

response

$$
\Rightarrow i\frac{d}{dt} \triangle \hat{\rho}(t) = [\hat{H}, \triangle \hat{\rho}(t)] + [\hat{H}_{\text{int}}(t), \hat{\rho}_{\text{o}}]
$$
\nHeisenberg picture For $\triangle \hat{\rho}$ and $\hat{H}_{\text{int}} - \text{absorls time-evolution due to } \hat{H}$
\n
$$
\triangle \hat{\rho}(t) = e^{\frac{i}{\hbar}\hat{H}t} \triangle \hat{\rho}(t) e^{-\frac{i}{\hbar}\hat{H}t} \qquad \hat{H}_{\text{int}}(t) = e^{\frac{i}{\hbar}\hat{H}t} \hat{H}_{\text{int}}(t) e^{-\frac{i}{\hbar}\hat{H}t}
$$
\nSchrödinger picture
\n
$$
i\frac{d}{dt} \triangle \hat{\rho}(t) = i\frac{d}{dt} \left(\frac{d}{dt} e^{\frac{i}{\hbar}\hat{H}t} \triangle \hat{\rho}(t) e^{-\frac{i}{\hbar}\hat{H}t} + e^{\frac{i}{\hbar}\hat{H}t} \triangle \hat{\rho}(t) \frac{d}{dt} e^{-\frac{i}{\hbar}\hat{H}t} \right) + e^{\frac{i}{\hbar}\hat{H}t} i\frac{d}{dt} \frac{d}{dt} e^{-\frac{i}{\hbar}\hat{H}t}
$$
\n
$$
= i\frac{d}{dt} \left(\frac{i}{\hbar} \hat{H} \triangle \hat{\rho}(t) - \frac{i}{\hbar} \triangle \hat{\rho}(t) \hat{H}\right) + e^{\frac{i}{\hbar}\hat{H}t} \left(\hat{L}\hat{H}, \triangle \hat{\rho}(t)\right] + \left[\hat{H}_{\text{int}}(t), \hat{\rho}_{\text{o}}\right] \right) e^{-\frac{i}{\hbar}\hat{H}t} = \left[\hat{H}_{\text{int}}(t), \hat{\rho}_{\text{o}}\right]
$$
\nFind von Neumann equation $i\frac{d}{dt} \triangle \hat{\rho}(t) = \left[\hat{H}_{\text{int}}(t), \hat{\rho}_{\text{o}}\right]$ (all in Heisenberg p(c.)
\nsolution $\triangle \hat{\rho}(t) = \frac{1}{i\hbar} \int_{-\infty}^{t} \hat{L}\hat{H}_{\text{int}}(t), \hat{\rho}_{\text{o}} \right] d\epsilon'$ - Friet order in $\hat{H}_{\text{int$

. evolution of the average $\langle A \rangle$ $\langle A \rangle_t = Tr \hat{\rho} \hat{A} = Tr \hat{\rho}_0 \hat{A} + Tr \Delta \hat{\rho} (t) \hat{A}$ equilibrium <A>eq induced $\langle A \rangle_t - \langle A \rangle_{eq} = \text{Tr} \{ e^{-\frac{i}{\hbar} \hat{H}t} \Delta \hat{\rho}^{(t)} e^{\frac{i}{\hbar} \hat{H}t} \hat{A} \}$ $\Delta \hat{\beta}(t)$ in Heisenberg = Tr $\{ \Delta \hat{\rho}(t) e^{\frac{i}{\hbar} \hat{H} t} \hat{A} e^{-\frac{i}{\hbar} \hat{H} t} \} = \text{Tr} \{ \Delta \rho(t) \hat{A}(t) \}$ = $Tr\{\frac{1}{i\hbar}\int_{0}^{t}[\hat{H}_{int}(t^{\prime})\hat{\rho}_{o} - \hat{\rho}_{o}\hat{H}_{int}(t^{\prime})]\}dt^{\prime}\hat{A}(t)\}$ using cychic property $= \frac{1}{i \hbar} \int_{-\infty}^{t} Tr \left[\hat{\zeta}_{0} \hat{A}(t) \hat{H}_{int}(t') - \hat{\zeta}_{0} \hat{H}_{int}(t') \hat{A}(t) \right] dt'$ Kubo Formula $\langle A \rangle_t - \langle A \rangle_{eq} = \frac{1}{i\hbar} \int_{-\infty}^{\infty} \text{Tr} \hat{\rho}_o [\hat{A}(t), \hat{H}_{int}(t')] dt' = \frac{1}{i\hbar} \int_{-\infty}^{\infty} \langle \hat{L} \hat{A}(t), \hat{H}_{int}(t') \rangle_{eq} dt'$ Heisenberg ops

