
Programming Languages:
Application and Interpretation

Shriram Krishnamurthi
Brown University

Copyright c© 2003–05, Shriram Krishnamurthi

This book is available free-of-cost on the Internet. The edition you
have was generated onDecember 8, 2004. For the latest version,
please find me through a search engine. You should be able to
access the book from my Web pages (which also provide a revision
history); failing that, please contact me.

ii

Preface

This book is the primary text for Brown University’s course cs173. This course is intended for junior and
senior (3rd and 4th year) undergraduates, as well as beginning graduate students. In practice, the course
enrollment includes some outstanding sophomores (2nd year) as well as advanced graduate students.

The course and book are my attempt to synthesize two conflicting traditions of teaching programming
languages: through interpreters and by survey. I believe interpreters are a superior framework for under-
standing, but surveying languages makes them more tangible, resulting in bottom-up learning. In an ideal
world, we would have time enough to offerboth courses and, the survey course, being rid of the need to
teach programming language principles, would show students how to really use different languages power-
fully: “in anger”, as the British say. This book is a compromise wherein every feature is either explicitly or
implicitly driven by experience, with use preceding implementation.

Design Principles

• Concepts like design, elegance and artistic sensibility are rarely manifest in computer science courses;
in the name of not being judgmental, we may be running the risk of depriving our students of judg-
ment itself. We should reverse this trend. Students must understand that artificial objects have their
own aesthetic; the student must learn to debate the tradeoffs that lead to an aesthetic. Programming
languages are some of the most thoroughly designed artifacts in computer science. Therefore, the
study of programming languages offers a microcosm to study design itself.

• The best means we have to lead students to knowledge is through questions, not answers. The best
education prepares them to assess new data by confronting it with questions, processing the responses,
and iterating until they have formed a mental model of it. This book is therefore structured more like
a discussion than a presentation. It leads the reader down wrong paths (so don’t blindly copy code
from it!). It allows readers to get comfortable with mistaken assumptions before breaking them down
systematically.

• The programming languages course is one of the few places in the curriculum where we can tease
out and correct our students’ misconceptions about this material. They are often misled on topics
such as efficiency and correctness. Therefore, material on compilation, type systems and memory
management should directly confront their biases. For instance, a presentation of garbage collection
that does not also discuss the trade-offs with manual memory management will fail to address the
prejudices students bear.

iii

iv PREFACE

Background and Prerequisite

This book assumes that students are comfortable reasoning informally about loop invariants, have modest
mathematical maturity, and are familiar with the existence of the Halting Problem. At Brown, they have all
been exposed to Java but not necessarily to any other languages (such as Scheme).

Supplementary Material

There is some material I use in my course that isn’t (currently) in this book:

preparation in Scheme For the first week, I offer supplementary sessions that teach students Scheme. The
material from these sessions is available from my course Web pages. In addition, I recommend the
use of a simple introduction to Scheme, such as the early sections ofThe Little Schemeror of How to
Design Programs.

domain-specific languagesI discuss instances of real-world domain-specific languages. I find the OASIS
standardXACML , an access-control language, particularly illustrative. Students find the concepts easy
to grasp, and can see why the language is significant. In addition, it is one they may themselves
encounter (or even decide to use) in their programming tasks.

garbage collection I have provided only limited notes on garbage collection because I feel no need to offer
my own alternative to Paul Wilson’s classic survey,Uniprocessor Garbage Collection Techniques. I
recommend choosing sections from this survey, depending on student maturity, as a supplement to
this text.

model checking I supplement the discussion of types with a presentation on model checking, to show
students that it is possible to go past the fixed set of theorems of traditional type systems to systems
that permit developers to state theorems of interest. I have a pre-prepared talk on this topic, and would
be happy to share those slides.

Web programming Before plunging into continuations, I discuss Web programmingAPIs and demonstrate
how they mask important control operators. I have a pre-prepared talk on this topic, and would
be happy to share those slides. I also wrap up the section on continuations with a presentation on
programming in the PLT Scheme Web server, which natively supports continuations.

articles on design I hand out a variety of articles on the topic of design. I’ve found Dan Ingalls’s dissection
of Smalltalk, Richard Gabriel’s on Lisp, and Paul Graham’s on both programming and design the
most useful. Graham has now collected his essays in the bookHackers and Painters.

logic programming The notes on logic programming are the least complete. Students are already familiar
with unification from type inference by the time I arrive at logic programming. Therefore, I focus on
the implementation of backtracking. I devote one lecture to the use of unification, the implications
of the occurs-check, depth-first versus breadth-first search, and tabling. In another lecture, I present
the implementation of backtracking through continuations. Concretely, I use the presentation in Dorai
Sitaram’sTeach Yourself Scheme in Fixnum Days. This presentation consolidates two prior topics,
continuations and macros.

v

Exercises

Numerous exercises are sprinkled throughout the book. Several more, in the form of homework assignments
and exams, are available from my course’s Web pages (where〈year〉 is one of2000 , 2001 , 2002 , 2003
and2004):

http://www.cs.brown.edu/courses/cs173/ 〈year〉/

In particular, I donot implement garbage collectors and type checkers. These are instead homework assign-
ments, ones that students generally find extremely valuable (and very challenging!).

Programs

This book asks students to implement language features using a combination of interpreters and little com-
pilers. All the programming is done in Scheme, which has the added benefit of making students fairly
comfortable in a language and paradigm they may not have employed before. End-of-semester surveys re-
veal that students are far more likely to consider using Scheme for projects in other courses after taking this
course than they were before it (even when they had prior exposure to Scheme).

Though every line of code in this book has been tested and is executable, I purposely do not distribute
the code associated with this book. While executable code greatly enhances the study of programming
languages, it can also detract if students execute the code mindlessly. I therefore ask you, Dear Reader, to
please type in this code as if you were writing it, paying close attention to every line. You may be surprised
by how much many of them have to say.

Course Schedule

The course follows approximately the following schedule:

Weeks Topics
1 Introduction, Scheme tutorials, Modeling Languages
2 Substitution and First-Class Functions

3, 4 Recursion, Laziness
5, 6 Continuations

7 State
8 Garbage Collection

9, 10, 11 Types
12 Macros
13 Logic Programming

Miscellaneous “culture lecture” topics such as model checking, extensibility and future directions consume
another week.

An Invitation

I think the material in these pages is some of the most beautiful in all of human knowledge, and I hope any
poverty of presentation here doesn’t detract from it. Enjoy!

vi PREFACE

Acknowledgments

Unlike Olin Shivers, I did not do it all, by myself.
This book has a long and humbling provenance. The conceptual foundation for this interpreter-based

approach traces back to seminal work by John McCarthy. My own introduction to it was through two texts
I read as an undergraduate, the first editions ofThe Structure and Interpretation of Computer Programsby
Abelson and Sussman with Sussman andEssentials of Programming Languagesby Friedman, Wand and
Haynes. Please read those magnificent books even if you never read this one.

Early lecture notes for this course, transcribed by the graduate teaching assistants, Dave Tucker and Rob
Hunter, helped preserve continuity through iterations of the course. Dave also helped edit a prior version of
these notes. Greg Cooper has greatly influenced my thinking, especially on lazy evaluation. Five generations
of students at Brown have endured drafts of this book.

Bruce Duba, Corky Cartwright, Andrew Wright, Cormac Flanagan, Matthew Flatt and Robby Findler
have all significantly improved my understanding of this material. Matthew and Robby’s work on DrScheme
has greatly enriched the course’s pedagogy. Christian Queinnec and Paul Graunke inspired the presentation
of continuations through Web programming, which is an infinite improvement over all prior approaches.

Alan Zaring, John Lacey and Kathi Fisler recognized that I might like this material and introduced me
to it (over a decade ago) before it was distributed through regular channels. Dan Friedman generously gave
of his time as I navigated throughEssentials, and continues to field my (sometimes impertinent) questions.
Richard Cobbe provided invaluable advice on typefaces. Thanks for comments, probing questions and bug
reports to Bruce Duba, Dan Friedman, Neel Krishnaswami, Benjamin Landon, Paulo Matos, Grant Miner,
Manos Renieris, Peter Rosenbeck, Amr Sabry, Francisco Solsona and Phil Wadler.

My chairs at Brown, Tom Dean and Eli Upfal, have permitted me to keep teaching my course so I
could develop this book. I can’t imagine how many course staffing nightmares they’ve endured, and ensuing
temptations they’ve suppressed, in the process.

Finally, this book owes its existence to Matthias Felleisen. An earlier version of these notes grew out of
my transcript of his course at Rice University. Even earlier, on October 8, 1993, in response to my repeated,
pestering messages about Amr Sabry’s lecture notes for his course, he told me to “play with them”. I think
he had hoped that that would make me go away.

vii

viii ACKNOWLEDGMENTS

Contents

Preface iii

Acknowledgments vii

I Prelude 1

1 Modeling Languages 3
1.1 Modeling Meaning . 4

1.2 Modeling Syntax . 5

1.3 A Primer on Parsers . 6

1.4 Primus Inter Parsers . 9

II Rudimentary Interpreters 11

2 Interpreting Arithmetic 13

3 Substitution 15
3.1 Defining Substitution . 16

3.2 Interpretingwith . 20

3.3 The Scope ofwith Expressions . 21

3.4 What Kind of Redundancy do Identifiers Eliminate? . 22

3.5 Are Names Necessary? . 24

4 An Introduction to Functions 27
4.1 Enriching the Language with Functions . 27

4.2 The Scope of Substitution . 29

4.3 The Scope of Function Definitions . 30

4.4 Helper Functions . 30

ix

x CONTENTS

5 Caching Substitution 33
5.1 The Substitution Cache . 34
5.2 Fixing the Interpreter . 36

6 First-Class Functions 39
6.1 A Taxonomy of Functions . 39
6.2 Enriching the Language with Functions . 40
6.3 Makingwith Redundant . 43
6.4 Implementing Functions using a Substitution Cache . 43
6.5 Some Perspective on Scope . 45

6.5.1 Differentiation . 45
6.5.2 Callbacks . 46

6.6 Eagerness and Laziness . 48
6.7 Helper Functions . 49

III Intermezzo 51

7 Representations and Meta-Interpreters 53
7.1 Re-Implementing Substitution Caches . 53
7.2 A New Representation forFAE Functions . 54
7.3 Types of Interpreters . 55

IV Recursion 59

8 Understanding Recursion 61
8.1 A Recursion Construct . 62
8.2 Environments for Recursion . 63
8.3 A Hazard . 67

9 Implementing Recursion 69
9.1 Procedural Representation of Recursive Environments . 70
9.2 Datatype Representation of Recursive Environments . 72

V Laziness 79

10 Programming with Laziness 81
10.1 Haskell . 81

10.1.1 Expressions and Definitions . 81
10.1.2 Lists . 83
10.1.3 Polymorphic Type Inference . 84
10.1.4 Laziness . 86

CONTENTS xi

10.1.5 An Interpreter . 90
10.2 Shell Scripting . 92

11 Implementing Laziness 95
11.1 Implementing Laziness . 95
11.2 Caching Computation . 99
11.3 Caching Computations Safely . 102
11.4 Scope and Evaluation Regimes . 104

VI State 109

12 Church and State 111

13 Mutable Data Structures 113
13.1 Implementation Constraints . 114
13.2 Store-Passing Style . 117

13.2.1 An Example of Evaluation using Store-Passing Style 118
13.2.2 Implementing the Interpreter . 120

13.3 Scope versus Extent . 123

14 Variables 127
14.1 Implementing Variables . 128
14.2 Interaction Between Variables and Function Application 129
14.3 Perspective . 132

VII Continuations 139

15 Some Problems with Web Programs 141

16 The Structure of Web Programs 145
16.1 Explicating the Pending Computation . 146
16.2 A Better Server Primitive . 147
16.3 Testing Web Transformations . 149
16.4 Executing Programs on a Traditional Server . 150

