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Fig. 1 Double-slit experiment with single electrons

Electrons emitted from a source are sent to the electron biprism. The electrons are attracted towards the
central filament and overlap in the electrons arrived lower detector plane at the detector are displayed as
bright spots on the monitor. Even when the electron arrival rate is as low as 10 electrons/sec, the

accumulation of single electrons forms a biprism interference pattern
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Fig. 2 Single electron events build up to from an interference pattern in the double-slit experiments.

The number of electron accumulated on the screen. (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons;
(d) 160,000. The total exponsure time from the beginning to the stage (d) is 20 min.
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FIG. 6. Horizontal section through the double slit.
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FIG. 2. Schematic representation of the experimental setup:
nozzle system and gas reservoir N; electron impact excitation
EE: entrance slit A, double slit B, and detector screen C;
secondary electron multiplier SEM (mounted together with C
on a translation stage). Dimensions: d =8 um, L =L"=64 cm;
slit widths: s, =2 um, s;=1 um.
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FIG. 3. Scanning-electron-microscope pictures of the mi-
crofabricated transmission structures, with the slit structures in
the vertical direction and the support gratings in the horizontal
direction: (a) entrance and detection slit (slit width 5, =2
um); (b) double slit (slit width s>=1 um and slit separation
d=8 um); (c) detection grating (grating periodicity 8 ym).
The 100-um scale is the same for all three pictures.
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Figure 2 Interference pattern produced by Cgo molecules. a, Experimental recording
(open circles) and fit using Kirchhoff diffraction theory (continuous ling). The expected
zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in
the text. b, The molecular beam profile without the grating in the path of the molecules.
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Figure 1 Diagram of the experimental set-up (not to scale). Hot, neutral Cgo molecules
leave the oven through a nozzle of 0.33mm X 1.3mm X 0.25 mm

(width X height X depth), pass through two collimating slits of 0.01 mm X 5mm
(width X height) separated by 1.04 m, traverse a SiN, grating (period 100 nm) 0.1 m after
the second slit, and are detected via thermal ionization by a laser 1.25m behind the
grating. The ions are then accelerated and directed towards a conversion electrode. The
ejected electrons are subsequently counted by a Channeltron electron multiplier. The
laser focus can be reproducibly scanned transversely to the beam with 1-.m resolution.

In our experiment, the de Broglie wavelength of the interfering
fullerenesis already smaller than their diameter by a factor of almost
400. It would certainly be interesting to investigate the interference
of objects the size of which is equal to or even bigger than the
diffracting structure. Methods analogous to those used for the
present work, probably extended to the use of optical diffraction
structures, could also be applied to study quantum interference of
even larger macromolecules or clusters, up to small viruses™*. []