• connection to many-body GF
\ncompling to external Field is of the Form
\n
$$
\angle A \rangle_{t} = \langle A \rangle_{e_{1}} - \frac{1}{i\hbar} \int_{-\infty}^{+\infty} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t') dt'
$$
\ninternal variable
\n
$$
= \langle A \rangle_{e_{1}} + \int_{-\infty}^{\infty} \chi(t, t') \varphi(t') dt' + \chi(t, t') = \frac{i}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \langle A \rangle_{e_{1}} + \int_{-\infty}^{\infty} \chi(t, t') \varphi(t') dt' + \chi(t, t') = \frac{i}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n
$$
= \frac{1}{\hbar} \langle \hat{A}(t), \hat{B}(t') \rangle_{e_{1}} \varphi(t + t')
$$
\n<math display="block</p>

. coupling to EM field via vector potential entering the kinetic energy $\hat{H}_{int} = \hat{T}_{A} - \hat{T}$ $\hat{H}_{int} = -\hat{j} \cdot \hat{S}\hat{A} \rightarrow \hat{j} = -\frac{\hat{S}H_{int}}{\hat{S}\hat{A}}$ $\frac{\pi}{i} \nabla \rightarrow \frac{\pi}{i} \nabla - q \overline{A}$ $\hat{T}_A = \int d^3\vec{r} \sum_c \hat{\psi}_G^{\dagger}(\vec{r}) \frac{1}{2m} \left[\frac{\hbar}{i} \nabla + e \vec{A}(\vec{r}) \right]^2 \hat{\psi}_G(\vec{r})$ $\hat{T}_A - \hat{T} = -\frac{1}{2}\int d^3\vec{r} \left(-\frac{e}{m}\vec{A}\hat{n}\right)\cdot \vec{A} - \int d^3\vec{r} \left(-\frac{e\vec{r}}{2m}\right)\sum_{\vec{q}}\left(\hat{\psi}_c^{\dagger}\nabla \hat{\psi}_c - \hat{\psi}_c\nabla \hat{\psi}_c^{\dagger}\right)\cdot \vec{A}$ Ja - diamagnetic Jp- paramagnetic current density

- electrons in a single band with the dispersion ε_{k} , vector potential $\bar{A}(\bar{r}) = \sum_{q} e^{i\bar{q}\cdot\bar{r}} \bar{A}_{q}$ $\hat{J}_{\alpha}^{\alpha}(q) = \sum_{\beta} \hat{\tau}_{\alpha\beta} \overline{A}_{\beta q}$ $\hat{\tau}_{\alpha\beta} = \sum_{k \sigma} \frac{e^{2}}{k^{2}} \frac{\partial \xi_{k}^{2}}{\partial k_{\alpha} \partial k_{\beta}}$ $\hat{c}_{k \sigma}^{+} \hat{c}_{k \sigma}$ $\hat{J}_{\rho}^{\alpha}(q) = -e \sum_{k \sigma} \frac{1}{h} \frac{\partial \xi_{k}}{\partial k_{\alpha}} \hat{c}_{k \sigma}^{+} \hat{c}_{k+q \sigma}$ For free particles with $\varepsilon_{k} = \frac{\hbar^2 k^2}{2m}$: $\frac{e^2}{m} S_{\alpha\beta} \hat{c}_{kG}^{\dagger} \hat{c}_{kG}$ $\frac{\hbar k_{\alpha}}{m}$
- · application of Kubo formula