17 More Web Transformation 153
17.1 Transforming Recursive Code . 153
17.2 Transforming Multiple Functions . 155
17.3 Transforming State . 157
17.4 Transforming Higher-Order Functions . 158
17.5 Perspective on the Web Transformation . 162

xii CONTENTS

18 Conversion into Continuation-Passing Style 165
18.1 The Transformation, Informally . 165

18.2 The Transformation, Formally . 168

19 Programming with Continuations 173
19.1 Capturing Continuations . 174

19.2 Escapers . 174

19.3 Exceptions . 175

19.4 Web Programming . 177

19.5 Producers and Consumers . 177

19.6 A Better Producer . 182

19.7 Why Continuations Matter . 188

20 Implementing Continuations 189
20.1 Representing Continuations . 189

20.2 Adding Continuations to the Language . 192

20.3 Testing . 195

21 Continuations and Compilation:
Explicating the Stack 199
21.1 Examples . 199

21.1.1 Factorial . 199

21.1.2 Tree Sum . 201

21.1.3 Filtering Positive Numbers . 202

21.2 Tail Calls . 204

21.3 On Stacks . 206

21.4 Consolidation . 207

22 Continuations and Compilation:
Machine Representations 209
22.1 The Stack in Memory . 209

22.2 Lists in Memory . 210

VIII Memory Management 215

23 Automatic Memory Management 217
23.1 Motivation . 217

23.2 Truth and Provability . 220

CONTENTS xiii

IX Semantics 223

24 Honey, I Shrunk the Language 225
24.1 Encoding Lists . 226
24.2 Encoding Boolean Constants and Operations . 227
24.3 Encoding Numbers and Arithmetic . 228
24.4 Eliminating Recursion . 231

25 Semantics 237

X Types 241

26 Introduction 243
26.1 What Are Types? . 245
26.2 Type System Design Forces . 246
26.3 Why Types? . 246

27 Type Judgments 249
27.1 What They Are . 249
27.2 How Type Judgments Work . 251

28 Typing Control 255
28.1 Conditionals . 255
28.2 Recursion . 256
28.3 Termination . 258
28.4 Typed Recursive Programming . 259

29 Typing Data 263
29.1 Recursive Types . 263

29.1.1 Declaring Recursive Types . 263
29.1.2 Judgments for Recursive Types . 264
29.1.3 Space for Datatype Variant Tags . 266

30 Type Soundness 269

31 Explicit Polymorphism 273
31.1 Motivation . 273
31.2 Solution . 274
31.3 The Type Language . 277
31.4 Evaluation Semantics and Efficiency . 277
31.5 Perspective . 279

xiv CONTENTS

32 Type Inference 281
32.1 Inferring Types . 281

32.1.1 Example: Factorial . 282
32.1.2 Example: Numeric-List Length . 283

32.2 Formalizing Constraint Generation . 284
32.3 Errors . 285
32.4 Example: Using First-Class Functions . 287
32.5 Solving Type Constraints . 288

32.5.1 The Unification Algorithm . 288
32.5.2 Example of Unification at Work . 288
32.5.3 Parameterized Types . 289
32.5.4 The “Occurs” Check . 290

32.6 Underconstrained Systems . 290
32.7 Principal Types . 291

33 Implicit Polymorphism 293
33.1 The Problem . 293
33.2 A Solution . 294
33.3 A Better Solution . 295
33.4 Recursion . 296
33.5 A Significant Subtlety . 296
33.6 Why Let and not Lambda? . 297
33.7 The Structure of ML Programs . 297
33.8 Interaction with Effects . 298

XI Domain-Specific Languages and Metaprogramming 299

34 Domain-Specific Languages 301
34.1 Language Design Variables . 301
34.2 Languages as Abstractions . 301
34.3 Domain-Specific Languages . 302

35 Macros as Compilers 305
35.1 Language Reuse . 305

35.1.1 Example: Measuring Time . 305
35.1.2 Example: Local Definitions . 308
35.1.3 Example: Nested Local Definitions . 309
35.1.4 Example: Simple Conditional . 310
35.1.5 Example: Disjunction . 311
35.1.6 Example: For Loops . 313

35.2 Hygiene . 318
35.3 Comparison to Macros in C . 320

CONTENTS xv

35.4 Abuses of Macros . 320
35.5 Uses of Macros . 321

36 Macros and their Impact on Language Design 323
36.1 Language Design Philosophy . 323
36.2 Example: Pattern Matching . 324
36.3 Example: Automata . 327

36.3.1 Concision . 331
36.3.2 Efficiency . 333

36.4 Other Uses . 334
36.5 Perspective . 334

XII Logic Programming 335

37 Programming in Prolog 337
37.1 Example: Academic Family Trees . 337
37.2 Intermission . 343
37.3 Example: Encoding Type Judgments . 344
37.4 Final Credits . 347

XIII What’s Next? 349

38 Programming Interactive Systems 351

39 What Else is Next 355

xvi CONTENTS

Part I

Prelude

1

Chapter 1

Modeling Languages

A student of programming languages who tries to study a new language can get overwhelmed by the many
details he encounters. Virtually every programming language consists of

• a peculiar syntax

• some behavior associated with each syntax

• numerous useful libraries

• a collection of idioms that programmers of that language use

All four of these attributes are important to a programmer who wants to adopt a language. To a scholar,
however, one of these is profoundly significant, while the other three are of lesser importance.

The first insignificant attribute is the syntax. Syntaxes are highly sensitive topics,1 but in the end, they
don’t tell us very much about a programsbehavior. For instance, the following code fragment

a [25] + 5

has more in common with

(+ (vector-ref a 25) 5)

than with

a [25] + 5

How come? Because the first is in Java and the second is in Scheme, both of which signal an error if the
vector associated witha has fewer than 25 entries; the third, in C, blithely ignores the vector’s size, leading
to unspecified behavior, even though its syntax is exactly the same as that of the Java code.

1Some computer scientist—I don’t know who, but almost certainly an American—once said, “Syntax is the Viet Nam of
programming languages”. Think that over for a moment.

3

4 CHAPTER 1. MODELING LANGUAGES

That said, syntax does matter, at least inasmuch as its brevity can help programmers express and under-
stand more by saying less.2 For the purpose of our study, however, syntax will typically be a distraction, and
will often get in the way of our understanding deeper similarities (as in the Java-Scheme-C example above).
We will therefore use a uniform syntax for all the languages we implement.

The size of a language’s library, while perhaps the most important characteristic to a programmer who
wants to get a job done, is usually a distraction when studying a language. This is a slightly tricky contention,
because the line between the core of a language and its library is fairly porous. Indeed, what one language
considers an intrinsic primitive, another may regard as a potentially superfluous library operation. With
experience, we can learn to distinguish between what must belong in the core and what need not. It is even
possible to make this distinction quite rigorously using mathematics. Our supplementary materials will
include literature on this distinction.

Finally, the idioms of a language are useful as a sociological exercise (“How do the natives of this lin-
guistic terrain cook up a Web script?”), but it’s dangerous to glean too much from them. Idioms are funda-
mentally human, therefore bearing all the perils of faulty, incomplete and sometimes even outlandish human
understanding. If a community of Java programmers has never seen a particular programming technique—
for instance, the principled use of objects as callbacks—they are likely to invent an idiom to take its place,
but it will almost certainly be weaker, less robust, and less informative to use the idiom than to just use
callbacks. In this case, and indeed in general, the idiom tells us more about the programmers than it does
about the language. Therefore, we should be careful to not read too much into it.

In this course, therefore, we will focus on the behavior associated with syntax, namely thesemantics
of programming languages. In popular culture, people like to say “It’s just semantics!”, which is a kind
of put-down: it implies that their correspondent is quibbling over minor details of meaning in a jesuitical
way. But communication is all about meaning: even if you and I use different words to mean the same
thing, we understand one another; but if we use the same word to mean different things, great confusion
results. Therefore, in this course, we will wear the phrase “It’s just semantics!” as a badge of honor, because
semantics leads to discourse which (we hope) leads to civilization.

Just semantics. That’s all there is.

1.1 Modeling Meaning

So we want to study semantics. Great. But how shall we talk about meaning? Because human language is
notoriously slippery, we rapidly run into dark corners and alleys without exit. When all else fails, we can
always ruin a conversation by saying, “It depends on what the meaning of ‘is’ is.” So what do we do?

Computer scientists use a variety of techniques for capturing the meaning of a program, all of which rely
on the following premise: the most precise language we have is that of mathematics (and logic). Tradition-
ally, three mathematical techniques have been especially popular:denotational, operationalandaxiomatic
semantics. Each of these is a rich and fascinating field of study in its own right, but these techniques are
either too cumbersome or too advanced for our use. (We will only briefly gloss over these topics, in sec-
tion 25.) We will instead use a method that is a first cousin of operational semantics, which some people

2Alfred North Whitehead: “Civilization advances by extending the number of important operations which we can perform
without thinking of them.” This is one of the key axioms behind programming language design: as we learn more about topics, we
codify that knowledge in the form of language.

1.2. MODELING SYNTAX 5

call interpretersemantics.
The idea behind an interpreter semantics is simple: to explain a language, write an interpreter for it. The

act of writing an interpreter forces us to understand the language, just as the act of writing a mathematical
description of it does. But when we’re done writing, the mathematics only sits on paper, whereas we can
run the interpreter to study its effect on sample programs. We might incrementally modify the interpreter
if it makes a mistake. When we finally have what we think is the correct representation of a language’s
meaning, we can then use the interpreter to explore what the language does on interesting programs. As we
will briefly see in this course, we can even convert an interpreter into a compiler, thus leading to an efficient
implementation that arises directly from the language’s definition.

A careful reader should, however, be either confused or enraged (or both). We’re going to describe
the meaning of a language through an interpreter, which is a program. That program is written in some
language. How do we know whatthat language means? Without establishing that first, our interpreters
would appear to be mere scrawls in an undefined notation. What have we gained?

This is an important philosophical point, but it’s not one we’re going to worry about much in practice.
We won’t for the practical reason that the language in which we write the interpreter is one that we un-
derstand quite well: it’s pretty simple and succint, so it won’t be too hard to hold it all in our heads. The
superior, theoretical, reason is this: others have already worked out the mathematical semantics of this sim-
ple language. Therefore, we really are building on rock. With that, enough of these philosophical questions
for now. We’ll see a few other ones later in the course.

1.2 Modeling Syntax

I’ve argued briefly that it is both futile and dangerous to vest too much emotion in syntax. In a platonic
world, we might say

Irrespective of whether we write

• 3+4 (infix),

• 3 4 + (postfix), or

• (+ 3 4) (parenthesized prefix),

we always mean the idealized operation of adding the idealized numbers (represented by) “3”
and “4”.

Indeed, there exists at least one programming language that uses each of these syntaxes.
If we ignore syntactic details, theessenceof the input is a tree with the addition operation at the root

and two leaves, the left leaf representing the number 3 and the right leaf the number 4. With the right data
definition, we can describe this in Scheme as the expression

(add (num 3) (num 4))

and similarly, the expression

• (3−4)+7 (infix),

6 CHAPTER 1. MODELING LANGUAGES

• 3 4 - 7 + (postfix), or

• (+ (− 3 4) 7) (parenthesized prefix)

would be represented as

(add (sub(num 3) (num 4))
(num 7))

One data definition that supports these representations is the following:

(define-typeAE
[num (n number?)]
[add (lhs AE?)

(rhs AE?)]
[sub(lhs AE?)

(rhs AE?)])

1.3 A Primer on Parsers

Ideally, our interpreter should consume terms of this type, thereby avoiding the syntactic details of the source
language. For the user, however, it becomes onerous to construct terms of this type. Ideally, there should
be be a program that translates terms in concrete syntax into values of this type. We call such a program a
parser.

In more formal terms, a parser is a program that convertsconcrete syntax(what a user might type) into
abstract syntax. The wordabstractsignifies that the output of the parser is divorced from physical represen-
tations: it’s the idealized representation of a physical object, the kind of representations that computers are
so good at manipulating.

