables z; and xo we see
that the two last diagrams are equal to the two first diagrams which leaves
us with only two expressions to be calculated. The one corresponding to the
first diagram we can write as

62

_ i _ v d4 /d4
EN P A “1)/ e
ei(Pa—p2)-x1 Si(p3—p1)-x2 (0T [Au(z1) AL (z2)]|0) (215)

where in the last expression we recognize the photon propagator D, (21 —z2)
which we calculated in the previous section. Inserting the expression we
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obtained we get

e? d*k
_ " _ v d4 /d4 /
WVAVE BB, 7 1)ty “1)/ R el AT
. . 4dmg
i(pa—p2—Fk)-z1 Li(p3—p1+k)-T2 i 216
¢ ¢ i(k2 + ic) (216)

and performing the x; and x, integrals we get

2

‘ (7" us) (7 "u)/—d4k
AV BB BB, T T [ o

dmg

2m)*6(ps — p2 — k) (27)*0(ps — k) ———— 217

(2m)%0(pa — p2 — k) (2m)*0(ps — p1 + )i(kQ—i-iE) (217)

We can get rid of one of the delta functions by doing the k& integral
(i u) ()
NN NN 47 U2) U3y Uy
417q,.,
(27)*6(p1 + P2 — ps — Pa)- I (218)

i((p1 — p3)? + ie)

Notice that the remaining delta function expresses the total conservation of
momentum. The second diagram can be easily calculated when we realize
that the only thing that differs between the second and the first diagram is
that we have to switch 3 and 4 and also the overall sign. Totally we therefore
have the probability amplitude

2(9,\4 N
Mo © (2m)*0(p1 + p2 — p3 — pa) {(ﬂ47“u2) AT g

4V2\/ E1E2E3E4 Z((pl - p3)2 + 7/5)

AT g,
U3y us) - B
(u3y 2)z((pl —p4)? +ie

(Tgy" u1)—

) (44" ) }219)

If we assume that the incoming electrons are unpolarized so that we have to
average over the incoming spins and that we do not observe the spin of the
outgoing electrons so that we have to sum over the probabilities of observing
different outgoing spin, we have to include a sum over

1ol
5%:5222 (220)

S2 83 S4
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Introducing the notation
(p1 = ps)* = (ps — p2)°
u = (p1—ps)’ = (p3s — p2)’ (221)
we can write the total probability as

64(27)65(101 + po —p3 — p4)
4V3FE \EyEsE,
(@artia) (T3 u1)  (Tyyuua) (BayPus) [
t U

P =T

1

(222)

>

51,52,53,54

which, using the expressions for the spin sums, can be written as
e!(2m)%0(p1 + p2 — p3 — pa)

4V3FE FEyFEsEy
1 {Tr((m + M)y (P2 + m)7) Tr((fs + m)y* (P + m)7”)
4 2

L Te((s + m)yu (o + m)y) Tr((Bs + m)7*(hy +m)y")

Tr((Bs + m)u(be + m) v (s + m)v* (b + m)y")
tu

- Tr((ps + m)yu(Pe + m)y (Ps + m)v* (P + m)y") }
tu

P =T

(223)

Let us explicitly calculate the first trace and leave the other ones as an
exercise. To do this we observe that

Te((p+ m)vu(d +m)v) = Tr(pyudye) + m*Tr(yuy) =
4 (pNQI/ - (p ) Q)guu + yom + m2g/u/) (224)
giving the result for the first term
16 [2(171 +2) (D3 + Pa) + 2(p1 - pa) (P2 - p3) + 2(m* — pa - pa) (p1 - P3)+
2(m® — py1 - p3) (D2 - p1) + 4(m® — py - p3)(M* — py -p4)] (225)
and using that the relation p; + ps = ps + ps4 implies
P1:-P2 = P3-P4
DP1:-P3 = P2-Ps (226)
P1:Ps = P2°D3 (227)
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we can write it as