$$
\langle \hat{j} \rangle_{t} = \langle \hat{j} \rangle_{eq} - \frac{1}{i\hbar} \int_{-\infty}^{t} \langle \hat{L} \hat{j}(t), \hat{H}_{int}(t') \rangle_{eq} dt' \qquad \hat{H}_{int} = -\sum_{\beta} \hat{j}_{\beta}^{\beta}(\hat{q}) A_{\beta q}
$$

$$
\langle \hat{j}^{\alpha} \rangle = \sum_{\beta} \langle \hat{\tau}_{\alpha\beta} \rangle_{eq} A_{\beta}(t) + \int_{-\infty}^{\infty} dt \pi_{\alpha\beta}(t-t') A_{\beta}(t') \qquad \frac{i}{\hbar} \langle \hat{L} \hat{j}_{\beta}^{\alpha}(t), \hat{j}_{\beta}^{\beta}(t') \rangle \vartheta(t-t')
$$

diangular

optical conductivity

$$
G_{\alpha\alpha}(\omega) = \frac{\langle \hat{j}_{\alpha} \rangle}{E_{\alpha}} = \frac{\langle \hat{T}_{\alpha\alpha} \rangle + \Pi_{\alpha\alpha}(\omega)}{i(\omega + i0^{+})} \rightarrow \text{Res} = -\pi \left[\langle \hat{T} \rangle + \text{Re} \Pi(\omega = 0) \right] \delta(\omega) + \frac{\ln \Pi(\omega)}{\omega}
$$
\n
$$
\hat{E} = i(\omega + i0^{+})\hat{A}
$$
\ncompensated unless SC

incoming flux = # particles per time unit per unit area

· Fermi's Golden rule Final initial $\frac{d^{2}G}{d\Omega dE} \sim \sum_{i \in I} | \langle k_{f} | \otimes \langle f | \hat{M} | i \rangle \otimes | k_{i} \rangle |^{2} S(E_{f} + \hbar \omega_{f} - E_{i} - \hbar \omega_{i})$

C scattering operator energy conservation

in thermal equilibrium
\n
$$
\frac{d^2G}{d\Omega dE} \sim \frac{1}{2} \sum_{\zeta F} e^{-\beta E_{\zeta}} |\langle F| \hat{H}_{-q} | i \rangle|^2 S[E_F - E_{\zeta} - (h\omega_{\zeta} - h\omega_{F})] = S(q_{\zeta} \epsilon)
$$
\nscattering operator acting on the system
\n
$$
- t \text{pically } \hat{H}_{int}
$$
, but may be more complex
\n
$$
- |k_{\zeta}\rangle_{1} |k_{F}\rangle
$$
 as external parameters, usually \hat{H} depends on momentum transfer q
\n
$$
\bullet
$$
 connection to GF
\n
$$
\sum_{\zeta F} \frac{d^2G}{dE} [\langle F_{\zeta} | \hat{H}_{int} | \hat{H
$$

bosonic GF in energy domain
$$
G_R(E) = -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt e^{\frac{i}{\hbar}(E + i0^+)t} \langle [A(t), \hat{A}^+] \rangle \vartheta(t)
$$

$$
A(E) = \frac{1}{2} \sum_{mn} e^{-\beta E_m} \left\{ \left| \langle n | \hat{A}^{\dagger} | m \rangle \right|^2 \delta \left[E - (E_n - E_m) \right] - \left| \langle n | \hat{A} | m \rangle \right|^2 \delta \left[E + (E_n - E_m) \right] \right\}
$$

$$
= \frac{1}{2} \sum_{mn} e^{-\beta E_m} |\langle n | \hat{A}^{\dagger} | m \rangle|^2 \, \delta \left[E - (E_n - E_m) \right] \left(1 - e^{-\beta E} \right)
$$
 relabel m on &