As we’ve seen, there are many concrete syntaxes that we could use forarithmeticexpression programs
(which we will henceforth abbreviate AE). We’re going to pick one particular, slightly peculiar notation. We
will use a prefix parenthetical syntax that, for arithmetic, will look just like that of Scheme. With one twist:
we’ll use{braces} instead of (parentheses), just so we can keep AE code separate from Scheme code just
by looking at the delimiters. Here are three programs employing this concrete syntax:

1. 3

2. {+ 3 4}

3. {+ {- 3 4} 7}

Our choice is, admittedly, fueled by the presence of a convenient primitive in Scheme—the primitive
that explains why so many languages built atop Lisp and Schemelook so much like Lisp and Scheme (i.e.,
they’re parenthetical), even if they have entirely different meanings. That primitive is calledread.

Here’s howread works. It consumes an input port (or, given none, examines the standard input port).
If it sees a sequence of characters that obey the syntax of a number, it converts them into the corresponding
number in Scheme and returns that number. That is, the input stream

1.3. A PRIMER ON PARSERS 7

1 7 2 9 <eof>

(the spaces are merely for effect, not part of the stream) would result in the Scheme number1729. If the
sequence of characters obeys the syntax of a symbol (sans the leading quote),read returns that symbol: so

c s 1 7 3 <eof>

(again, the spaces are only for effect) evaluates to the Scheme symbol ’cs173. Likewise for other primitive
types. Finally, if the input is wrapped in a matched pair of parenthetical delimiters—either (parentheses),
[brackets] or{braces}—read returns a list of Scheme values, each the result of invokingread recursively.
Thus, for instance,readapplied to the stream

(1 a)

returns (list 1 ’a), to

{+ 3 4}

returns (list ’+ 3 4), and to

{+ {- 3 4} 7}

returns (list ’+ (list ’− 3 4) 7).
The read primitive is a crown jewel of Lisp and Scheme. It reduces what are conventionally two quite

elaborate phases, calledtokenizing(orscanning) andparsing, into three different phases:tokenizing, reading
andparsing. Furthermore, it provides a single primitive that does the first and second, so all that’s left to do
is the second.read returns a value known as ans-expression.

The parser needs to identify what kind of AE program it’s examining, and convert it to the appropriate
abstract syntax. To do this, it needs a clear specification of the syntax of our language. We’ll useBackus-
Naur Form(BNF), named for two early programming language pioneers. ABNF description of rudimentary
arithmetic looks like this:

<AE> ::= <num>
| {+ <AE> <AE>}
| {- <AE> <AE>}

The<AE> in the BNF is called anon-terminal, which means we can rewrite it as one of the things on the
right-hand side. Read::= as “can be rewritten as”. Each| presents one more choice, called aproduction.
Everything in a production that isn’t enclosed in<· · ·> is literal syntax.<num> is a terminal: we cannot
expand it further. The<AE>s in the productions are references back to the<AE> non-terminal. (We call
<num> a terminal because the process of expanding out<AE>s terminateswith it; non-terminals are so
named because we can expand further, so we needn’t terminate; and each productionproducesa bigger
<AE>.)

Notice the strong similarity between theBNF and the abstract syntax representation. In one stroke, the
BNF capturesboth the concrete syntax (the brackets, the operators representing addition and subtraction)
and a default abstract syntax. Indeed, the only thing that the actual abstract syntax data definition contains

8 CHAPTER 1. MODELING LANGUAGES

that’s not in the BNF is names for the fields. BecauseBNF tells the story of concrete and abstract syntax so
succintly, it has been used in definitions of languages ever since Algol 60, where it first saw use.

Assuming all programs fed to the parser are valid AE programs, the result of reading must be either a
number, or a list whose first value is a symbol (specifically, either ’+ or ’−) and whose second and third
values are AE sub-expressions that need further parsing. Thus, the entire parser looks like this:3

;; parse : sexp−→ AE
;; to convert s-expressions into AEs

(define(parse sexp)
(cond

[(number? sexp) (num sexp)]
[(list? sexp)
(case(first sexp)

[(+) (add (parse(second sexp))
(parse(third sexp)))]

[(−) (sub(parse(second sexp))
(parse(third sexp)))])]))

Here’s the parser at work. The first line after each invocation of (parse(read)) is what the user types;
the second line is the result of parsing. This is followed by the next prompt.4

Welcome to DrScheme, version 208p1.
Language: PLAI - Advanced Student.
> (parse (read))
3
#(struct:num 3)
> (parse (read))
{+ 3 4}
#(struct:add #(struct:num 3) #(struct:num 4))
> (parse (read))
{+ {- 3 4} 7}
#(struct:add #(struct:sub #(struct:num 3) #(struct:num 4)) #(struct:num 7))

This raises a practical problem, however: to test the programs, we need to enter our inputs manually
each time (or pre-convert them into abstract syntax). The problem arises becausereaddemands input each
time it runs. Fortunately, Scheme provides a handy notation that lets us avoid this problem: we can use the
quote notation to simulateread. That is, we can write

Welcome to DrScheme, version 208p1.

3This is a parser for the whole language, but it is not acompleteparser, because it performs very little error reporting: if a user
provides the program{+ 1 2 3}, which is not syntactically legal according to ourBNF specification, the parser silently ignores
the3 instead of signaling an error. You must write more robust parsers than this one.

4Note that for most of our study, we will use the Advanced Student language level. The Beginning Student and Intermediate
Student levels are present only for symmetry with other textbooks.

1.4. PRIMUS INTER PARSERS 9

Language: PLAI - Advanced Student.
> (parse ’3)
#(struct:num 3)
> (parse ’{+ 3 4})
#(struct:add #(struct:num 3) #(struct:num 4))
> (parse ’{+ {- 3 4} 7})
#(struct:add #(struct:sub #(struct:num 3) #(struct:num 4)) #(struct:num 7))
> (calc (parse ’{+ {- 3 4} 7}))
6

1.4 Primus Inter Parsers

Naturally, most languages do not use this form of parenthesized syntax. Writing parsers for those languages
is much more complex; to learn more about that, study a typical text from a compilers course. What I want
to do here is say a little more about parenthetical syntax.

I said above thatread is a crown jewel of Lisp and Scheme. I think it’s actually one of the great ideas of
computer science. It serves as the cog that helps decompose a fundamentally difficult process—generalized
parsing of the input stream—into two very simple processes: reading the input stream into an intermediate
representation, and parsing that intermediate representation. Writing a reader is relatively simple: when you
see a opening bracket, read recursively until you hit a closing bracket, and return everything you saw as a
list. That’s it. Writing a parser using this list representation, as we’ve seen above, is also a snap.

I call these kinds of syntaxesbicameral,5 which is a term usually used to describe legislatures such as
that of the USA. No issue becomes law without passing muster in both houses. The lower house establishes
a preliminary bar for entry, but allows some rabble to pass through, knowing that the wisdom of the upper
house will prevent it. In turn, the upper house can focus on a smaller and more important set of problems.
In a bicameral syntax, the reader is the House of Representatives: it rejects the input

{+ 1 2)

(mismatched delimiters) but permits both of

{+ 1 2}
{+ 1 2 3}

the first of which is legal, the second of which isn’t. It’s the parser’s (Senate’s) job to eliminate the latter,
more refined form of invalid input.

Look closely at XML sometime. What do the termswell-formedandvalid mean, and how do they
differ? How do these requirements relate to bicameral syntaxes such as that of Scheme?

5Two houses.

10 CHAPTER 1. MODELING LANGUAGES

Part II

Rudimentary Interpreters

11

Chapter 2

Interpreting Arithmetic

We’ll now set parsing aside and get to the heart of the matter, which is writing an interpreter semantics. We
will assume only numbers, addition and subtraction, and further assume both these operations are binary.
This is indeed a very rudimentary exercise, but that’s the point. By picking something you know really
well, we can focus on the mechanics. Once you have a feel for the mechanics, we can use them to explore
languages you have never seen before.

The interpreter has the following contract and purpose:

;; calc : AE−→ number
;; consumes an AE and computes the corresponding number

which leads to these test cases:

(test(calc (parse’3)) 3)
(test(calc (parse’{+ 3 4})) 7)
(test(calc (parse’{+ {- 3 4} 7})) 6)

(notice that the tests must be consistent with the contract and purpose statement!) and this template:

(define(calc an-ae)
(type-caseAE an-ae

[num (n) · · ·]
[add (l r) · · · (calc l) · · · (calc r) · · ·]
[sub(l r) · · · (calc l) · · · (calc r) · · ·]))

In this instance, we can convert the template into a function easily enough:

(define(calc an-ae)
(type-caseAE an-ae

[num (n) n]
[add (l r) (+ (calc l) (calc r))]
[sub(l r) (− (calc l) (calc r))]))

Running the test suite helps validate our interpreter.

13

14 CHAPTER 2. INTERPRETING ARITHMETIC

What we have seen is actually quite remarkable. We have shown that a programming language with
sufficient data structure capabilities can represent very significant data, namely programs themselves. That
is, we can write programs that consume, and perhaps even return, programs. This is the foundation for both
an interpreter semantics and for all compilers. This same idea—but with a much more primitive language,
namely arithmetic, and a much poorer collection of data, namely just numbers—is at the heart of the proof
of Gödel’s Theorem.

Chapter 3

Substitution

Even in a simple arithmetic language, we sometimes encounter repeated expressions. For instance, the
Newtonian formula for the gravitational force between two objects has a squared term in the denominator.
We’d like to avoid redundant expressions: they are annoying to repeat, we might make a mistake while
repeating them, and they waste cycles that could be better spent generating frames for the next dinosaur
movie.

The normal way to avoid redundancy is to introduce anidentifier.1 As its name suggests, an identifier
names, or identifies, (the value of) an expression. We can then use its name in place of the larger compu-
tation. Identifiers may sound exotic, but you’re used to them in every programming language you’ve used
so far: they’re calledvariables. We choose not to call them that because the term “variable” is semantically
charged: it implies that the value associated with the identifier can change (vary). Since our language ini-
tially won’t offer any way of changing the associated value, we use the more conservative term “identifier”.
For now, they are therefore just names for computed constants.

Let’s first write a few sample programs that use identifiers, inventing notation as we go along:

{with {x {+ 5 5}} {+ x x}}

We can reduce this to

{+ 10 10}

by substituting10 for x . The existing rules of evaluation determine that this term’s value is20 . Here’s a
more elaborate example:

{with {x {+ 5 5}}
{with {y {- x 3}}

{+ y y}}} [+ operation]
= {with {x 10} {with {y {- x 3}} {+ y y}}} [substitution]
= {with {y {- 10 3}} {+ y y}} [- operation]
= {with {y 7} {+ y y}} [substitution]
= {+ 7 7} [+ operation]
= 14

1As the authors ofConcrete Mathematicssay: “Name and conquer”.

15

16 CHAPTER 3. SUBSTITUTION

(En passant, observe that the act of reducing an expression to a value requires more than just substitution.)
Now let’s define the language more formally.

To honor the addition of identifiers, we’ll give our language a new name:WAE, short for “with with
arithmetic expressions”. ItsBNF is:

<WAE> ::= <num>
| {+ <WAE> <WAE>}
| {- <WAE> <WAE>}
| {with {<id> <WAE>} <WAE>}
| <id>

Notice that we’ve had to addtwo rules to theBNF: one for associating values with identifiers and another for
actually using the identifiers. The nonterminal<id> stands for some suitable syntax for identifiers (usually
a sequence of alphanumeric characters).

To write programs that processWAE terms, we need a data definition to represent those terms. Most
of WAE carries over unchanged fromAE, but we must pick some concrete representation for identifiers.
Fortunately, Scheme has a primitive type called the symbol, which serves this role admirably.2 Therefore,
the data definition is

(define-typeWAE
[num (n number?)]
[add (lhs WAE?) (rhs WAE?)]
[sub(lhs WAE?) (rhs WAE?)]
[with (name symbol?) (named-expr WAE?) (body WAE?)]
[id (name symbol?)])

