Background

Introduction: Runaways electrons and TGFs

® C.T.R. Wilson 1925: Runaway electrons (RE), bremsstrahlung.

® Terrestrial gamma-ray flashes (TGFs): Fishman et al., Science 264 (1994).
BATSE: 76 detections of TGFs in 9 years.
RHESSI: >500 detections (2004—2006).

® Possibly >50 TGFs per day (>3M lightning events).
® Source altitude < 20 km, energy of photons up to 20 MeV.
® Accepted scenario: bremsstrahlung of runaway electrons.
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Detailed mechanism by which lightning is associated with TGFs is still a mystery.
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Runaway electrons

® Dynamic friction force (Rate of energy loss): % =eE—F.

® Runaway electrons in air: Wilson 1925.

® Relativistic Runaway Electron Avalanche (RREA): Gurevich 1992;

® Relativistic feedback: Dwyer 2003 (Avalanche threshold Ey, = 2.84 x 105 V/m)
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(Fig. source: Dwyer et al., Space Sci Rev, 2012.)

Fluid and Hybrid models of streame



Two theories to explain TGFs

® Relativistic Runaway Electron Avalanche + Feedback (e.g., Dwyer)
— high energy seed electron needed.

® Thermal runaway process (e.g., Moss 2006 , Chanrion 2008, 2014 , Li 2012, Celestin 2011 ).
— acceleration of electrons in streamer fields (tens of kV).
— further acceleration in the field of leaders (tens of MV).
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Credits: S.Celestin Bremsstrahlung emission process.

Needed: 10'7 runaway electrons, >1MeV, (Dwyer, GRL, 2003).

Is the thermal runaway process from streamers able to provide enough of RE??
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Background

Introduction: What is a streamer?

Streamer breakdown theory ( Loeb and Meek 1930°) Electron density  Electric field
—s ‘Fast’ breakdown for spark discharge at atm pressure  9.0ns  [cm®] tkvrem]

f -7 N . 105 109101210150 40 80 120
— Time scale <10~ s for one-cm gap: o —

ions too slow to be blamed; 1 ©
(classical theory relied on secondary emission) 0.9
— New concept: ‘Streamers’ 08
0.7
Streamers: o
Contracted ionizing waves with self-generated field go's
So.

enhancement that propagates into a low-ionized medium 3

N

exposed to high electric field leaving filamentary trails Z:
of plasma behind. 0:2
Characteristics: 0.1
Velocity even 1% speed of light; o F
Radius typically 10~4-10—3m at STP; R Bt S o
Peak electric field at Streamer head SH (net space charge): 4—7 Ex (Ex ~ 32 kv/cm at

STP)

~ Intense electron impact ionization: space charge region move forward;

Polarity (sign of charge in the streamer head):
— (+) Positive: propagate. against electron drift: need of ambient seed charges
— (—) Negative: el. aval. from SH ~~ propagate w/o need of seed electrons
[R. V. Hodges, 1985 Phys. Rev. A; Raizer, 1991; V. Pasko 2006, U. Ebert 2006 PSST]
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Background Fluid model Hybrid model Results Runaway threshold

Introduction: Why are streamers interesting?
C.T.R. Wilson (1925): Possibility of large scale discharges high above thunderclouds.
if(

The dipole electric field of the thunderclouds falls with altitude as 1/#°.
.and.

Critical breakdown field falls exponentially with decreasing air density.
)then

There must be an altitude high above where the electric force

would exceed the sparkling limit.
endif
Double headed streamers ~- precursors to more complicated phenomena.

100
Thermosphere/Tonosphere Elve
CT—————— T
. v .' Sprite halo N
P Sprite streamers
[
Stratosphere
Blue je

Altitude (km)

t :
"CG

Fluid and Hybrid models of streamers Z. Bonaventura

[V.P. Pasko PSST 2007] [credits: cnes]
Since 1989 many Transient Luminous Events discovered.
But streamers play a role even for more unusual phenomenal!



Background Fluid model

Modeling of streamers: Classical fluid model
How to model the streamer discharge?
It depends on the physical question we want to address!
Basic ingredients [u. Ebert, PSST, 2006; A. Luque, U. Ebert, JCP 2012]:
(1) lonization processes (electron impact, photons)
(2) Drift and diffusion of charged particles in electric field
(3) Effects of a space charge on the electric field

‘Classical’ fluid streamer model:

Otns — sign(qs)V - (ns vs) — V - (Ds Vns) = S,
eoV2p =Y qsns, s € {charged species}.
S

Approximations:
(a) Density Approximation: distribution of charged species described with densities

(b) Local Field Approximation: Electrons relax rapidly enough
~ in equilibrium with E at given place.

(c) Electrostatic Approximation: Induced electric fields are negligible (E = —V ).
Challenges: spatial and time scales span many orders of magnitude.

Classical model is not sufficient to study electron acceleration!
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Background

Hybrid model

A beam-bulk approach proposed by Belenguer and Boeuf for RF discharge (Phys. Rev. A, 1990).
Model combines 2 models for 2 electron groups divided in the energy space:
Electrons below 100 eV
Axisymmetric fluid streamer model in a point to plain geometry
[Pecherau2012,Celestin2009]

® Classical drift-diffusion model based on [Kulikovsky1997]

® The mobility, diffusion coefficient and reaction rates are calculated from Monte

Carlo model for electrons of energy below 100 eV.

® Electric field is calculated solving the Poisson equation

Electrons above 100 eV
2D-s,3D-V PIC-MCC model

® Standard PIC-MCC code follows the electron trajectories in the electric field and
their collisions with neutral air molecules [Chanrion, JCP, 2008] .

® |Injection of electrons Fluid — PIC based on fluid macroscopic parameters using
precomputed distribution functions.

® Electrons that slow below 100 eV are reinjected in the fluid model.

e Coupling between the two models is repeated every time step.
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Model

Test case
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® Hemisphere pin electrode
(0.2 cm radius).

® 0.5cmgap.

® Applied voltage:
(negative polarity)
step function with amplitude:
{—35, —45, —50kV}
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® Air at atmospheric pressure

® |ow preionization of 104
cm—3

Photoionization not included: to accent the role fast electrons

Z. Bonaventura



Effect of RE Electron a ration

Effect of fast electrons on discharge: -35kV

U,pp = — 35KV 1
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3ackground \ Effect of RE ration
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Electron acceleration
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RE acceleration source
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Background Model Effect of RE Electron acceleration Conclusion

: z-energy space
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