$$
e^{-\beta E_m} = e^{-\beta E_n} e^{-\beta (E_m - E_n)}
$$

$$
\begin{aligned}\n\text{Suscept} & \text{left} & \sqrt{(4, E)} = \frac{1}{h} \int_{-\infty}^{\infty} dt \ e^{\frac{i}{h} (E + i \theta^+) t} \left\langle \left[\hat{H}_{q}(t), \hat{H}_{-q} \right] \right\rangle \vartheta(t) \\
& \widehat{A} \ \hat{A}^+ \\
\text{S} & \widehat{A}^+ \\
\text{S} & \widehat{H}_{1}(E) = (1 - e^{-\beta E})^{-1} (1 - e^{-\beta E})^{-1} \left(-\frac{1}{h} \operatorname{Im} G_R \right) = (1 - e^{-\beta E})^{-1} \frac{1}{h} \operatorname{Im} \chi \\
& = \frac{1}{h} \left[N_B(E) + 1 \right] \operatorname{Im} \chi(q, E) \\
& \text{N}_B(E) + 1\n\end{aligned}
$$

 \circ sum rule $SdE[N_8(\epsilon)+1]A(\epsilon) = \langle \hat{A} \hat{A}^+ \rangle$

$$
\int_{-\infty}^{\infty} S(q, E) dE = \frac{1}{\pi} \int_{-\infty}^{\infty} dE \left[N_B(E) + 1 \right] A(E) = \frac{1}{\pi} \langle \hat{M}_q \hat{M}_{-q} \rangle
$$

\n
$$
\Rightarrow
$$
 structure Factor = energy-resolved correlations

e emission x absorption intensities
\nanti-Stokes: excitation destroyed
$$
E < 0
$$

$$
\frac{S(-q_1-E)}{S(q_1E)} = \frac{(1-e^{tBE})^{-1}}{(1-e^{-\beta E})^{-1}} \frac{\gamma(-q_1-E)}{\gamma(q_1E)} = e^{-\beta E}
$$
\nSubkes: excitation created $E > 0$
$$
\frac{S(q_1E)}{\gamma(q_1E)} = \frac{(1-e^{-\beta E})^{-1}}{\gamma(q_1E)}
$$

$$
=
$$
neutron - no charge, magnetic moment
\n
$$
\hat{\overline{m}}_{n} = -g_{\mu} \frac{1}{\pi} \hat{\overline{L}} \frac{1}{\pi} \hat{\overline{L}} \frac{1}{\pi} \hat{\overline{L}} \frac{1}{\pi} \hat{\overline{L}} \hat{\overline{L}} = 3.826 \dots
$$
\n
$$
= 3.826 \dots
$$
\n
$$
= 3.826 \dots
$$
\n
$$
= 2 \frac{e \hbar}{m_{\rho}}
$$

. interactions of neutrons with the sample

contact interaction

potential ~
$$
\sum_{R} \delta(\overline{r} - \overline{R} - \overline{u}_{R})
$$

lattice phonons

2) electrons - Light, large mag. moment
\ndipole-dipole interaction -
$$
\hat{m}_{h} \cdot \overline{B}_{e}
$$

\ndipolar field from electron
\n $\hat{m}_{e} = -\cos\frac{4}{\hbar}(g\hat{\overline{S}} + \hat{\overline{L}})$ $g = 2.002...$
\nBohr magneton $\mu_{B} = \frac{e\hbar}{2m_{e}}$

• non-magnetic scattering (nuclear)
\n
$$
\langle k_{F}|\otimes\langle F|\hat{H}_{int}|\hat{r}\rangle\rangle\otimes|k_{c}\rangle = \int d^{3}\vec{r} e^{-i\vec{k}_{F}\cdot\vec{r}} e^{i\vec{k}_{C}\cdot\vec{r}} \langle F|\sum_{R} \hat{\delta}(\vec{r}-\vec{R}-\hat{\vec{m}}_{R})|\hat{r}\rangle =
$$