We’ll call the expression in thenamed-exprfield thenamed expression, sincewith lets the name in theid
field stand in place of that expression.

3.1 Defining Substitution

Without fanfare, we used substitution to explain howwith functions. We were able to do this because
substitution is not unique towith : we’ve studied it for years in algebra courses, because that’s what happens
when we pass arguments to functions. For instance, letf (x,y) = x3 +y3. Then

f (12,1) = 123 +13 = 1728+1 = 1729

f (10,9) = 103 +93 = 1000+729= 1729 3

Nevertheless, it’s a good idea to pin down this operation precisely.
Let’s make sure we understand what we’re trying to define. We want a crisp description of the process

of substitution, namely what happens when we replace an identifier (such asx or x) with a value (such as 12
or 5) in an expression (such asx3 +y3 or {+ x x}).

2In many languages, a string is a suitable representation for an identifier. Scheme does have strings, but symbols have the
salutary property that they can be compared for equality in constant time.

3What’s the next smallest such number?

3.1. DEFINING SUBSTITUTION 17

Observe that substitution isnot the same as evaluation. Looking back at the sequence of steps in the
evaluation example above, some of them invoke substitution while the rest are evaluation as defined forAE.
For now, we’re first going to pin down substitution. Once we’ve done that, we’ll revisit the related question
of evaluation. But it’ll take us a few tries to get substitution right!

Definition 1 (Substitution) To substituteidentifier i in e with expression v, replace all identifiers in e that
have the name i with the expression v.

Beginning with the program

{with {x 5} {+ x x}}

we would need to apply substitution to eliminate thewith and be left with an arithmetic expression. The
definition of substitution above certainly does the trick: substituting5 for x in the body of thewith yields
the program

{+ 5 5}

as we would want. Likewise, it correctly substitutesx with 5 in

{+ 10 4}

to

{+ 10 4}

(since there are no instances ofx in the expression, no substitutions happen). Consider the same substitution
in

{+ x {with {x 3} 10}}

The rules reduce this to

{+ 5 {with {5 3} 10}}

Huh? Our substitution rule converted a perfectly reasonable program (whose value is15) into one that isn’t
evensyntacticallylegal, i.e., it would be rejected by a parser, because the program contains5 where theBNF

tells us to expect an identifier. We definitely don’t want substitution to have such an effect! It’s obvious that
the substitution algorithm is too naı̈ve. To state the problem with the algorithm precisely, though, we need
to introduce a little terminology.

Definition 2 (Binding Instance) A binding instanceof an identifier is the instance of the identifier that
gives it its value. InWAE, the<id> position of awith is the only binding instance.

Definition 3 (Scope) Thescopeof a binding instance is the region of program text in which instances of the
identifier refer to the value bound by the binding instance.

18 CHAPTER 3. SUBSTITUTION

Definition 4 (Bound Instance) An identifier isboundif it is contained within the scope of a binding in-
stance of its name.

Definition 5 (Free Instance) An identifier not contained in the scope of any binding instance of its name is
said to befree.

With this terminology in hand, we can now state the problem with the first definition of substitution
more precisely: it failed to distinguish between bound instances (which should be substituted) and binding
instances (which should not). This leads to a refined notion of substitution.

Definition 6 (Substitution, take 2) To substitute identifier i in e with expression v, replace all bound iden-
tifiers in e that have the name i with the expression v.

A quick check reveals that this doesn’t affect the outcome of the examples that the previous definition
substituted correctly. In addition, substitutingx with 5, this definition of substitution reduces

{+ x {with {x 3} 10}}

to

{+ 5 {with {x 3} 10}}

Let’s consider a closely related expression with the same substitution:

{+ x {with {x 3} x}}

Hopefully we can agree that the value of this program is8 (the leftx in the addition evaluates to5, the right
x is given the value3 by the innerwith , so the sum is8). The refined substitution algorithm, however,
converts this expression into

{+ 5 {with {x 3} 5}}

which, when evaluated, yields10 .
What went wrong here? Our substitution algorithm respected binding instances, but not their scope.

In the sample expression, thewith introduces a new scope for the innerx . The scope of the outerx
is shadowedor maskedby the inner binding. Because substitution doesn’t recognize this possibility, it
incorrectly substitutes the innerx .

Definition 7 (Substitution, take 3) To substitute identifier i in e with expression v, replace all bound iden-
tifiers in e having the name i with the expression v, unless the identifier is in a scope different from that
introduced by i.

While this rule avoids the faulty substitution we’ve discussed earlier, it has the following effect: after
substituting forx , the expression

{+ x {with {y 3} x}}

3.1. DEFINING SUBSTITUTION 19

whose value should be that of{+ 5 5} , or 10 , becomes

{+ 5 {with {y 3} x}}

which, when evaluated, halts with an error, becausex has no value. Once again, substitution has changed a
correct program into an incorrect one!

Let’s understand what went wrong. Why didn’t we substitute the innerx? Substitution halts at thewith
because, by definition, everywith introduces a new scope, which we said should delimit substitution. But
this with contains an instance ofx , which we very much want substituted! So which is it—substitute
within nested scopes or not? Actually, the two examples above should reveal that our latest definition for
substitution, which may have seemed sensible at first blush, is too draconian: it rules out substitution within
anynested scopes.

Definition 8 (Substitution, take 4) To substitute identifier i in e with expression v, replace all bound iden-
tifiers in e having the name i with the expression v, except within nested scopes of i.

Finally, we have a version of substitution that works. A different, more succint way of phrasing this
definition is

Definition 9 (Substitution, take 5) To substitute identifier i in e with expression v, replace all bound in-
stances of i in its scope with v.

Recall that we’re still defining substitution, not evaluation. Substitution is just an algorithm defined over
expressions, independent of any use in an evaluator. It’s the interpreter’s job to invoke substitution as many
times as necessary to reduce a program down to an answer. Therefore, substitutingx with 5 in

{+ x {with {y 3} x}}

results in

{+ 5 {with {y 3} 5}}

Reducing this to an actual value is the interpreter’s task.
Phew! Just to be sure we understand this, let’s express it in the form of a function.

;; subst :WAE symbolWAE→WAE
;; substitutes second argument with third argument in first argument,
;; as per the rules of substitution; the resulting expression contains
;; no free instances of the second argument

(define(subst expr sub-id val)
(type-caseWAE expr

[num (n) expr]
[add (l r) (add (subst l sub-id val)

(subst r sub-id val))]
[sub(l r) (sub(subst l sub-id val)

20 CHAPTER 3. SUBSTITUTION

(subst r sub-id val))]
[with (bound-id named-expr bound-body)

(if (symbol=? bound-id sub-id)
expr
(with bound-id

named-expr
(subst bound-body sub-id val)))]

[id (v) (if (symbol=? v sub-id) val expr)]))

3.2 Interpreting with

We’ve finally defined substitution, but we still haven’t specified how we’ll use it to reduce expressions to
answers. To do this, we must modify our interpreter. Specifically, we must add rules for our two new source
language syntactic constructs:with and identifiers.

• To evaluatewith expressions, we interpret the named expression, then substitute its value in the
body.

• How about identifiers? Well, any identifier that is in the scope of awith is replaced with a value when
the interpreter encounters that identifier’s binding instance. Consequently, the purpose statement of
substsaid there would be no free instances of the identifier given as an argument left in the result. In
other words,substreplaces identifiers with values before the interpreter ever “sees” them. As a result,
any as-yet-unsubstituted identifier must be free in the whole program. The interpreter can’t assign a
value to a free identifier, so it halts with an error.

;; calc :WAE→ number
;; evaluatesWAE expressions by reducing them to numbers

(define(calc expr)
(type-caseWAE expr

[num (n) n]
[add (l r) (+ (calc l) (calc r))]
[sub(l r) (− (calc l) (calc r))]
[with (bound-id named-expr bound-body)

(calc (subst bound-body
bound-id
(num (calc named-expr))))]

[id (v) (error ’calc " free identifier")]))

One subtlety: In the rule forwith , the value returned bycalc is a number, butsubst is expecting aWAE
expression. Therefore, we wrap the result in (num · · ·) so that substitution will work correctly.

Here are numerous test cases. Each one should pass:

(test(calc (parse’5)) 5)

3.3. THE SCOPE OF WITHEXPRESSIONS 21

(test(calc (parse’{+ 5 5})) 10)
(test(calc (parse’{with {x {+ 5 5}} {+ x x}})) 20)
(test(calc (parse’{with {x 5} {+ x x}})) 10)
(test(calc (parse’{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}})) 14)
(test(calc (parse’{with {x 5} {with {y {- x 3}} {+ y y}}})) 4)
(test(calc (parse’{with {x 5} {+ x {with {x 3} 10}}})) 15)
(test(calc (parse’{with {x 5} {+ x {with {x 3} x}}})) 8)
(test(calc (parse’{with {x 5} {+ x {with {y 3} x}}})) 10)
(test(calc (parse’{with {x 5} {with {y x} y}})) 5)
(test(calc (parse’{with {x 5} {with {x x} x}})) 5)

3.3 The Scope ofwith Expressions

Just when we thought we were done, we find that several of the test cases above (can you determine which
ones?) generate a free-identifier error. What gives?

Consider the program

{with {x 5}
{with {y x}

y}}

Common sense would dictate that its value is5. So why does the interpreter halt with an error on this test
case?

As defined,substfails to correctly substitute in this program, because we did not account for the named
sub-expressions inwith expressions. To fix this problem, we simply need to makesubst treat the named
expressions as ordinary expressions, ripe for substitution. To wit:

(define(subst expr sub-id val)
(type-caseWAE expr

[num (n) expr]
[add (l r) (add (subst l sub-id val)

(subst r sub-id val))]
[sub(l r) (sub(subst l sub-id val)

(subst r sub-id val))]
[with (bound-id named-expr bound-body)

(if (symbol=? bound-id sub-id)
expr
(with bound-id

(subst named-expr sub-id val)
(subst bound-body sub-id val)))]

[id (v) (if (symbol=? v sub-id) val expr)]))

The boxed expression shows what changed.
Actually, this isn’t quite right either: consider

22 CHAPTER 3. SUBSTITUTION

{with {x 5}
{with {x x}

x}}

This program should evaluate to5, but it too halts with an error. This is because we prematurely stopped
substituting forx . We should substitute in the named expression of awith even if thewith in question
defines a new scope for the identifier being substituted, because its named expression is still in the scope of
the enclosing binding of the identifier.

We finally get a valid programmatic definition of substitution (relative to the language we have so far):

(define(subst expr sub-id val)
(type-caseWAE expr

[num (n) expr]
[add (l r) (add (subst l sub-id val)

(subst r sub-id val))]
[sub(l r) (sub(subst l sub-id val)

(subst r sub-id val))]
[with (bound-id named-expr bound-body)

(if (symbol=? bound-id sub-id)
(with bound-id

(subst named-expr sub-id val)
bound-body)

(with bound-id
(subst named-expr sub-id val)
(subst bound-body sub-id val)))]

[id (v) (if (symbol=? v sub-id) val expr)]))

Observe how the different versions ofsubsthave helped us refine the scope ofwith expressions. By
focusing on the small handful of lines that change from one version to the next, and studying how they
change, we progressively arrive at a better understanding of scope. This would be much harder to do
through mere prose; indeed, our prose definition has not changed at all through these program changes, and
translating the definition into a program has helped us run it and determine whether it matches our intuition.

Exercise 3.3.1What’s the value of

{with {x x} x}

? Whatshouldit be, and what does your interpreter say itis? (These can be two different things!)

3.4 What Kind of Redundancy do Identifiers Eliminate?

We began this material motivating the introduction ofwith : as a means for eliminating redundancy. Let’s
revisit this sequence of substitutions:

3.4. WHAT KIND OF REDUNDANCY DO IDENTIFIERS ELIMINATE? 23

{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}}
= {with {x 10} {with {y {- x 3}} {+ y y}}}
= {with {y {- 10 3}} {+ y y}}
= {with {y 7} {+ y y}}
= {+ 7 7}
= 14

Couldn’t we have also written it this way?

