
Hand-in assignments in Advanced Quantum
Mechanics, spring semester 2021.

These are hand in assignments for the course in Advanced Quantum me-
chanics at the Masaryk University in the spring of year 2019. They are the
first part of the requirement of the course, the second being an oral exam.
The problems should be handed in minimum one week before the oral exam.
Do not leave out any part of the calculations and motivate your
assumptions and approximations carefully. You my answer in Czech
or English. The required minimum number of points is 25 evenly distributed
over the different topics.

The formalism

1. Imagine that you are given a nonorthonormal basis |i〉 so that Bik =
〈i|k〉 is a general invertible matrix. Find an expression for the unity
operator in this basis. Write an arbitrary state |ψ〉 in this basis, i.e.
find an expression for ck in

|ψ〉 =
∑
k

|k〉 ck

Also, if A is any operator, find an expression for the representation of
this operator in the given basis

A =
∑
k,l

|k〉Akl 〈l|

(4p)

Propagators and Path Integrals

1. A charged particle moving in a one dimensional space with an electric
field F has a Hamiltonian given by

Ĥ =
p̂2

2m
− Fx̂ .

Derive the propagator for this system in the following way: Since the
Hamiltonian is independent of time, argue that you may write the time
evolution operator as

Û(t, t′) = e−
i
h̄

(t−t′)Ĥ
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Use the Baker-Campbell-Hausdorff formula to write the time evolution
operator as

Û(t, t′) = ef(x̂)eg(p̂)

You may now calculate the configuration space propagator 〈x| Û(t, t′) |x′〉
by cleverly inserting the unit operator. Evaluate the resulting integral
to find the final expression. (6p)

2. Calculate the propagator for a particle in a linear potential

S[x(t)] =
∫
dt(

1

2
mẋ2 − Fx)

using path integral methods. Here are some useful observations that
you might want to use

a) In the path integral, we sum over all paths with the prescribed
boundary conditions.

b) The sum will be the same if we shift all paths by some particular
fixed path.

c) Define the new path y(t) as the old path shifted by a solution of
the equations of motion xcl(t) so that y = x− xcl.

d) However, shifting a path satisfying a particluar boundary condi-
tion by a fixed path gives a new path that usually does not satisfy
the same boundary condition. What boundary conditions should
y(t) fulfil if the classical solution xcl satisfies the same boundary
conditions as x?

e) Find a particular xcl with the same boundary conditions as x, i.e.
that begins at x′ at time t′ and ends at x at time t.

f) Show that the action S[y(t)] consists of only of a kinetic term and
a term dependent only on the boundary conditions. In particular
there is no potential for y(t).

g) The path integral over y(t) can now be done using the result for
the path integral of a free particle. Remeber that is is given by∫

Dxe
i
h̄
Sfree[x(t)] =

√
m

2πih̄(t− t′)
e

im(x−x′)2

2h̄(t−t′)

for a path that starts at x′ at time t′ and ends at x at time t.
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Check that your result agrees with the result of the previous problem.
(6p)

Relativistic quantum mechanics

1. If we interpret ρ = ψ†ψ as the particle density, use the Dirac Hamil-
tonian to define a current j such that the equation of continuity is
fulfilled

∂tρ+∇ · j = 0

In order to do this it is useful to have the relation

(γµ)† = γ0γµγ0

which you should prove. Calculate ρ and j for the plane wave ψ(x) =

u(p)e−
i
h̄
Ete

i
h̄
p·x normalized so that ψ†γ0ψ = 1. Comment on your

result. (4p)

2. Prove the following trace identities valid for any representation

tr(γµ) = 0

tr(γµγν) = 4ηµν

tr(γµγνγσ) = 0

tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)

using only the anticommutation relations {γµ, γν} = 2ηµν and the prop-
erties of the trace. (4p)

