Towards a method for determination of the electric field in transient discharges

Z Bonaventura\(^1\), L Kusýn\(^1\), Z Navrátil\(^1\) M M Becker\(^{2}\), D Loffhagen\(^2\), T Hoder\(^1\)

\(^1\)Department of Physical Electronics, Fac.Sci., Masaryk University, Kotlářská 2, 611 37 Brno, CZ
\(^{2}\)Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, DE

escampig

Abstract

Zero-dimensional reaction kinetic modeling in Ar is performed in order to evaluate possible methods for determination of the reduced electric field from intensity ratio of Ar excited states. Particular pairs of Ar excited states are identified and selected based on their ability to reflect the value of the reduced electric field in the ratio of their populations.

Balance equations for selected species are combined to a form that is convenient for use in the evaluation of experimental line intensities.

Source terms in the balance equations are analysed and major processes important for the given population are identified.

Reaction Kinetic Model (RKM):

“Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data” M. Stankov, M. M. Becker, T. Hoder, D. Loffhagen, accepted in PSST,

In this work, zero-dimensional modelling is performed, all spatial gradients are considered to be zero:

Balance equations together with equation for electron energy density are integrated in time for a given function of \(E(t)\).

Identification of sensitive ratios

1 2 3 4 5 6 7 8 9 10
1
2 150 100 300 100
3 150 300 150 300 300 100
4 100 300 300 200 200
5 150 100
6
7 150 150
8
9
10

Governing equations


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p1]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{14} \\ &-\bigl[{{\tt Ar[2p1]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{289}+\ldots+k_{292}\right) \\ &-\bigl[{{\tt Ar[2p1]}}\bigr] \left( \nu_{390}+\ldots+\nu_{391}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr]\bigl[{{\tt Ar[1p0]}}\bigr] k_{288} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{406} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p3]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p2]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{13} \\ &-\bigl[{{\tt Ar[2p2]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{293}+\ldots+k_{297}\right) \\ &-\bigl[{{\tt Ar[2p2]}}\bigr] \left( \nu_{386}+\ldots+\nu_{389}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{405} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p3]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p3]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{12} \\ &-\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{298}+\ldots+k_{307}\right) \\ &-\bigl[{{\tt Ar[2p3]}}\bigr] \left( \nu_{383}+\nu_{384}+\nu_{385}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{308} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p2]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{293} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{404} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p3]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p4]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{11} \\ &-\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{308}+\ldots+k_{317}\right) \\ &-\bigl[{{\tt Ar[2p4]}}\bigr] \left( \nu_{379}+\ldots+\nu_{382}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p5]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{318} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{298} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{403} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p4]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p5]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{10} \\ &-\bigl[{{\tt Ar[2p5]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{318}+\ldots+k_{320}\right) \\ &-\bigl[{{\tt Ar[2p5]}}\bigr] \left( \nu_{377}+\nu_{378}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{299} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{309} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{402} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p5]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p6]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{9} \\ &-\bigl[{{\tt Ar[2p6]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{321}+\ldots+k_{323}\right) \\ &-\bigl[{{\tt Ar[2p6]}}\bigr] \left( \nu_{374}+\nu_{375}+\nu_{376}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p8]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{331} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p7]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{324} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p5]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{319} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{310} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{300} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{401} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p6]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p7]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{8} \\ &-\bigl[{{\tt Ar[2p7]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{324}+\ldots+k_{330}\right) \\ &-\bigl[{{\tt Ar[2p7]}}\bigr] \left( \nu_{370}+\ldots+\nu_{373}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p8]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{332} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p6]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{321} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{311} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{301} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{400} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p7]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p8]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{7} \\ &-\bigl[{{\tt Ar[2p8]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{331}+\ldots+k_{338}\right) \\ &-\bigl[{{\tt Ar[2p8]}}\bigr] \left( \nu_{367}+\nu_{368}+\nu_{369}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p9]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{339} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p7]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{325} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p6]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{322} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p5]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{320} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{312} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{302} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{399} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p8]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p9]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{6} \\ &-\bigl[{{\tt Ar[2p9]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{339}+\ldots+k_{344}\right) \\ &-\bigl[{{\tt Ar[2p9]}}\bigr] \left( \nu_{366} \right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p8]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{333} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p7]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{326} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p6]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{323} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{313} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{303} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{398} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p9]})} \end{align*}\]


\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p10]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{5} \\ &-\bigl[{{\tt Ar[2p10]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{345}+\ldots+k_{348}\right) \\ &-\bigl[{{\tt Ar[2p10]}}\bigr] \left( \nu_{362}+\ldots+\nu_{365} \right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p8]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{334} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p9]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{340} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{397} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p10]})} \end{align*}\]


Evolution in time

Electric field \(E(t)\in\{10,\ldots400\}\,\)Td is considered, it’s value is constant in time. Simulation time is chosen so that the initial transient state passes and a steady development of the system is established.

