
FK110 Diagrammatic methods in modern condensed matter physics

Exam problem 1 – Lindhard function for a free-electron gas

Calculate the Lindhard function for a gas of non-interacting electrons with the usual free-electron
dispersion

εk =
ℏ2k2

2m
− EF

in three dimensions. Express the resulting real and imaginary part of the Lindhard function

Π(q, E) =
2

Ω

∑
k

nF (εk)− nF (εk+q)

εk+q − εk − E − i0+

using the reduced quantities Q = q/2kF and W = E/4EF . Show that the lowest term in the expansion
of the reduced Π̃ = (2π2ℏ2/mkF )Π above the W = Q + Q2 line reads as Π̃(Q,W ) ≈ −2

3(Q/W )2. In
the RPA approximation, this result gives the plasmon energy in the q → 0 limit.

Exam problem 2 – System of coupled harmonic oscillators

Consider a system of a bosonic particle a coupled to a large set of bosonic modes bn, the coupled system
being described by the Hamiltonian

H = ℏΩ a†a+
∑
n

ℏωn b
†
nbn +

∑
n

gn(a
†bn + b†na).

Using the equation of motion technique, derive a set of differential equations for the thermal Green’s
functions related to the a and bn particles. Note that the form of the Hamiltonian generates also
off-diagonal Green’s functions that need to be included. Perform Fourier transform to Matsubara
representation that converts the differential equations into algebraic form and solve this set for the
Green’s function of the particle a. Analytically continue the result to obtain its retarded form and
the corresponding spectral function. Assuming N → ∞ modes bn homogeneously covering the interval
ℏωmin to ℏωmax and constant gn = g/

√
N , determine explicitly the selfenergy of the mode a and try to

plot a few representative graphs of the selfenergy and the spectral function for varying relative position
of Ω with respect to the [ωmin, ωmax] interval and varying coupling strength g.

Exam problem 3 – Enhancement of AF fluctuations due to Hubbard interaction

Calculate the spin susceptibility of electrons moving in a square lattice renormalized by on-site Hub-
bard repulsion. The electrons are described by a tight-binding Hamiltonian including nearest-neighbor
hopping with an amplitude t and second nearest-neighbor hopping with an amplitude t′

Htt′ = −t
∑

⟨ij⟩∈NN

ĉ†iσ ĉjσ − t′
∑

⟨ij⟩∈nNN

ĉ†iσ ĉjσ +H.c.

(summation over the spin projections is implied) leading to the familiar dispersion

εk = −2t(cos kxa+ cos kya)− 4t′ cos kxa cos kya.

The total Hamiltonian of the system

H =
∑
kσ

(εk − µ)ĉ†kσ ĉkσ + U
∑
i

n̂i↑n̂i↓



includes also the Hubbard interaction term that is to be treated within RPA approximation. Using
a diagrammatic RPA approach, determine the zz component χzz(q, E) of the spin susceptibility and
evaluate it numerically. The necessary Brillouin zone (BZ) summations to get the bare susceptibility
can be performed by utilizing a regular grid of k points covering the BZ. Take the following values
for the parameters: t = 0.4 eV, t′ = −t/3, band occupation n = 0.85, and plot the results for a few
values of U that range from zero to critical U . Your plots should show both real and imaginary parts
of χzz(q, E) as maps plotted along the conventional path Γ − X − M − Γ in the 2D Brillouin zone of
the square lattice. Here Γ = (0, 0), X = (π/a, 0), and M = (π/a, π/a). Additionally, show the BZ
maps of static χzz(q, E = 0) and the Fermi surface (FS) that will help you to understand the link to
FS nesting. Optionally, you can contrast the results for the above nearly half-filled case with those for
small (n ≲ 0.5) or large (n ≳ 1.5) band filling and/or inspect the consequences of varying the t′/t ratio.