32 [(pl -p2)® + (p1 - pa)® + 2m*(m® — py -p3)] (228)
Computing also the remaining traces we get the full answer

e*(2m)%6(p1 + p2 — s — pa)

P =T
AV3E | EsEsE,
8 { (p1 - p2)® + (p1 - pa)® + 2m>(m? — py - p3)
t2
+(p1 -p2)? + (p1 - p3)? + 2m*(m® — py - ps)
u2
2y - 2m?2 — p, -
_ (p1 - p2)(2m° — pQ)} (229)
tu
Let us choose center of mass coordinates such that
D1 (Ea p)
b2 = (Ev _p)
ps = (E,p) (230)
Py = (Ea _pl)
and that p - p’ = |p|” cos(f). Then we see that we can write
pL-pe = m’+2 ‘P|2
0
pr-ps = m?+2|p| sin? <§> (231)

0
pLops = mi42 \p|2(:o~s2 <§>

To calculate the cross section we need to sum over the probabilities of ob-
serving final states which are close to each other in momentum space. This
we do by including the factors

1%
d? d?
(27T)3 P3 (27T)3 P4

(232)

and dividing by the incoming flux ”1;;”2 where v, and v, is the speed of the
1 and 2 particle respectively. In the center of mass system the speed of the
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two particles are equal and can be expressed as % so that the flux is %‘—“’,'.

The integrals over the momenta can be taken care of in the usual way
0" (p1 + p2 — ps — pa)d*pud®ps = 6(Ey + By — Es — Ey) |ps|” d |ps| d2 (233)

and since in the center of mass system we have that F, = E3 = 4/ |p3|2 + m?
we can write

d|P3| \p3| Es

6(E1 + E2 - 2E3) |p3‘2 d(2E3)

dQ (234)

Putting everything together we have

e*(2m)® V2 EV |p|E

AV3E* (2m)82|p| 2

3 { (p1-p2)? + (p1 - pa)? + 2m2(m?* — py - p3)

do

t2

(p1-p2)?+ (p1 - p3)* + 2m*(m? — p1 - pa)
+ 2

2(py - 2m?2 — p, -
_ (p1 - p2)(2m* — p1 - p2) } d0

tu
_ et [ (p1:p2)?+ (p1-pa)? + 2m2(m? — py - p3)

2FE? 12

(p1-p2)% + (p1 - p3)2 + 2m%(m? — p1 - p4)
+ 2

2(101 'pz)(2m2 — D 'PZ)

_ } dQ (235)

tu

This cross section simplifies in the non-relativistic and the ultra-relativistic
cases. In the non-relativistic case we have that |p| < m so that to lowest
order

2

P1-p2 = M
pLops &~ m? (236)
P1-Ps = m?

0
t = (pl — p3)2 = 2m2 —2 <m2 +2 |p|2 SiIl2 (§>>
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6
~ —A4|p[*sin® (=
p[?sin (2)
2 2 2 o0
u = 2m —2<m + 2 |p|” cos <§>>

—4|p|” cos? (g) (237)

Q

which gives the expression

(&

4 1 1 1
do = m2vt (sin4 (Q) + cost (g) " sin? (Q) o (Q)> ds2 (238)

2 2 2 2

where v is the velocity v = ‘m—l Notice that the first term gives exactly the
Rutherford cross-section. The two additional terms are of quantum mechan-
ical origin and comes about because the particles that scatter are quantum
mechanically identical. This means that the cross section has to be invari-
ant under § — m — 6. The second term alone would be enough to achieve
that. The third term is there however because scattering of identical Fermi
particles is very much suppressed at § = 7. This is essentially an effect
of the Pauli principle which tells us that the total wave function has to be
anti-symmetric.

In the ultra-relativistic limit, |p| > m, the cross section can similarly be

written in a simple form

o rret() drest(l)
d”’SEQ( ot (3) e (3) e (z)cos2(3))d9 .

15 The Ward-Takahashi identity
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