{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}}
= {with {y {- {+ 5 5} 3}} {+ y y}}
= {+ {- {+ 5 5} 3} {- {+ 5 5} 3}}
= {+ {- 10 3} {- {+ 5 5} 3}}
= {+ {- 10 3} {- 10 3}}
= {+ 7 {- 10 3}}
= {+ 7 7}
= 14

In the first sequence of reductions, we first reduce the named expression to a number, then substitute that
number. In the second sequence, we perform a “textual” substitution, and only when we have no substitu-
tions left to do do we begin to perform the arithmetic.

Notice that this shows there are really two interpretations of “redundancy” in force. One is a purely
static4 notion of redundancy:with exists solely to avoid writing an expression twice, even though it will
be evaluated twice. This is the interpretation in the latter sequence of reductions. In contrast, the former
sequence of reductions manifests both static anddynamic5 redundancy elimination: it not only abbreviates
the program, it also avoids re-computing the same value during execution.

Given these two sequences of reductions (which we will callreduction regimes, since each is governed
by a different set of rules), which does our interpreter do? Again, it would be hard to reason about this
verbally, but because we’ve written a program, we have a concrete object to study. In particular, the lines
we should focus on are those forwith . Here they are again:

. . .
[with (bound-id named-expr bound-body)

(calc (subst bound-body
bound-id
(num (calc named-expr))))]

. . .

The boxed portion tells us the answer: we invokecalcbefore substitution (because theresultof calc is what
we supply as an argument tosubst). This model of substitution is calledeager: we “eagerly” reduce the
named expression to a value before substituting it. This is in contrast to the second sequence of reductions
above, which we calllazy, wherein we reduce the named expression to a value only when we need to (such
as at the application of an arithmetic primitive).

4Meaning, referring only to program text.
5Meaning, referring to program execution.

24 CHAPTER 3. SUBSTITUTION

At this point, it may seem like it doesn’t make much difference which reduction regime we employ: both
produce the same answer (though they may take a different number of steps). But do keep this distinction in
mind, for we will see a good deal more on this topic in the course of our study.

Exercise 3.4.1Can youprovethat the eager and lazy regimes will always produce the same answer for the
WAE language?

Exercise 3.4.2In the example above, the eager regime generated an answer in fewer steps than the lazy
regime did. Either prove that that will always be the case, or provide a counterexample.

Exercise 3.4.3At the beginning of this section, you’ll find the phrase

an identifier names, or identifies, (the value of) an expression

Why the parenthetical phrase?

3.5 Are Names Necessary?

A lot of the trouble we’ve had with defining substitution is the result of having the same name be bound
multiple times. To remedy this, a computer scientist named Nicolaas de Bruijn had an even better idea.6 He
asked the following daring question: Who needs names at all? De Bruijn suggested that instead, we replace
identifiers with numbers. The number dictates how many enclosing scopes away the identifier is bound.
(Technically, we replace identifiers not with numbers butindicesthat indicate the binding depth. A number
is just a convenientrepresentationfor an index. A more pictorially pleasing representation for an index is
an arrow that leads from the bound to the binding instance, like the ones DrScheme’s Check Syntax tool
draws.)

The idea is easy to explain with an example. We convert

{with {x 5} {+ x x}}

into

{with 5 {+ <0> <0>}}

Notice that two things changed. First, we replaced the bound identifiers with indices (to keep indices sepa-
rate from numbers, we wrap each index in pointy brackets). We’ve adopted the convention that the current
scope is zero levels away. Thus,x becomes<0>. The second change is that, because we no longer care
about the names of identifiers, we no longer need keep track of thex as the bound identifier. The presence
of with indicates that we’ve entered a new scope; that’s enough. Similarly, we convert

{with {x 5}
{with {y 3}

{+ x y}}}

6De Bruijn hadmanygreat ideas, particularly in the area of using computers to solve math problems. The idea we present here
was a small offshoot of that much bigger project, but as so happens, this is the one many people know him for.

3.5. ARE NAMES NECESSARY? 25

into

{with 5
{with 3

{+ <1> <0>}}}

Let’s consider one last example. If this looks incorrect, that would suggest you may have misunderstood
the scope of a binding. Examining it carefully actually helps to clarify the scope of bindings. We convert

{with {x 5}
{with {y {+ x 3}}

{+ x y}}}

into

{with 5
{with {+ <0> 3}

{+ <1> <0>}}}

De Bruijn indices are useful in many contexts, and indeed the de Bruijn form of a program (that is, a
program where all identifiers have been replaced by their de Bruijn indices) is employed by just about every
compiler. You will sometimes find compiler texts refer to the indices asstatic distance coordinates. That
name makes sense: the coordinates tell us how far away statically—i.e., in the program text— an identifier
is bound. I prefer to use the less informative but more personal moniker as a form of tribute.

26 CHAPTER 3. SUBSTITUTION

Chapter 4

An Introduction to Functions

Through the agency ofwith, we have added identifiers and the ability to name expressions to the language.
Much of the time, though, simply being able to name an expression isn’t enough: the expression’s value is
going to depend on the context of its use. That means the expression needs to be parameterized; that is, it
must be afunction.

Dissecting awith expression is a useful exercise in helping us design functions. Consider the program

{with {x 5} {+ x 3}}

In this program, the expression{+ x 3} is parameterized over the value ofx . In that sense, it’s just like a
function definition: in mathematical notation, we might write

f (x) = x+3

Having named and definedf , what do we do with it? TheWAE program introducesx and then immediately
binds it to5. The way we bind a function’s argument to a value is to apply it. Thus, it is as if we wrote

f (x) = x+3; f (5)

In general, functions are useful entities to have in programming langugaes, and it would be instructive to
model them.

4.1 Enriching the Language with Functions

We will initially model the DrScheme programming environment, which has separate windows for Defini-
tions and Interactions. The Interactions window is DrScheme’s “calculator”, and the part we are trying to
model with our interpreters. The contents of the Definitions window are “taught” to this calculator by click-
ing the Run button. Our interpreter should therefore consume an argument that reflects these definitions.

To add functions toWAE, we must define their concrete and abstract syntax. In particular, we must both
define a function definition, and provide a means for its use. To do the latter, we must add a new kind of
expression, resulting in the languageF1WAE.1 We will presume, as a simplification, that functions consume
only one argument. This expression language has the followingBNF:

1The reason for the “1” will become clear in Section 6.

27

28 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

<F1WAE> ::= <num>
| {+ <F1WAE> <F1WAE>}
| {- <F1WAE> <F1WAE>}
| {with {<id> <F1WAE>} <F1WAE>}
| <id>
| {<id> <F1WAE>}

(The expression representing the argument supplied to the function is known as theactual parameter.) To
capture this language, we might employ terms of the following type:

(define-typeF1WAE
[num (n number?)]
[add (lhs F1WAE?) (rhs F1WAE?)]
[sub(lhs F1WAE?) (rhs F1WAE?)]
[with (name symbol?) (named-expr F1WAE?) (body F1WAE?)]
[id (name symbol?)]
[app(fun-name symbol?) (arg F1WAE?)])

Convince yourself that this is an appropriate definition.
Now let’s study function definitions. A function definition has three parts: the name of the function,

the names of its arguments, known as theformal parameters, and the function’s body. (The function’s
parameters may have types, which we will discuss in Section X.) For now, we will presume that functions
consume only one argument. A simple data definition captures this:

(define-typeFunDef
[fundef (fun-name symbol?)

(arg-name symbol?)
(body F1WAE?)])

Using this definition, we can represent a standard function for doubling its argument as

(fundef ’double
’n
(add (id ’n) (id ’n)))

Now we’re ready to write the interpreter, which we’ll callinterp rather thancalcsince our language has
grown beyond basic arithmetic. The interpreter must consume two arguments: the expression to evaluate,
and the set of known function definitions. This corresponds to what the Interactions window of DrScheme
works with. The rules present in theWAE interpreter remain the same, so we can focus on the one new rule.

;; interp :F1WAE listof(fundef)→ number
;; evaluatesF1WAE expressions by reducing them to their corresponding values

(define(interp expr fun-defs)
(type-caseF1WAE expr

[num (n) n]
[add (l r) (+ (interp l fun-defs) (interp r fun-defs))]

4.2. THE SCOPE OF SUBSTITUTION 29

[sub(l r) (− (interp l fun-defs) (interp r fun-defs))]
[with (bound-id named-expr bound-body)

(interp (subst bound-body
bound-id
(num (interp named-expr fun-defs)))

fun-defs)]
[id (v) (error ’ interp " free identifier")]

[app(fun-name arg-expr)
(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])

(interp (subst(fundef-body the-fun-def)
(fundef-arg-name the-fun-def)
(num (interp arg-expr fun-defs)))

fun-defs))]))

The rule for an application first looks up the named function. If this access succeeds, then interpretation
proceeds in the body of the function after first substituting its formal parameter with the (interpreted) value
of the actual parameter. We see the result in DrScheme:

> (interp (parse ’{double {double 5}})
(list (fundef ’double

’n
(add (id ’n) (id ’n)))))

20

Exercise 4.1.1Why is the argument expression of an application of typeF1WAE rather than of typeWAE?
Provide a sample program permitted by the former and rejected by the latter, and argue that it is reasonable.

Exercise 4.1.2Why is the body expression of a function definition of typeF1WAE rather than of typeWAE?
Provide a sample definition permitted by using the former rather than the latter, and argue that it is reason-
able.

4.2 The Scope of Substitution

Suppose we ask our interpreter to evaluate the expression

(app ’ f (num 10))

in the presence of the solitary function definition

(fundef ’ f
’n
(app ’n (id ’n)))

What should happen? Should the interpreter try to substitute then in the function position of the application
with the number10, then complain that no such function can be found (or even that function lookup funda-
mentally fails because the names of functions must be identifiers, not numbers)? Or should the interpreter

30 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

decide that function names and function arguments live in two separate “spaces”, and context determines in
which space to look up a name? Languages like C take the former approach: the name of a function can be
bound to a value in a local scope, thereby rendering the function inaccessible through that name. This latter
strategy is known as employingnamespacesand languages such as Common Lisp adopt it.

4.3 The Scope of Function Definitions

Suppose our definition list contains multiple function definitions. How do these interact with one another?
For instance, suppose we evaluate the following input:

(interp (parse’{f 5})
(list (fundef ’ f ’n (app ’g (add (id ’n) (num 5))))

(fundef ’g ’m (sub(id ’m) (num 1)))))

What does this program do? The main expression appliesf to 5. The definition off , in turn, invokes
functiong. Shouldf be able to invokeg? Should the invocation fail becauseg is defined afterf in the list
of definitions? What if there are multiple bindings for a given function’s name?

We will expect this program to evaluate to9. We employ the natural interpretation that each function
can “see” every function’s definition, and the natural assumption that each name is bound at most once so
we needn’t disambiguate between definitions. Is is, however, possible to define more sophisticated scopes.

Exercise 4.3.1If a function can invoke every other defined function, that means it can also invoke itself.
This is currently of limited value because the languageF1WAE lacks a harmonious way of terminating
recursion. Consider adding a simple conditional construct (such asif0 , which succeeds if the term in the
first position evaluates to0) and writing interesting programs in this language.

4.4 Helper Functions

To make this interpreter function correctly, we must change some code and add other routines. First, we
must adapt our parser to treat the relevant inputs (as identified by theBNF) as function applications. Second,
we must extendsubstto handle theF1WAE language.

