
FK110 Diagrammatic methods in modern condensed matter physics

Exam problem 1 – Propagators in classical mechanics

Consider a classical damped harmonic oscillator of frequency ω driven by a general force F (t). Its
one-dimensional motion is captured by the differential equation

m
d2x

dt2
+mγ

dx

dt
+mω0x

2 = F (t) .

(a) Determine the corresponding retarded Green’s function G(t, t′) by solving the above equation with
F (t) being a delta-function δ(t− t′) and by imposing the initial condition G(t, t′) = 0 for t < t′.

(b) Perform Fourier transform to convert the Green’s function from time domain to frequency domain
and show that it takes the form

G(ω) =
1

2mω̃

(
1

ω + ω̃ + i γω
− 1

ω − ω̃ + i γω

)
,

where ω̃ stands for the frequency of free damped oscillations.

(c) When extended into the whole complex ω plane, the retarded Green’s function obtained in (b) shows
two poles below the real frequency axis. As a consequence, the retarded Green’s function obeys the
Kramers-Kronig relation of the form

ReG(ω) =
1

π
P

+∞∫
−∞

ImG(ω′)
ω′ − ω

.

Check this feature by an explicit evaluation of the integral.

Exam problem 2 – Fluctuation–dissipation theorem

Considering a general equilibrium many-body system, use the spectral representation based on Hamil-
tonian eigenstates to show that the dynamical correlation function of quantity A defined as

C(E) = ⟨ÂÂ†⟩E =

+∞∫
−∞

⟨ Â(t)Â†(0) ⟩ e
i
ℏEt dt

and the imaginary part of the corresponding susceptibility

χ(E) = χ′(E) + iχ′′(E) =
i

ℏ

+∞∫
−∞

⟨ [ Â(t), Â†(0) ] ⟩ϑ(t) e
i
ℏEt dt

are connected by fluctuation–dissipation theorem

C(E) = 2ℏ [NB(E) + 1]χ′′(E)

with NB denoting the Natanson-Bose-Einstein factor. The dynamical correlation function captures the
fluctuations of a given physical quantity A while the imaginary part of the susceptibility corresponds to
the absorption/dissipation of energy taken from the external driving field coupled via A. This theorem
may be used, e.g., to relate the dynamical structure factor S(q, E) = ⟨Sα

qS
α
−q⟩E accessible by neutron

scattering to the corresponding spin susceptibility χ′′
αα(q, E).

Note: To simplify the notation, assume that the eigenstates form a discrete spectrum.
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Exam problem 3 – Lindhard function for a free-electron gas

Calculate the Lindhard function for a gas of non-interacting electrons with the usual free-electron
dispersion

εk =
ℏ2k2

2m
− EF

in three dimensions. Express the resulting real and imaginary part of the Lindhard function

Π(q, E) =
2

Ω

∑
k

nF (εk)− nF (εk+q)

εk+q − εk − E − i0+

using the reduced quantities Q = q/2kF and W = E/4EF . Show that the lowest term in the expansion
of the reduced Π̃ = (2π2ℏ2/mkF )Π above the W = Q+Q2 line reads as Π̃(Q,W ) ≈ −2

3(Q/W )2. Within
the RPA approximation, this result gives the plasmon energy in the q → 0 limit.

Exam problem 4 – System of coupled harmonic oscillators

Consider a system of a bosonic particle a coupled to a large set of bosonic modes bn, the coupled system
being described by the Hamiltonian

H = ℏΩ a†a+
∑
n

ℏωn b
†
nbn +

∑
n

gn(a
†bn + b†na).

(a) Using the equation of motion technique, derive a set of differential equations for the thermal propaga-
tors related to the a and bn particles. Note that the form of the Hamiltonian generates also off-diagonal
propagators (i.e. those connecting a and b) that need to be included. Perform Fourier transform to
Matsubara representation that converts the differential equations into algebraic form and solve this set
for the propagator of the particle a. Analytically continue the result to obtain its retarded form and
the corresponding spectral function.

(b) Try to express the propagator of a as a series of Feynman diagrams and deduce the above result
based on this series. Hint: Focus on the selfenergy of a arising due to the interaction with bn modes.

(c) Assuming N → ∞ modes bn homogeneously covering the interval ℏωmin to ℏωmax and constant
gn = g/

√
N , determine explicitly the selfenergy of the mode a and try to plot a few representative

graphs of the selfenergy and the spectral function for varying relative position of Ω with respect to the
[ωmin, ωmax] interval and varying coupling strength g.

