Displaced Drude peak from vertex corrections to optical conductivity in correlated metals

Univ. Ass. Dr. Anna Kauch

Institute of Solid State Physics, TU Wien, Austria

Susceptibilities and optical conductivity are examples of two-particle response functions that are the key quantities for connecting theoretical predictions with experimental results. It can however become highly non-trivial to calculate them, especially in cases when vertex corrections are important. In my talk I will explain what vertex corrections to response functions are and when they become important. I will then present diagrammatic methods of their computation with the focus on parquet equations. I will show results for a special type of vertex corrections to optical conductivity, the pi-tons [1], that are present in systems with antiferromagnetic or charge density wave fluctuations. These vertex corrections lead to a displaced Drude peak in correlated metals [2].

- [1] A. Kauch, P. Pudleiner, K. Astleithner, P.Thunström, T. Ribic, K. Held, Phys. Rev. Lett. 124, 047401 (2020)
- [2] J. Krsnik, O. Simard, P. Werner, A. Kauch, and K. Held, Phys. Rev. B 110, 075118 (2024)