;; subst :F1WAE symbolF1WAE→ F1WAE

(define(subst expr sub-id val)
(type-caseF1WAE expr

[num (n) expr]
[add (l r) (add (subst l sub-id val)

(subst r sub-id val))]
[sub(l r) (sub(subst l sub-id val)

(subst r sub-id val))]
[with (bound-id named-expr bound-body)

(if (symbol=? bound-id sub-id)
(with bound-id

4.4. HELPER FUNCTIONS 31

(subst named-expr sub-id val)
bound-body)

(with bound-id
(subst named-expr sub-id val)
(subst bound-body sub-id val)))]

[id (v) (if (symbol=? v sub-id) val expr)]
[app(fun-name arg-expr)

(app fun-name(subst arg-expr sub-id val))]))

Finally, we must write a helper routine that can find function definitions.

;; lookup-fundef : symbol listof(fundef)−→ fundef

(define(lookup-fundef fun-name fundefs)
(cond

[(empty? fundefs) (error fun-name" function not found")]
[else(if (symbol=? fun-name(fundef-fun-name(first fundefs)))

(first fundefs)
(lookup-fundef fun-name(rest fundefs)))]))

32 CHAPTER 4. AN INTRODUCTION TO FUNCTIONS

Chapter 5

Caching Substitution

Let’s examine the process of interpreting the following small program. Consider the following sequence of
evaluation steps:

{with {x 3}
{with {y 4}

{with {z 5}
{+ x {+ y z}}}}}

= {with {y 4}
{with {z 5}

{+ 3 {+ y z}}}}
= {with {z 5}

{+ 3 {+ 4 z}}}
= {+ 3 {+ 4 5}}

at which point it reduces to an arithmetic problem. To reduce it, though, the interpreter had to apply substi-
tution three times: once for eachwith . This is slow! How slow? Well, if the program has sizen (measured
in abstract syntax tree nodes), then each substitution sweeps the rest of the program once, making the com-
plexity of this interpreter at leastO(n2). That seems rather wasteful; surely we can do better.

How do we avoid redundancy in computations? The classic computer science technique is to employ a
cache. The term “cache” doesn’t only apply to low-level units of hardware; anything that stores results of
prior or potential computations can be called a cache. In this case, we want a cache ofsubstitutions.

Concretely, here’s the idea. Initially, we have no substitutions to perform, so the cache is empty. Every
time we encounter a substitution (in the form of awith or application), we augment the cache with one
more entry, recording the identifier’s name and the value (if eager) or expression (if lazy) it should eventually
be substituted with. We continue to evaluate without actually performing the substitution.

This strategy breaks a key invariant we had established earlier, which is that any identifier the interpreter
encounters is of necessity free, for had it been bound, it would have been replaced by substitution. Because
we’re no longer using substitution, we will encounter bound identifiers during interpretation. How do we
handle them? We must replace them with their bindings by consulting the substitution cache.

Exercise 5.0.1Can the complexity of substitution be worse than O(n2)?

33

34 CHAPTER 5. CACHING SUBSTITUTION

5.1 The Substitution Cache

Let’s provide a data definition for a substitution cache:

(define-typeSubCache
[mtSub]
[aSub(name symbol?) (value number?) (sc SubCache?)])

whereSubCache stands for a “substitution cache”. ASubCache has two forms: it’s either empty (mtSub1)
or non-empty (represented by anaSubstructure). The latter contains a reference to the rest of the cache in
its third field.

The interpreter obviously needs to consume a substitution cache in addition to the expression to interpret.
Therefore, its contract becomes

;; interp :F1WAE listof(fundef)SubCache→ number

It will need a helper function that looks up the value of identifiers in the cache. Its code is:

;; lookup : symbolSubCache→ FWAE

(define(lookup name sc)
(type-caseSubCache sc

[mtSub() (error ’ lookup " no binding for identifier")]
[aSub(bound-name bound-value rest-sc)

(if (symbol=? bound-name name)
bound-value
(lookup name rest-sc))]))

With that introduction, we can now present the interpreter:

(define(interp expr fun-defs sc)
(type-caseF1WAE expr

[num (n) n]
[add (l r) (+ (interp l fun-defs sc) (interp r fun-defs sc))]
[sub(l r) (− (interp l fun-defs sc) (interp r fun-defs sc))]
[with (bound-id named-expr bound-body)

(interp bound-body
fun-defs
(aSub bound-id

(interp named-expr
fun-defs
sc)

sc))]
[id (v) (lookup v sc)]
[app(fun-name arg-expr)

1“Empty sub”—get it?

5.1. THE SUBSTITUTION CACHE 35

(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])
(interp (fundef-body the-fun-def)

fun-defs
(aSub(fundef-arg-name the-fun-def)

(interp arg-expr fun-defs sc)
sc)))]))

Three clauses have changed: those forwith , identifiers and applications. Applications must look up the
value of an identifier in the substitution cache. The rule forwith evaluates the body in a substitution cache
that extends the current one (sc) with a binding for thewith -bound identifier to its interpreted value. The
rule for an application similarly evaluates the body of the function with the substitution cache extended with
the formal argument bound to the value of the actual argument.

To make sure this is correct, we recommend that you first study its behavior on programs that have no
identifiers—i.e., verify that the arithmetic rules do the right thing—and only then proceed to the rules that
involve identifiers.

Consider the evaluation of the expression

{with {n 5}
{f 10}}

in the following list of function definitions:

(list (fundef ’ f ’p (id ’n)))

That is, f consumes an argumentp and returns the value bound ton. This corresponds to the Scheme
definition

(define(f p) n)

followed by the application

(local ([definen 5])
(f 10))

What result does Scheme produce?
Our interpreter produces the value5. Is this the correct answer? Well, it’s certainlypossiblethat this is

correct—after all, it’s what the interpreter returns, and this could well be the interpreter forsomelanguage.
But we do have a better way of answering this question.

Recall that the interpreter was using the cache to conduct substitution more efficiently. As with any
cache, we hope that its application only improves performance—not change the program’s behavior! Thus,
our “reference implementation” is the one that performs explicit substitution. If we want to know what the
value of the program really “is”, we need to return to that implementation.

What does the substitution-based interpreter return for this program? It says the program has an unbound
identifier (specifically,n). So we have to regard our caching interpreter as being buggy.

While the caching interpreter is clearly buggy relative to substitution, which it was supposed to represent,
let’s think for a moment about what we, as the human programmer, wouldwant this program to evaluate to.
It produces the value5 because the identifiern gets the value it was bound to by thewith expression, that

36 CHAPTER 5. CACHING SUBSTITUTION

is, from the scope in which the functionf is used. Is this a reasonable way for the language to behave? A
priori, is one interpretation better than the other? Before we tackle that, let’s introduce some terminology to
make it easier to refer to these two behaviors.

Definition 10 (Static Scope)In a language withstaticscope, each identifier gets its value from the scope
of its definition, not its use.

Definition 11 (Dynamic Scope)In a language withdynamicscope, each identifier gets its value from the
scope of its use, not its definition.

Armed with this terminology, we claim that dynamic scope is entirely unreasonable. The problem is
that we simply cannot determine what the value of a program will be without knowing everything about its
execution history. If the functionf were invoked by some other sequence of functions that did not have
a value forn, then the application off would result in an error! In other words, simply by looking at the
source text off , it would be impossible to determine one of the most rudimentary properties of a program:
whether or not a given identifier was bound. You can only imagine the mayhem this would cause in a large
modern software system. Furthermore, simply looking at the definition off , it is clear that there is no good
reason a programmer might want to write such a program. We will thereforeregard dynamic scope as an
implementation error and reject its usein the remainder of this text.

5.2 Fixing the Interpreter

Let’s return to our interpreter. Our choice of static over dynamic scope has the benefit of confirming that
the substituting interpreter did the right thing, so all we need do is make the caching interpeter be a correct
reimplementation of it. We only need to focus our attention on one rule, that for function application. This
currently reads:

[app(fun-name arg-expr)
(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])

(interp (fundef-body the-fun-def)
fun-defs
(aSub(fundef-arg-name the-fun-def)

(interp arg-expr fun-defs sc)
sc)))]

When the interpreter begins to evaluate the body of the function definition, how many substitutions does it
apply? It applies as many as there already are insc, with one more for the function’s formal parameter to
be replaced with the value of the actual parameter. But how many substitutionsshouldbe in effect in the
function’s body? In our substitution-based interpreter, we implemented application as follows:

[app(fun-name arg-expr)
(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])

(interp (subst(fundef-body the-fun-def)
(fundef-arg-name the-fun-def)

5.2. FIXING THE INTERPRETER 37

(num (interp arg-expr fun-defs)))
fun-defs))]

Here, there is only one substitution performed on the function’s body, namely the formal parameter for its
value. In particular, none of the substitutions applied to thecalling function are in effect in the body of
the called function (read the code carefully to convince yourself of this). This indicates that, at the point
of invoking a function, the interpeter must “forget” about the current substitutions. Put differently, at the
beginning of every function’s body, there is only one bound identifier—the function’s formal parameter—
independent of the context from which it was called.

Given this, how do we fix our implementation? We clearly need to create a substitution for the formal
parameter ((fundef-arg-name the-fun-def)). But the remaining substitutions must be empty, so as to not pick
up the bindings of the calling context. Thus,

[app(fun-name arg-expr)
(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])

(interp (fundef-body the-fun-def)
fun-defs
(aSub(fundef-arg-name the-fun-def)

(interp arg-expr fun-defs sc)
(mtSub))))]

That is, we use the empty substitution cache to initiate evaluation of a function’s body. The difference
between usingscand (mtSub) in the position of the box succintly captures the implementation distinction
between dynamic and static scope, respectively—though theconsequencesof that distinction are far more
profound that this small code change might suggest.

Exercise 5.2.1How come we never seem to “undo” additions to the substitution cache? Doesn’t this run
the risk that one substitution might override another in a way that destroys static scoping?

Exercise 5.2.2Why is the last sc in the interpretation ofwith also not replaced with (mtSub)? What
would happen if we were to effect this replacement? Write a program that illustrates the difference, and
argue whether the replacement is sound or not.

Exercise 5.2.3Our implementation of lookup can take time linear in the size of the program to find some
identifiers. Therefore, it’s not clear we have really solved the time-complexity problem that motivated the
use of a substitution cache. We could address this by using a better data structure and algorithm for lookup:
a hash table, say. What changes do we need to make if we use a hash table?
Hint : This is tied closely to Exercise 5.2.1!

38 CHAPTER 5. CACHING SUBSTITUTION

(define-typeF1WAE
[num (n number?)]
[add (lhs F1WAE?) (rhs F1WAE?)]
[sub(lhs F1WAE?) (rhs F1WAE?)]
[with (name symbol?) (named-expr F1WAE?) (body F1WAE?)]
[id (name symbol?)]
[app(fun-name symbol?) (arg F1WAE?)])

;; interp :F1WAE listof(fundef)SubCache→ number

(define(interp expr fun-defs sc)
(type-caseF1WAE expr

[num (n) n]
[add (l r) (+ (interp l fun-defs sc) (interp r fun-defs sc))]
[sub(l r) (− (interp l fun-defs sc) (interp r fun-defs sc))]
[with (bound-id named-expr bound-body)

(interp bound-body
fun-defs
(aSub bound-id

(interp named-expr
fun-defs
sc)

sc))]
[id (v) (lookup v sc)]
[app(fun-name arg-expr)

(local ([definethe-fun-def(lookup-fundef fun-name fun-defs)])
(interp (fundef-body the-fun-def)

fun-defs
(aSub(fundef-arg-name the-fun-def)

(interp arg-expr fun-defs sc)
(mtSub))))]))

Figure 5.1: First-Order Functions with Cached Substitutions

Chapter 6

First-Class Functions

We began Section 4 by observing the similarity between awith expression and a function definition applied
immediately to a value. Specifically, we observed that

{with {x 5} {+ x 3}}

is essentially the same as
f (x) = x+3; f (5)

Actually, that’s notquiteright: in the math equation above, we give the function a name,f , whereas there is
no identifier namedf anywhere in theWAE program. We can, however, rewrite the mathematical formula-
tion as

f = λ (x).x+3; f (5)

which we can then rewrite as
(λ (x)x+3)(5)

to get rid of the unnecessary name (f).
That is, with effectively creates a new anonymous function and immediately applies it to a value.