3. In a two-dimensional space-time with coordinates (t, x) the Klein-Gordon
equation looks like

1

c2
∂2
t φ− ∂2

xφ+
(
mc

h̄

)2

φ = 0

derive the Dirac equation by using the fact that (E − pc)(E + pc) =
E2 − p2c2. What do the gamma matrices look like? Show that they
satisfy the defining relations of a Clifford algebra. (4p)

4. Study the Dirac equation in two dimensions using the gamma matrices

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
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How does the Dirac Hamiltonian look like? By making an ansatz for
a plane wave solution ψ = u(E, p)e−

i
h̄
Et+ i

h̄
px find the solutions of the

Dirac Hamiltonian Schrödinger equation for u(E, p) for both negative

and positive energy and normalized so that u†u = |E|
mc2

. What is the
relation between E, p and m that needs to be fulfilled to have a solu-
tion?
Introduce a constant potential by adding a constant term V to the
Dirac Hamiltonian and again make the the plane wave ansatz to find
what the relation between E, p and m (and also V ) is in order for a
solution to exist. If we shoot particles with a constant energy E > mc2

on a potential step of size V , the particles will of course penetrate into
the potential region for V being very small but if we continue to raise
the value of V the particles will stop being able to go into the potential
region. At what value of the potential V does this happen? Imagine
continuing to raise the potential V , is there any change in the behavior
of the incoming electrons at some even higher value of V ? (4p)

Scattering theory

1. Imagine studying particle scattering in a two dimensional world (there
are plenty of examples of effectively two dimensional physical systems
in Condensed Matter Physics). How would one define the cross-section?
What dimension (unit) would it have? (2p)

2. Show how the wavefunction in the 2D scattering problem must look like
far away from the source of scattering. Express the differential cross
section in terms of the general solution of the wave function. (4p)

3. Determine, using the first Born approximation in the two dimensional
case defined above, the differential and the total scattering cross-section
in the low energy limit for a spherical potential well

V =

{
|V0| for r < a
0 for r > a.

(5p)

4. Develop the partial wave method for the two dimensional scattering
problem discussed above. First solve the free Schrödinger equation
to find out the proper basis function that should be used in the two
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dimensional case. Using these basis functions, write the plane wave
1

(2π)
eikx in polar coordinates. (5p)

5. Using the partial wave method applied to the two dimensional problem
show that the cross section for scattering on a hard sphere of radius
R (well it should be called a hard disc in the two dimensional case) is
given by the formula

σ =
4

k

∞∑
n=−∞

J2
n(kR)

J2
n(kR) +N2

n(kR)

where k =
√

2mE/h̄. What is the total cross section in the low energy
limit? (5p)

Useful formulas that may be used without further proof.

∫ d2l

(2π)2

eil̄·x̄

E − h̄2 l̄2

2m
+ iε

= − m

πh̄2K0 (−ik|x̄|) , E =
h̄2k2

2m

lim
|z|→∞

K0(z) =

√
π

2z
e−z

where K0 is a so called modified Bessel function.
The Bessel functions Jn and Nn are the two linearly independent solutions
to the differential equation:

d2ψ

dz2
+

1

z

dψ

dz
+

(
1− n2

z2

)
ψ = 0

Here are some asymptotic formulas for ordinary Bessel functions:

lim
z→0

Jn(z) =
1

n!

(
z

2

)n
lim
z→0

N0(z) =
2

π
ln
(
z

2

)
lim
z→0

Nn(z) = −(n− 1)!

π

(
2

z

)n
lim
z→∞

Jn(z) =

√
2

πz
cos

(
z − (2n+ 1)

π

4

)

lim
z→∞

Nn(z) =

√
2

πz
sin

(
z − (2n+ 1)

π

4

)
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and some other useful relations

J−n(z) = (−1)nJn(z)

N−n(z) = (−1)nNn(z)∫ π

0
dθeia cos θ = πJ0(a)∫ 1

0
dxxJ0(ax) =

1

a
J1(a)

6