\n $\int_{0}^{\infty} \text{netron wave functions } |k\rangle \rightarrow e^{i\vec{k}\cdot\vec{r}} \qquad \text{Fourier component } \hat{\vec{u}}_{-4}$
\n= $\langle F|\sum_{R} e^{i\vec{q}\cdot\vec{R}} e^{i\vec{q}\cdot\vec{R}}|\hat{r}\rangle \approx \langle F|\sum_{R} e^{i\vec{q}\cdot\vec{R}}|\hat{r}\rangle + i\vec{q}\cdot\langle F|\sum_{R} e^{i\vec{q}\cdot\vec{R}}\hat{u}_{R}|\hat{r}\rangle$
\n $\vec{q}_{r} = \vec{k}_{c} - \vec{k}_{p} \qquad \text{expand as } \hat{\vec{l}} + i\vec{q}\cdot\hat{\vec{n}_{R}}$
\n1) elastic neutron scattering - $\langle F|\sum_{R} e^{i\vec{q}\cdot\vec{R}}|\hat{r}\rangle \rightarrow |F\rangle = i\vec{r}\rangle$, $E = 0$
\nstatic structure Factor $\sum_{R} e^{i\vec{q}\cdot\vec{R}} \sim \sum_{G} \vec{S}_{\vec{q},\vec{G}} \qquad \text{Bragg peaks} \rightarrow \text{lattice geometry}$
\n2) inelastic neutron scattering (in)
\ndynamic structure factor $i\vec{q}\cdot\langle F|\hat{\vec{u}}_{-q}|\hat{r}\rangle \sim \langle F|\hat{\vec{a}}_{-q}+\hat{\vec{a}}_{q}^{+}|\hat{r}\rangle$
\n $\rightarrow \text{phonon dynamics (via } \vec{q}\text{-scan of } E = \vec{r}\omega_{q})$

 \bullet magnetic scattering of neutrons due to $-\hat{\overline{m}}_{n} \cdot \overline{B}_{e}$ magnetic field of electron magnetic moment $\hat{\vec{m}}_e$ at origin: $\hat{\vec{B}}_e = \nabla \times \hat{\vec{A}} = \nabla \times \left[\frac{\mu_o}{4\pi} \left(\hat{\vec{m}}_e \times \frac{\vec{r}}{r^3} \right) \right]$ $\langle k_{\rm F}|\otimes\langle F|\hat{u}_{\rm int}|i\rangle\otimes |k_{i}\rangle \sim \int d^{3}\vec{r} e^{-i\vec{k}_{\rm F}\cdot\vec{r}} e^{i\vec{k}_{i}\cdot\vec{r}} \sum_{\vec{d}} \langle F|\nabla x(\hat{\vec{m}}_{\vec{d}} \times \frac{\vec{r}-\hat{\vec{r}}_{\vec{d}}}{|\vec{r}-\hat{\vec{r}}_{\vec{d}}|^{3}})|i\rangle =$
 $\int d^{3}\vec{r} e^{-i\vec{k}_{\rm F}\cdot\vec{r}} e^{i\vec{k}_{\rm F}\cdot\vec{r}} e^{-i\vec{k}_{\rm F}\cdot\vec$ $\langle F|\sum_{j}e^{i\vec{q}\cdot\hat{\vec{r}}_{j}}\frac{\vec{q}_{r}x(\vec{\hat{m}}_{j}x\vec{q})}{q^{2}}|i\rangle = \langle F|\vec{q}^{o}x(\hat{\vec{n}}_{-q}x\vec{q}^{o})|i\rangle = \langle F|\hat{\vec{m}}_{-q}-(\hat{\vec{n}}_{-q}\cdot\vec{q}^{o})\vec{q}^{o}|i\rangle$

M component $\perp \vec{q}$ non-polarized case - scalar product $\langle \rangle^* \langle \rangle$ $|\langle ... \rangle|^2 = \langle 1 | \hat{\overline{n}}_{\perp q} | 1 \rangle \cdot \langle 1 | \hat{\overline{n}}_{\perp q} | 1 \rangle = \sum_{\alpha \beta} \left(\delta_{\alpha \beta} - \frac{\gamma_{\alpha} \gamma_{\beta}}{q^2} \right) \langle 1 | \hat{\overline{n}}_{q}^{\alpha} | 1 \rangle \langle 1 | \hat{\overline{n}}_{q}^{\beta} | 1 \rangle$ Final structure Factor elestic part $(E=0)$ $S(q, E) \sim \sum_{\alpha\beta} \left(\delta_{\alpha\beta} \frac{q_{\alpha}q_{\beta}}{q^2} \right) [N_{\beta}(E) + 1] \ln \chi_{\alpha\beta}(q, E)$ > magnetic Bragg peaks inelestic part with $\chi_{\alpha\beta}(q,t) = \frac{t}{\hbar} \langle \Gamma \hat{n}_{q}^{\alpha}(t), \hat{n}_{-q}^{\beta} \rangle \vartheta(t)$ \rightarrow magnetic excitations

ORNL hosts two of the world's most powerful sources of neutrons for research:

High Flux Isotope Reactor (HFIR)

85MW reactor constructed 1965 to produce Pu, Cm, ...