Exam problem 5 – Optical response of a semiconductor and Bethe–Salpeter equation

In this problem you will address the optical response functions via diagrammatic formalism. The key
ingredient is the current-density operator ȷ̂ which couples a many-body system to the light field captured
by a vector potential A. In terms of the Fourier components, the interaction Hamiltonian can be written
as Hint = −

∑
q ȷ̂q ·Aq. To study the optical response, it is sufficient to work with the q = 0 components.

The imaginary part of the dielectric function, which reflects the optical absorption processes, can be
determined via so-called current-current correlation function obtained by including the current-density
operator into the general susceptibility definition, namely

Im ϵαα(ω) =
1

ϵ0 ω2
ImΠj−j(ℏω) with Πj−j(E) =

i

ℏ

+∞∫
−∞

⟨[̂ȷα(t), ȷ̂α(0)]⟩ϑ(t) e
i
ℏEtdt .

Consider specifically the case of a semiconductor with the valence band having dispersion ε1k and
conduction band having dispersion ε2k, schematically depicted in panel (a). These bands are separated
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by the band gap Eg. The current density operator corresponding to interband transitions reads as

ȷ̂α =
∑
kσ

ieγkα(c
†
2kσc1kσ − c†1kσc2kσ) ,

where γkα is essentially a dipole matrix element for the direction α. We keep it unspecified, note
however, that in the above definition, γkα needs to take real values.
(a) In the crudest approximation, the current-current correlator can be evaluated via the diagrams
presented in panel (b). These neglect the Coulomb interaction between the electron and hole in the
intermediate state. Write down the expressions corresponding to these diagrams, evaluate the doable
summations over free variables and obtain ImΠj−j(ℏω). The resulting formula has a straightforward
interpretation in terms of the interband transitions sketched in the scheme of panel (a).
(b) To account for the Coulomb interaction between the excited electron and hole, the series of ladder
diagrams may be considered. These can be compactly expressed by introducing a renormalized current
vertex as shown in panel (c). The vertex function Γ12(k, iE, iν) is the solution of so-called Bethe-Salpeter
equation (BSE) also presented in panel (c). Write down the algebraic expressions corresponding to both
corrected Πj−j(iν) and BSE but do not evaluate them. When translating the diagrammatic BSE, denote
the Coulomb matrix element (which is in fact reduced by screening) as a general Vq with the momentum
q specified by the diagram. A deeper look at the BSE shows, that one can actually easily perform the
Matsubara summation in the equation. You may optionally include this step. If everything is properly
worked out, the corrected Πj−j from panel (c) includes excitonic absorption below the band gap.

Exam problem 6 – Enhancement of AF fluctuations due to Hubbard interaction

Calculate the spin susceptibility of electrons moving in a square lattice renormalized by on-site Hub-
bard repulsion. The electrons are described by a tight-binding Hamiltonian including nearest-neighbor
hopping with an amplitude t and second nearest-neighbor hopping with an amplitude t′

Htt′ = −t
∑

⟨ij⟩∈NN

ĉ†iσ ĉjσ − t′
∑

⟨ij⟩∈nNN

ĉ†iσ ĉjσ +H.c.

(summation over the spin projections is implied) leading to the familiar dispersion

εk = −2t(cos kxa+ cos kya)− 4t′ cos kxa cos kya.
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The total Hamiltonian of the system

H =
∑
kσ

(εk − µ)ĉ†kσ ĉkσ + U
∑
i

n̂i↑n̂i↓

includes also the Hubbard interaction term that is to be treated within RPA approximation. Using
a diagrammatic RPA approach, determine the zz component χzz(q, E) of the spin susceptibility and
evaluate it numerically. The necessary Brillouin zone (BZ) summations to get the bare susceptibility
can be performed by utilizing a regular grid of k points covering the BZ. Use the following values of the
parameters: t = 0.4 eV, t′ = −t/3, band occupation n = 0.85, and plot the results for a few values of U
that range from zero to critical U . Your plots should show both real and imaginary parts of χzz(q, E)
as maps plotted along the conventional path Γ − X −M − Γ in the 2D BZ of the square lattice. Here
Γ = (0, 0), X = (π/a, 0), and M = (π/a, π/a). Additionally, show the BZ maps of static χzz(q, E = 0)
and the Fermi surface (FS) that will help you to understand the link to FS nesting. Optionally, you can
contrast the results for the above nearly half-filled case with those for small (n ≲ 0.5) or large (n ≳ 1.5)
band filling and/or inspect the consequences of varying the t′/t ratio.
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