Because functions are useful in their own right, we may want to separate the act of functiondeclarationor
definitionfrom invocationor application(indeed, we might want to apply the same function multiple times).
That is what we will study now.

6.1 A Taxonomy of Functions

The translation ofwith into mathematical notation exploits two features of functions: the ability to cre-
ate anonymous functions, and the ability to define functions anywhere in the program (in this case, in the
function position of an application). Not every programming language offers one or both of these capabili-
ties. There is, therefore, a standard taxonomy that governs these different features, which we can use when
discussing what kind of functions a language provides:

first-order Functions are not values in the language. They can only be defined in a designated portion of
the program, where they must be given names for use in the remainder of the program. The functions
in F1WAE are of this nature, which explains the1 in the name of the language.

39

40 CHAPTER 6. FIRST-CLASS FUNCTIONS

higher-order Functions can return other functions as values.

first-class Functions are values with all the rights of other values. In particular, they can be supplied as the
value of arguments to functions, returned by functions as answers, and stored in data structures.

We would like to extendF1WAE to have the full power of functions, to reflect the capability of Scheme. In
fact, it will be easier to return toWAE and extend it with first-class functions.

6.2 Enriching the Language with Functions

To add functions toWAE, we must define their concrete and abstract syntax. First let’s examine some
concrete programs:

{{fun {x} {+ x 4}}
5}

This program defines a function that adds4 to its argument and immediately applies this function to5,
resulting in the value9. This one

{with {double {fun {x} {+ x x}}}
{+ {double 10}

{double 5}}}

evaluates to30 . The program defines a function, binds it todouble , then uses that name twice in slightly
different contexts (i.e., instantiates the formal parameter with different actual parameters).

From these examples, it should be clear that we must introduce two new kinds of expressions: function
applications (as before), as well as (anonymous) function definitions. Here’s the revisedBNF corresponding
to these examples:

<FWAE> ::= <num>
| {+ <FWAE> <FWAE>}
| {- <FWAE> <FWAE>}
| {with {<id> <FWAE>} <FWAE>}
| <id>
| {fun {<id>} <FWAE>}
| {<FWAE> <FWAE>}

Note thatF1WAE did not have function definitions as part of the expression language, since the definitions
were assumed to reside outside the expression being evaluated. In addition, notice that the function position
of an application (the lastBNF production) is now more general: instead of just the name of a function,
programmers can write an arbitrary expression that must be evaluated to obtain the function to apply. The
corresponding abstract syntax is:

(define-typeFWAE
[num (n number?)]
[add (lhs FWAE?) (rhs FWAE?)]

6.2. ENRICHING THE LANGUAGE WITH FUNCTIONS 41

[sub(lhs FWAE?) (rhs FWAE?)]
[with (name symbol?) (named-expr FWAE?) (body FWAE?)]
[id (name symbol?)]
[fun (param symbol?) (body FWAE?)]
[app(fun-expr FWAE?) (arg-expr FWAE?)])

To define our interpreter, we must think a little about what kinds of values it consumes and produces.
Naturally, the interpreter consumes values of typeFWAE. What does it produce? Clearly, a program that
meets theWAE description must yield numbers. As we have seen above, some program that use functions
and applications also evaluate to numbers. How about a program that consists solely of a function? That is,
what is the value of the program

{fun {x} x}

? It clearly doesn’t represent a number. It may be a function that,when appliedto a numeric argument,
produces a number, but it’s not itself a number (if you think differently, you need to indicate which number
it will be: 0? 1? 1729?). We instead realize from this that functions are also values that may be the result of
a computation.

We could design an elaborate representation for function values, but for now, we’ll remain modest. We’ll
let the function evaluate to its abstract syntax representation (i.e., afun structure). (We will soon get more
sophisticated than this.) For consistency, we’ll also let numbers evaluate tonum structures. Thus, the result
of evaluating the program above would be

#(struct:fun x #(struct:id x))

Now we’re ready to write the interpreter. We must pick a type for the value thatinterp returns. Since
we’ve decided to represent function and number answers using the abstract syntax, it make sense to use
FWAE, with the caveat that only two kinds ofFWAE terms can appear in the output: numbers and functions.
Our first interpreter will use explicit substitution, to offer a direct comparison with the correspondingWAE
andF1WAE interpreters.

;; interp :FWAE→ FWAE
;; evaluatesFWAE expressions by reducing them to their corresponding values
;; return values are eithernum or fun

(define(interp expr)
(type-caseFWAE expr

[num (n) expr]
[add (l r) (num+ (interp l) (interp r))]
[sub(l r) (num− (interp l) (interp r))]
[with (bound-id named-expr bound-body)

(interp (subst bound-body
bound-id
(interp named-expr)))]

[id (v) (error ’ interp " free identifier")]

42 CHAPTER 6. FIRST-CLASS FUNCTIONS

[fun (bound-id bound-body)
expr]

[app(fun-expr arg-expr)
(local ([definefun-val(interp fun-expr)])

(interp (subst(fun-body fun-val)
(fun-param fun-val)
(interp arg-expr))))]))

(We made a small change to the rules foraddandsub: they usenum+ andnum− sinceinterp now returns
anFWAE. These auxilliary definitions are given in Section 6.7.)

The rule for a function says, simply, to return the function itself. (Notice the similarity to the rule for
numbers!) That leaves only the rule for applications to study. This rule first evaluates the function position
of an application. This is because that position may itself contain a complex expression that needs to be
reduced to an actual function. For instance, in the expression

{{{fun {x} x}
{fun {x} {+ x 5}}}

3}

the outer function position consists of the application of the identity function to a function that adds five to
its argument.

When evaluated, the function position had better reduce to a function value, not a number (or anything
else). For now, we implicitly assume that the programs fed to the interpreter have no errors. (In Section X,
we will expend a great deal of effort to identify programs that may contain such errors.) Given a function,
we need to evaluate its body after having substituted the formal argument with its value. That’s what the rest
of the program does: evaluate the expression that will become the bound value, bind it using substitution,
and then interpet the resulting expression. The last few lines are very similar to the code forwith .

To understand this interpreter better, consider what it produces in response to evaluating the following
term:

{with {x 3}
{fun {y}

{+ x y}}}

DrScheme prints the following:

#(struct:fun y #(struct:add #(struct:num 3) #(struct:id y)))

Notice that thex inside the function body has been replaced by3 as a result of substitution, so the function
has no references tox left in it.

Exercise 6.2.1What induced the small change in the rules for add and sub? Explain, with an example,
what would go wrong if we did not make this change.

Exercise 6.2.2Did you notice the small change in the interpretation ofwith ?

Exercise 6.2.3What goes wrong if the interpreter fails to evaluate the function position (by invoking the
interpreter on it)? Write a program and present the expected and actual results.

6.3. MAKING WITHREDUNDANT 43

6.3 Making with Redundant

Now that we have functions and function invocation as two distinct primitives, we can combine them to
recover the behavior ofwith as a special case. Every time we encounter an expression of the form

{with {var named} body}

we can replace it with

{{fun {var} body}
named}

and obtain the same effect. The result of this translation does not usewith , so it can be evaluated by a
more primitive interpreter: one forAE enriched with functions. A simple pre-processor that runs before the
interpreter can perform this translation. We will assume the existence of such a pre-processor, and use the
languageFAE as our basis for subsequent exploration.

6.4 Implementing Functions using a Substitution Cache

As Section 5 described, our implementation will be more sprightly if we cache substitutions instead of
performing them greedily. Thus, let us study how to adapt our interpreter.

First, we must include a definition of a substitution cache. The substitution cache associates identifiers
with their values. Previously, the value had always been a number, but now our set of values is richer. We
therefore use the following type, with the understanding that the value will always be anum or fun:

(define-typeSubCache
[mtSub]
[aSub(name symbol?) (value FAE?) (sc SubCache?)])

Relative to this, the definition oflookupremains the same (only it now returns values of typeFAE).
Our first attempt at a resulting interpreter is

(define(interp expr sc)
(type-caseFAE expr

[num (n) expr]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

expr]
[app(fun-expr arg-expr)

(local ([definefun-val(interp fun-expr sc)])
(interp (fun-body fun-val)

(aSub(fun-param fun-val)
(interp arg-expr sc)
sc)))]))

44 CHAPTER 6. FIRST-CLASS FUNCTIONS

When we run a battery of tests on this interpreter, we find that the expression

{with {x 3}
{with {f {fun {y} {+ x y}}}

{with {x 5}
{f 4}}}}

evaluates to9. This should be surprising, because we seem to again have introduced dynamic scope! (Notice
that the value ofx depends on the context of the application off , not its definition.)

To understand the problem better, let’s return to this example, which we examined in the context of the
substitution interpreter: the result of interpreting

{with {x 3}
{fun {y}

{+ x y}}}

in the substitution interpreter is

#(struct:fun y #(struct:add #(struct:num 3) #(struct:id y)))

That is, it had substituted thex with 3 in the procedure. But because we are deferring substitution, our
representation for the procedure is just its text. As a result, the interpreter that employs a substitution cache
instead evaluates the same term to

#(struct:fun y #(struct:add #(struct:id x) #(struct:id y)))

What happened to the substitution for its body?
The moral here is that, to properly defer substitution, the value of a function should be not only its text,

but also the substitutions that were due to be performed on it. We therefore define a new datatype for the
interpreter’s return value that attaches the definition-time substitution cache to every function value:

(define-typeFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body FAE?)
(sc SubCache?)])

Accordingly, we change the rule forfun in the interpreter to

[fun (bound-id bound-body)
(closureV bound-id bound-body sc)]

We call this constructed value aclosurebecause it “closes” the function body over the substitutions that are
waiting to occur.

When the interpreter encounters a function application, it must ensure that the function’s pending substi-
tutions aren’t forgotten. It must, however, ignore the substitutions pending at the location of theinvocation,
for that is precisely what led us to dynamic instead of static scope. It must instead use the substitutions

6.5. SOME PERSPECTIVE ON SCOPE 45

of the invocation location to convert the function and argument into values, hope that the function expres-
sion evaluated to a closure, then proceed with evaluating the body employing the substitution cache in the
closure.

[app(fun-expr arg-expr)
(local ([definefun-val(interp fun-expr sc)])

(interp (closureV-body fun-val)
(aSub(closureV-param fun-val)

(interp arg-expr sc)
(closureV-sc fun-val))))]

That is, having evaluatedfun-exprto yieldfun-val, we obtain not only the actual function body fromfun-val’s
closure record but also the substitution cache stored within it. Crucially, while we evaluatearg-expr in sc,
the substitution cache active at the invocation location, we evaluate the function’s bodyin its “remembered”
substitution cache. Once again, the content of this boxed expression determines the difference between
static and dynamic scope. Figure 6.1 presents the complete interpreter.

Exercise 6.4.1This interpreter does not check whether the function position evaluated to a closure value.
Modify the interpreter to check and, if the expression fails to yield a closure, report an error.

Exercise 6.4.2Suppose we explicitly implementedwith in the interpreter. Given thatwith is just a
shorthand for creating and applying a closure, would the changes we made to closure creation and function
application have an effect onwith too?

Exercise 6.4.3Define a caching interpreter for alazy language with first-class functions.

6.5 Some Perspective on Scope

The example above that demonstrated the problem with our caching interpreter might not be a very convinc-
ing demonstration of the value of static scope. Indeed, you might be tempted to say, “If you knowx is 3,
why not just use3 instead ofx inside the procedure declaration? That would avoid this problem entirely!”
That’s a legitimate response for that particular example, which was however meant only todemonstrate the
problem, not tomotivate the need for the solution. Let’s now consider two examples that do the latter.