Spallation Neutron Source (SNS)

neutrons produced by microsecond proton pulses to a steel target filled with liquid mercury

SEQUOIA

direct geometry time-of-flight chopper spectrometer

· INS on graphite

0.0008

0.0000

YQ Cheng, ORNL Delaire et al., Nat. Mater. 10, 614 (2011)

Lazcuon

Headings et al., Phys. Rev. Lett. 105, 247001 (2010)

 \bullet quantized vector potential (Coulomb gange $\nabla \cdot \vec{A} = 0$)

$$
\frac{\hat{A}}{\hat{A}(\bar{r})} = \frac{1}{\sqrt{\Omega}} \sum_{q\lambda} e^{i\hat{q}\cdot\bar{r}} \overline{e}_{q\lambda} \sqrt{\frac{\hbar}{2\epsilon_{0}\omega_{q}}} (\hat{a}_{q\lambda} + \hat{a}_{q\lambda}^{+})
$$
\n\nphoton polarization

e coupling of charged particles to EM Field
\n
$$
\hat{H}_{\text{int}} = -\sum_{q} \hat{J}_{p}^{\alpha}(q) \hat{A}_{-q}^{\alpha} + \frac{1}{2} \sum_{q_{1}q_{2}} \hat{T}_{\alpha_{\beta}}(q_{1}+q_{2}) \hat{A}_{-q_{1}}^{\alpha} \hat{A}_{-q_{2}}^{\beta}
$$
\none-photon $(\hat{a}+\hat{a}^+) = 0$
\none-photon $(\hat{a}+\hat{a}^+) = 0$ two-photon $(\hat{a}+\hat{a}^+) = 0$
\ndiagrammatically:
\n
$$
\hat{J}_{p} \cdot A = \mu_{\alpha} \epsilon^{+} = \hat{T} \cdot A \cdot A
$$
\n
$$
\hat{T} \cdot A \cdot A = \mu_{\alpha} \epsilon^{+}
$$
\n
$$
\hat{T} \cdot A \cdot A = \mu_{\alpha} \epsilon^{+}
$$
\n
$$
\hat{T} \cdot A \cdot A = \mu_{\alpha} \epsilon^{+}
$$

. Scattering to second order in \hat{H}_{int} (to capture resonant Raman & RIXS)

$$
S(\eta,E) \sim |\langle \bar{k}_{\mu} \bar{e}_{\mu}| \otimes \langle f| \left(\hat{H}_{\text{int}} + \hat{H}_{\text{int}} \frac{1}{\hat{H} - E_{\text{c}}} | \hat{H}_{\text{int}} \right) |i \rangle \otimes |\bar{k}_{\text{c}} \bar{e}_{\text{c}} \rangle|^{2} \delta(E_{\mu} - E_{\text{c}} - E)
$$

First order second order

 $\langle F|\hat{\rho}(\gamma)|i\rangle$ single-photon absorption $\left(\begin{matrix} 1 \\ 1 \end{matrix} \right)$ \rightarrow optical conductivity

2)
$$
\langle f | \hat{\tau}_{\alpha\beta}(\gamma) | i \rangle
$$
 non-resonant Raman channel

3)
$$
\langle F| \sum_{q} \hat{j}_{p}(q) \hat{A}_{-q} \frac{1}{\hat{H}-E_{i}} \sum_{q} \hat{j}_{p}(q) \hat{A}_{-q} |i\rangle
$$

divole transitions

 $=\langle f|\hat{R}|i\rangle$ resonant Raman channel

RIXS at Advanced Photon Source

- designed for iridium L3 edge (11.215kev) - high resolution of 10 meV

Kim et al., Phys. Rev. X 10, 021034 (2020)

 \bullet O

