Useful relations

We are working in a metric with a “mostly minus” or “west-cost” signature
guv = diag(+1,—1,—1,—1). The gamma matrices are 4 x 4 matrices
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where o; are the Pauli matrices. It is easy to check that {v*,v"} = 2¢"*.
The Dirac equation in momentum space can be written (f — m)u = 0 where
f = ~v*k,. There are 4 independent solutions which can be written as
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where py = p; £ ips, E = \/p? + m? and the first two solutions represents spin
up/down electrons and the last two solutions represents spin up/down positrons.

Using these solutions it is possible to show that ugl)ﬂ,()l) + u((f)ﬂgz) =+ m)aep
and v,(ll)ﬁ,gl) + v,(12)17,§2) =(p—m)ae
Here are some useful gamma matrix relations:
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Tr (y#9'v%9°) = 4(g"9* - g"*g"" + ¢"¢"*)
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Feynman rules
e Do everything in momentum space.

e The basic vertices can beAfound from the interaction Hamiltonian. In pure
QED we have —ie [ d*zypAy so the basic vertex can be drawn as



and it comes with a factor —iey*(2m)*6*(p + ¢ + k).

Since each vertex has a factor of the electric charge e which is small
(e> = 1-) the calculation can be done as an expansion in the number
of vertices. That is, for a given process, draw all possible (connected)
diagrams that can contribute and that contains less than a certain fixed

number of vertices.

Be careful when counting the number of vertices. If you are drawing a
diagram with n vertices there is a factor of %; from the expansion of the
T exp(—i [ H) operator. Then one draws all possible diagrams but some
of them are the same because the integration over the positions of the
vertices.

Here one should also be careful about relative signs between different
diagrams coming from anticommutation of fermionic operators.
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physical polarizations are allowed for external photons.

Every internal electron/positron line comes with a propagator
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Every internal photon line comes with a propagator
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The easiest way to write down the expression for a diagram is to fol-
low the electron/positron backwards in time. First you have an outgoing



electron/positron and you need to write down the wavefunction (as given
above). Then there is a vertex so you need the —iey and the momentum
conserving delta function as given above. Next is either an incoming elec-
tron/positron and you write down its wave function and you are ready,
or there is a propagator which you write down as given above and then
there is a new vertex which gives you a new factor of —iey and so on and
so on. After you have written down the electron/positron lines you fill in
the photons. If they are external you get wavefunctions and if they go be-
tween two different electrons you get propagators connecting the gamma,
matrices.

Calculation of cross sections

e Calculate the probability amplitude for some event using the Feynman
rules given above.

e To calculate the probability one has to take the absolute value squared of
the probability amplitude. Since one always have a delta function express-
ing the conservation of total momentum (27)*3*(p; + ... + p,) one will
get this delta function squared in the expression for the probability. This
we can rewrite, using the expression for the delta function as an integral,
as
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but since we have the second delta function we can replace the exponential
with 1 and we get

(@) 464 (01 + ...+ pa)|* = VT 2m) 6% (01 + ... + Dn),

where V is the volume of the universe and T is the time we let the inter-
action act so that VT = [ d*z.

e To find the total probability we also have to notice that the we cannot
experimentally separate final states which are too close in momenta. That
is, if we are interested in the probability of measuring a particle in the final
state which has momentum py, what we will measure is the probability
for a final state with momentum py plus the probability for a final state
with momentum py +dpy plus the probability for all other state with close
enough momenta. Since for all these states the probability is the same
we can write the total probability as (#states) x P(ps). The number of
states is easy to find since we know the density of states in phase space
# and we arrive at the rule: for every final state we should include a
factor
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e Now we have calculated the probability that the process in question will
take place if we have one particle of each kind in the whole universe and
we measure for T (seconds, say). This is not what we want. In the usual
experimental situation we are shooting a stream of some kind of particles
(say photons) at a target (say an electron) and we are interested in how
many of the incoming particles will get scattered per unit time (second,
say). To get a number which is independent of the incoming flux we
calculate the cross section. Mathematically we can express this as

T = do x (incoming flux),

or in words: the probability per unit time is the cross section times the
incoming flux (incoming flux means the number of incoming particles per
unit time and unit area). From this formula we can compute the cross-
section.

e The flux given by one of our states with speed v we can calculate as follows:
we have to calculate how many particles pass an area A in time 7'. In time
T a total volume of vT'A will pass the area A. Since the wavefunctions of
our particles are normalized to one particle in the whole universe we will
count on average ”7‘;‘4 particles coming through our area A. This means
that we have a flux L
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e Now we can do the integrals over some of the final momenta to get rid
of the delta function. The result is the cross section for some particu-
lar polarizations of incoming and outgoing particles. If this is what one
wants, then one stops here. However, often the incoming states are not
polarized and in the outgoing states we are not observing the polariza-
tion. This leads to further calculations. First take the incoming states. If
the incoming particles are not polarized we have no exact wave-function
description. Rather we have to describe the incoming state in terms of
a density matrix (reflecting the fact that we have no information about
the indivitual phases of the incoming particles). This means that we have
to average over the incoming spin states (with the correpsonding prob-
abilities), in the half spin up half spin down case this means to include
the factor % > - For outgoing particles there are no density matrices, the
particles are in pure states. We can calculate the probability to measure
spin down as well as spin up but if we in the experiment do not make
a difference between these possibilities and calculate all events regardless
of spin we must sum the different probabilities. The probability to mea-
sure spin up or spin down is the sum of the two separate probabilities.
This also leads to a sum over spins. In evaluating these sums we use the
formulas for summing over polarizations given in the first section.



