Background	Fluid model	Hybrid model	Results	Runaway threshold	Conclusion

Introduction: Runaways electrons and TGFs

- C.T.R. Wilson 1925: Runaway electrons (RE), bremsstrahlung.
- Terrestrial gamma-ray flashes (TGFs): Fishman et al., Science 264 (1994).
 BATSE: 76 detections of TGFs in 9 years.
 RHESSI: >500 detections (2004–2006).
- Possibly >50 TGFs per day (>3M lightning events).
- Source altitude < 20 km, energy of photons up to 20 MeV.
- Accepted scenario: bremsstrahlung of runaway electrons.

Detailed mechanism by which lightning is associated with TGFs is still a mystery.

Runaway electrons

- Dynamic friction force (Rate of energy loss): $\frac{\partial p}{\partial t} = eE F$.
- Runaway electrons in air: Wilson 1925.
- Relativistic Runaway Electron Avalanche (RREA): Gurevich 1992;
- Relativistic feedback: Dwyer 2003 (Avalanche threshold $E_{th} = 2.84 \times 10^5$ V/m)

ヘロト ヘワト ヘビト ヘビト

Background	Fluid model	Hybrid model	Results	Runaway threshold	Conclusion

Two theories to explain TGFs

- Relativistic Runaway Electron Avalanche + Feedback (e.g., Dwyer) → high energy seed electron needed.
- Thermal runaway process (e.g., Moss 2006, Chanrion 2008, 2014, Li 2012, Celestin 2011).
 - \rightarrow acceleration of electrons in streamer fields (tens of kV).
 - \rightarrow further acceleration in the field of leaders (tens of MV).

Needed: 10¹⁷ runaway electrons, >1MeV, (Dwyer, GRL, 2003).

Is the thermal runaway process from streamers able to provide enough of RE??

Background	Fluid model	Hybrid model	Results	Runaway	threshold	Conclusion
Introduc	tion: What	at is a stre	amer?			
Streamer → 'F → Ti → N	breakdown th ast' breakdown me scale <10 ions too slow to (classical theo ew concept: 'St	eory (Loeb and M for spark discharg 's for one-cm gap be blamed; ry relied on second eamers'	leek 1930 ') e at atm pressure : dary emission)	9.0 ns	Electron density [cm ⁻³] 10 ⁶ 10 ⁹ 10 ¹² 10 ¹⁵	Electric field [kV/cm] 0 40 80 120 (c)
Streamer Con enha expo of pl	s: tracted ionizing ancement that p osed to high ele asma behind.	waves with self-ge ropagates into a lo ctric field leaving fi	enerated field ow-ionized mediun lamentary trails	0.7 0.6 50.5 № 0.4 0.3 0.2		
Character Velocity Radius ty	ristics: even 1% speed pically 10 ⁻⁴ -10	of light;) ⁻³ m at STP;		0.1	-0.1 0 0.1 r [cm]	-0.1 0 0.1 r [cm]

Peak electric field at Streamer head SH (net space charge): 4–7 E_k ($E_k \sim$ 32 kV/cm at STP)

→ Intense electron impact ionization: space charge region move forward; Polarity (sign of charge in the streamer head):

 \rightarrow (+) **Positive**: propagate. against electron drift: need of ambient seed charges

 \rightarrow (-) Negative: el. aval. from SH \rightsquigarrow propagate w/o need of seed electrons

[R. V. Hodges, 1985 Phys. Rev. A; Raizer, 1991; V. Pasko 2006, U. Ebert 2006 PSST].

Introduction: Why are streamers interesting?

C.T.R. Wilson (1925): Possibility of large scale discharges high above thunderclouds.

if(

The dipole electric field of the thunderclouds falls with altitude as $1/h^3$. and.

Critical breakdown field falls exponentially with decreasing air density.

)then

There must be an altitude high above where the electric force would exceed the sparkling limit.

endif

Double headed streamers ~> precursors to more complicated phenomena.

[V.P. Pasko PSST 2007]

[credits: cnes]

Since 1989 many Transient Luminous Events discovered.

But streamers play a role even for more unusual phenomena! -

Modeling of streamers: Classical fluid model

How to model the streamer discharge? It depends on the physical question we want to address! Basic ingredients [U. Ebert, PSST, 2006; A. Luque, U. Ebert, JCP 2012]:

- (1) Ionization processes (electron impact, photons)
- (2) Drift and diffusion of charged particles in electric field
- (3) Effects of a space charge on the electric field

'Classical' fluid streamer model:

$$\begin{array}{l} \partial_t n_s - \operatorname{sign}(q_s) \nabla \cdot (n_s \, \mathbf{v}_s) - \nabla \cdot (D_s \, \nabla n_s) = \mathcal{S}_s, \\ \varepsilon_0 \nabla^2 \varphi = \sum_s q_s n_s, \quad s \in \{ \text{charged species} \}. \end{array}$$

Approximations:

- (a) Density Approximation: distribution of charged species described with densities
- (b) Local Field Approximation: Electrons relax rapidly enough \rightsquigarrow in equilibrium with ${\bf E}$ at given place.
- (c) Electrostatic Approximation: Induced electric fields are negligible ($\mathbf{E} = -\nabla \varphi$).

Challenges: spatial and time scales span many orders of magnitude.

Classical model is not sufficient to study electron acceleration!

Background	Model	Effect of FE	FE spectrum	Conclusion

Hybrid model

A beam-bulk approach proposed by Belenguer and Boeuf for RF discharge (Phys. Rev. A, 1990). Model combines 2 models for 2 electron groups divided in the energy space:

Electrons below 100 eV

Axisymmetric fluid streamer model in a point to plain geometry

[Pecherau2012,Celestin2009]

- Classical drift-diffusion model based on [Kulikovsky1997]
- The mobility, diffusion coefficient and reaction rates are calculated from Monte Carlo model for electrons of energy below 100 eV.
- Electric field is calculated solving the Poisson equation

Electrons above 100 eV 2D-s.3D-V PIC-MCC model

- Standard PIC-MCC code follows the electron trajectories in the electric field and their collisions with neutral air molecules [Chanrion, JCP, 2008].
- Injection of electrons Fluid → PIC based on fluid macroscopic parameters using precomputed distribution functions.
- Electrons that slow below 100 eV are reinjected in the fluid model.
- Coupling between the two models is repeated every time step.

Background	Model	Effect of RE	Conclusion

Test case

- Hemisphere pin electrode ٠ (0.2 cm radius).
- 0.5 cm gap. •
- Applied voltage: (negative polarity) step function with amplitude: $\{-35, -45, -50kV\}$
- Air at atmospheric pressure ٠
- Low preionization of 10⁴ cm⁻³

Photoionization not included: to accent the role fast electrons

э

Effect of fast electrons on discharge: -35kV

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background

Effect of fast electrons on discharge

Z. Bonaventura

Background	Model	Effect of RE	Electron acceleration	Conclusion

RE acceleration source

(日) (四) (日) (日) (日)

Z. Bonaventura