Species in time Ratios in time

The first figure show the development of density of selected species in time for reduced electric field of 100 Td. Steady development of densities can be observed.

The second figure shows the ratio population densities of selected species for reduced electric field of 100 Td.

As the specie densities tend to increase exponentially, ratios of their densities converge.

Electron energy and Population ratio

Electron energy Population ratio

Energy: electron energy converges at a given value of the reduced electric field on a time scale of \(10^{-11}s\). Converged mean electron energy at corresponding values of \(E/N\) are shown

Ratio: Selected population ratios at given value of \(E/N\)

Balance equations for selected species

Balance equations for selected species:

Ar[2p2]

\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p2]}}\bigr]}{{\mathrm d}t} = &\bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{13} \\ &-\bigl[{{\tt Ar[1p0]}}\bigr] \bigl[{{\tt Ar[2p2]}}\bigr]\left(k_{293}+\ldots+k_{297}\right) \\ &-\bigl[{{\tt Ar[2p2]}}\bigr]\left(\nu_{386}+\ldots+\nu_{389}\right)\\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^*[hl]}}\bigr]\nu_{405}\\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p2]})} \end{align*}\]

Ar[2p3]

\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p3]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{12} \\ &-\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{298}+\ldots+k_{307}\right) \\ &-\bigl[{{\tt Ar[2p3]}}\bigr] \left( \nu_{283}+\nu_{284}+\nu_{285}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{308} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p2]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{293} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{404} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p3]})} \end{align*}\]

Ar[2p4]

\[\begin{align*} \frac{{\mathrm d}\bigl[{{\tt Ar[2p4]}}\bigr]}{{\mathrm d}t} = & \bigl[{{\tt e}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{11} \\ &-\bigl[{{\tt Ar[2p4]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] \left(k_{308}+\ldots+k_{317}\right) \\ &-\bigl[{{\tt Ar[2p4]}}\bigr] \left( \nu_{379}+\ldots+\nu_{382}\right) \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p5]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{318} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar[2p3]}}\bigr] \bigl[{{\tt Ar[1p0]}}\bigr] k_{298} \\ &\quad\quad\quad\quad+\bigl[{{\tt Ar^{*}[hl]}}\bigr] \nu_{403} \\ &\quad\quad\quad\quad\quad\quad\quad\quad+\hbox{ (neglected 31 source terms for {\tt Ar[2p4]})} \end{align*}\]

Equations for population ratios

Marked terms are to be analyzed for their contribution to the value of the corresponding population ratio.

Ar[2p3]/Ar[2p2]

\[\begin{align*} \frac{\bigl[{{\tt Ar[2p3]}}\bigr]}{\bigl[{{\tt Ar[2p2]}}\bigr]}=\left(\frac{k_{12}}{k_{13}}\right) \frac{\displaystyle \nu_{293...297} +\nu_{386...389} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p2]}}\bigr]}}{{\mathrm d}t} -\overbrace{\frac{\bigl[{{\tt Ar^{*}[hl]}}\bigr]}{\bigl[{{\tt Ar[2p2]}}\bigr]}\nu_{405}}^{\displaystyle (d)}+\ldots} {\displaystyle \nu_{298..307} +\nu_{283...285} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p3]}}\bigr]}}{{\mathrm d}t} -\underbrace{\frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{308}}_{\displaystyle (a)} -\underbrace{\frac{\bigl[{{\tt Ar[2p2]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{293}}_{\displaystyle (b)} -\underbrace{\frac{\bigl[{{\tt Ar^{*}[hl]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{404}}_{\displaystyle(c)}+\ldots } \end{align*}\]

Ar[2p4]/Ar[2p3]

\[\begin{align*} \frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}=\left(\frac{k_{11}}{k_{12}}\right) \frac{\displaystyle \nu_{298...307} +\nu_{283...285} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p3]}}\bigr]}}{{\mathrm d}t} -\frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{308} -\frac{\bigl[{{\tt Ar[2p2]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{293}+\ldots} {\displaystyle \nu_{308..317} +\nu_{379..382} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p4]}}\bigr]}}{{\mathrm d}t} -\underbrace{\frac{\bigl[{{\tt Ar[2p5]}}\bigr]}{\bigl[{{\tt Ar[2p4]}}\bigr]}\nu_{318}}_{\displaystyle (a^{\prime})} -\underbrace{\frac{\bigl[{{\tt Ar[2p3]}}\bigr]}{\bigl[{{\tt Ar[2p4]}}\bigr]}\nu_{298}}_{\displaystyle (b^{\prime})} -\underbrace{\frac{\bigl[{{\tt Ar^{*}[hl]}}\bigr]}{\bigl[{{\tt Ar[2p4]}}\bigr]}\nu_{403}}_{\displaystyle(c^{\prime})}+\ldots } \end{align*}\]

 

 

 

Source terms

Source terms for \(E/N=100\,\)Td. Threshold for importance of individual processes is set to \(10^{-3}\) for relative value of the source term. Processes selected as important are considered in equations above.

Sources for Ar[2p2] at 100 Td
Gain for Ar[2p3] at 100 Td Loss for Ar[2p3] at 100 Td
Gain for Ar[2p4] at 100 Td Loss for Ar[2p4] at 100 Td

Ar[2p3]/Ar[2p2]

Ratio Ar[2p3]/Ar[2p2]

In conclusion, terms (a) and (b) must be considered:

Simplified formula:

\[\begin{align*} \frac{\bigl[{{\tt Ar[2p3]}}\bigr]}{\bigl[{{\tt Ar[2p2]}}\bigr]}=\left(\frac{k_{12}}{k_{13}}\right) \frac{\displaystyle \nu_{293...297} +\nu_{386...389} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p2]}}\bigr]}}{{\mathrm d}t} +\ldots} {\displaystyle \nu_{298..307} +\nu_{283...285} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p3]}}\bigr]}}{{\mathrm d}t} -\underbrace{\frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{308}}_{\displaystyle (a)} -\underbrace{\frac{\bigl[{{\tt Ar[2p2]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{293}}_{\displaystyle (b)} +\ldots } \end{align*}\]

Ar[2p4]/Ar[2p3]

Ratio Ar[2p4]/Ar[2p3] |

In conclusion, terms (a’) and (b’) must be considered:

Simplified formula:

\[\begin{align*} \frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}=\left(\frac{k_{11}}{k_{12}}\right) \frac{\displaystyle \nu_{298...307} +\nu_{283...285} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p3]}}\bigr]}}{{\mathrm d}t} -\frac{\bigl[{{\tt Ar[2p4]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{308} -\frac{\bigl[{{\tt Ar[2p2]}}\bigr]}{\bigl[{{\tt Ar[2p3]}}\bigr]}\nu_{293}+\ldots} {\displaystyle \nu_{308..317} +\nu_{379..382} +\frac{{\mathrm d}\ln{\bigl[{{\tt Ar[2p4]}}\bigr]}}{{\mathrm d}t} -\underbrace{\frac{\bigl[{{\tt Ar[2p5]}}\bigr]}{\bigl[{{\tt Ar[2p4]}}\bigr]}\nu_{318}}_{\displaystyle (a^{\prime})} -\underbrace{\frac{\bigl[{{\tt Ar[2p3]}}\bigr]}{\bigl[{{\tt Ar[2p4]}}\bigr]}\nu_{298}}_{\displaystyle (b^{\prime})} +\ldots } \end{align*}\]

Conclusions

Ratios of \({\tt Ar[2p3]/Ar[2p2]}\) and \({\tt Ar[2p4]/Ar[2p3]}\) are identified as potentially interesting for diagnostics to provide estimation of \(E/N\) in Argon discharge.

Pattern is found:

More density ratios needed to be determined form optical emission diagnostics.

This is inconvenience, but also it opens door to determination of \(E/N\) by using multiple density ratios at the same time. The evaluation of this method needs to be performed.

Presented results are for constant values of \(E/N\).