6.5.1 Differentiation

First, let’s look at implementing (a simple version of) numeric differentiation in Scheme. The program is

(defineH 0.0001)

(define(d/dx f)
(lambda (x)

(/ (− (f (+ x H)) (f x))
H)))

46 CHAPTER 6. FIRST-CLASS FUNCTIONS

In this example, in the algebraic expression, the identifierf is free relative to the inner function. However,
we cannot do what we proposed earlier, namely to substitute the free variable with its value; this is because
we don’t know what valuesf will hold during execution, and in particularf will likely be bound to several
different values over the course of the program’s lifetime. If we run the inner procedure under dynamic
scope, one of two things will happen: either the identifierf will not be bound to any value in the context of
use, resulting in an unbound identifier error, or the procedure will use whateverf is bound to, which almost
certainly will not correspond to the value supplied tod/dx. That is, in a hypothetical dynamically-scoped
Scheme, you would get

> (definediff-of-square(d/dx(lambda (x) (∗ x x))))
> (diff-of-square10)
reference to undefined identifier: f
> (definef ’greg)
> (diff-of-square10)
procedure application: expected procedure, given: greg; arguments were: 10.0001
> (definef sqrt)
> (diff-of-square10)
0.15811348772487577

That is, f assumes whatever value it has at the point ofuse, ignoring the value given to it at the inner
procedure’sdefinition. In contrast, what we really get from Scheme is

> (diff-of-square10)
20.000099999890608 ;; approximately 10×2 = 20

6.5.2 Callbacks

Let’s consider another example, this one from Java. This program implements acallback, which is a com-
mon programming pattern employed in programming GUIs. In this instance, the callback is an object in-
stalled in a button; when the user presses the button, the GUI system invokes the callback, which brings up
a message box displaying the number of times the user has pressed the button. This powerful paradigm lets
the designer of the GUI system provide a generic library of graphical objects independent of the behavior
each client wants to associate with that object.

// GUI library code
public class JButton {

public void whenPressed(ActionEvent e) {
for (int i = 0; i < listeners.length; ++i)

listeners[i].actionPerformed(e);
}

}

// User customization
public class GUIApp {

private int count = 0;

6.5. SOME PERSPECTIVE ON SCOPE 47

public class ButtonCallback implements ActionListener {
public void actionPerformed(ActionEvent e) {

count = count + 1;
JOptionPane.showMessageDialog(null,

"Callback was invoked " +
count + " times!");

}
}

public Component createComponents() {
JButton button = new JButton("Click me!");
button.addActionListener(new ButtonCallback());
return button;

}
}

Stripped to its essence, the callback code is really no different from

;; GUI library code
(define(button callback)

(local [(define(sleep-loop)
(whenbutton-pressed

(begin
(callback)
(sleep-loop))))]

(sleep-loop)))

;; User customization
(local [(definecount0)

(define(my-callback)
(begin

(set!count(add1 count)) ;; increment counter
(message-box

(string-append" Callback was invoked "
(number→string count)
" times!"))))]

(button my-callback))

That is, a callback is just a function passed to the GUI toolbox, which the toolbox invokes when it has an
argument. But note that in the definition ofmy-callback(or ButtonCallback), the identifiercountis not
bound within the function (or object) itself. That is, it isfree in the function. Therefore, whether it is scoped
statically or dynamically makes a huge difference!

How do we want our callback to behave? Naturally, as the users of the GUI toolbox, we would be very
upset if, the first time the user clicked on the button, the system halted with the message

48 CHAPTER 6. FIRST-CLASS FUNCTIONS

error: identifier ‘count’ not bound

The bigger picture is this. As programmers, we hope that other people will use our functions, perhaps
even in fantastic contexts that we cannot even imagine. Unfortunately, that means we can’t possibly know
what the values of identifiers will be at the location of use, or whether they will even be bound. If we must
rely on the locus of use, we will produce highly fragile programs: they will be useful only in very limited
contexts, and their behavior will be unpredictable everywhere else.

Static scoping avoids this fear. In a language with static scope, the programmer has full power over
choosing from the definition and use scopes. By default, free identifiers get their values from the definition
scope. If the programmer wants to rely on a value from the use scope, they simply make the corresponding
identifier a parameter. This has the added advantage of making very explicit in the function’s interface which
values from the use scope it relies on.

Dynamic scoping is primarily interesting as a historical mistake: it was in the earliest versions of Lisp,
and persisted for well over a decade. Scheme was created as an experimental language in part to experiment
with static scope. This was such a good idea that eventually, even Common Lisp adopted static scope.
Most modern languages are statically scoped, but sometimes they make the mistake of recapitulating this
phylogeny. So-called “scripting” languages, in particular, often make the mistake of implementing dynamic
scope (or the lesser mistake of just failing to create closures), and must go through multiple iterations before
they eventually implement static scope correctly.

6.6 Eagerness and Laziness

Recall that a lazy evaluator was one that did not reduce the named-expression of awith to a value at the
time of binding it to an identifier. What is the corresponding notion of laziness in the presence of functions?
Let’s look at an example: in a lazy evaluator,

{with {x {+ 3 3}}
{+ x x}}

would first reduce to

{+ {+ 3 3} {+ 3 3}}

But based on what we’ve just said in section 6.3 about reducingwith to procedure application, the treatment
of procedure arguments should match that of the named expression in awith . Therefore, a lazy language
with procedures is one that does not reduce its argument to a value until necessary in the body. The following
sequence of reduction rules illustrates this:

{{fun {x} {+ x x}}
{+ 3 3}}

= {+ {+ 3 3} {+ 3 3}}
= {+ 6 {+ 3 3}}
= {+ 6 6}
= 12

6.7. HELPER FUNCTIONS 49

which is just an example of thewith translation described above; a slightly more complex example is

{with {double {fun {x} {+ x x}}}
{double {double 5}}}

= {{fun {x} {+ x x}}
{{fun {x} {+ x x}}

5}}
= {{fun {x} {+ x x}}

{+ 5 5}}
= {+ {+ 5 5} {+ 5 5}}
= {+ 10 {+ 5 5}}
= {+ 10 10}
= 20

What do the corresponding reductions look like in an eager regime? Are there significant differences be-
tween the two?

6.7 Helper Functions

The auxiliary functionsnum+ andnum− operate onnums (as opposed tonumbers). We define them as
follows:

;; num+ :num num→ num
(define(num+ n1 n2)

(num (+ (num-n n1) (num-n n2))))

;; num- :num num→ num
(define(num− n1 n2)

(num (− (num-n n1) (num-n n2))))

50 CHAPTER 6. FIRST-CLASS FUNCTIONS

(define-typeFAE
[num (n number?)]
[add (lhs FAE?) (rhs FAE?)]
[sub(lhs FAE?) (rhs FAE?)]
[id (name symbol?)]
[fun (param symbol?) (body FAE?)]
[app(fun-expr FAE?) (arg-expr FAE?)])

;; num+ :numV numV−→ numV

(define(num+ n1 n2)
(numV(+ (numV-n n1) (numV-n n2))))

;; num- :numV numV−→ numV

(define(num− n1 n2)
(numV(− (numV-n n1) (numV-n n2))))

(define-typeFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body FAE?)
(sc SubCache?)])

(define-typeSubCache
[mtSub]
[aSub(name symbol?) (value FAE-Value?) (sc SubCache?)])

;; lookup : symbolSubCache→ FAE-Value

;; interp :FAE SubCache→ FAE-Value
(define(interp expr sc)

(type-caseFAE expr
[num (n) (numV n)]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(closureV bound-id bound-body sc)]
[app(fun-expr arg-expr)

(local ([definefun-val(interp fun-expr sc)])
(interp (closureV-body fun-val)

(aSub(closureV-param fun-val)
(interp arg-expr sc)
(closureV-sc fun-val))))]))

Figure 6.1: First-Class Functions with Cached Substitutions

Part III

Intermezzo

51

Chapter 7

Representations and Meta-Interpreters

7.1 Re-Implementing Substitution Caches

We have seen one way of implementing the substitution cache, which is as a datatype representing a stack:

(define-datatypeSubCache SubCache?
[mtSub]
[aSub(name symbol?) (value FA-value?) (sc SubCache?)])

Let’s take a slightly different view of the cache. The substitution cache is really just a mapping from
identifiers to values. But it’s a particular kind of mapping: at every instant, when we look up the value of an
identifier, we want to get at most one value for it. That is, the cache is just a (partial) functions.

In a language like Scheme, we can implement a partial function directly using Scheme’s functions,
without having to go through a data structure representation. First, let’s define a predicate for our new
representation:

(define(SubCache? x)
(procedure? x))

This predicate is not exact, but it’ll suffice for our purposes. Using this representation, we have a different
way of implementingaSub(the contract stays the same):

(define(aSub bound-name bound-value sc)
(lambda (want-name)

(cond
[(symbol=? want-name bound-name) bound-value]
[else(lookup want-name sc)])))

The functionaSubmust return a cache, and since we’ve chosen to represent caches by Scheme functions
(lambdas), the functionaSubmust return a function. This explains thelambda.

A cache is a function that consumes one argument, awant-name, the name we’re trying to look up. It
checks whether the name that name is the one bound by the current procedure. If it is, it returns the bound
value, otherwise it continues the lookup process. How does that work?

53

54 CHAPTER 7. REPRESENTATIONS AND META-INTERPRETERS

(define(lookup name sc)
(sc name))

A cache is just a procedure expecting an identifier’s name, so to look up a name, we simply apply it to the
name we’re looking for.

The implementation of the initial value,mtSub, is simply a function that consumes an identifier name
and halts in error:

(define(mtSub)
(lambda (name)

(error ’ lookup " no binding for identifier")))

Given these changes, the core interpreter remainsunchangedfrom Figure 6.1.

7.2 A New Representation forFAE Functions

Let’s consider our representation of numbers. We made the decision thatFAE numbers be represented as
Scheme numbers. Scheme numbers handle overflow automatically by growing as large as necessary. If we
want to haveFAE numbers overflow in a different way (by performing modular arithmetic, say, as Java’s
numbers behave), we might need to provide our own implementation of arithmetic that captures our desired
overflow modes, and use this to implementFAE arithmetic.

Because numbers are not as interesting as some of the other features we’ll be studying, we won’t be
conducting such an exercise. The relevant point is that by writing an interpreter ourselves, we get the power
to make these kinds of choices. A related choice, whichis relevant to this text, is the representation of
functions.

What other representations are available forFAE functions (i.e.,fun expressions)? Currently, our inter-
preter uses a datatype. We might try to use strings or vectors; vectors would gain little over a datatype, and
it’s not quite clear how to use a string. One Scheme type thatoughtto be useful, however, is Scheme’s own
procedure mechanism,lambda. Let’s consider how that might work.

First, we need to change our representation of function values. We will continue to use a datatype, but
only to serve as a wrapper of the actual function representation (just like thenumVclause only wraps the
actual number). That is,

(define-typeFAE-Value
[numV(n number?)]
[closureV(p procedure?)])

We will need to modify thefun clause of the interpreter. When we implemented substitution caches
with procedures, we embedded a variant of the original lookup code in the redefinedaSub. Here we do a
similar thing: We wantFAE function application to be implemented with Scheme procedure application, so
we embed the originalappcode inside the Scheme procedure representing aFAE function.

[fun (bound-id bound-body)
(closureV(lambda (arg-val)

(interp bound-body
(aSub bound-id arg-val sc))))]

7.3. TYPES OF INTERPRETERS 55

That is, we construct aclosureVthat wraps a real Scheme closure. That closure takes a single value, which
is the value of the actual parameter. It then interprets the body in an extended substitution cache that binds
the parameter to the argument’s value.

These changes immediately provoke two important questions:

1. Which cache will the interpreter extend when evaluating the body? Because Scheme itself obeys static
scoping, the interpreter will automatically employ the substitution cache active at procedurecreation.
That is, Scheme’slambda does the hard work so we can be sure to get the right cache.

2. Doesn’t the body get interpreted when we define the function? No, it doesn’t. It only gets evaluated
when something—hopefully the application clause of the interpreter—extracts the Scheme procedure
from theclosureVvalue and applies it to the value of the actual parameter.

Correspondingly, application becomes

[app(fun-expr arg-expr)
(local ([definefun-val(interp fun-expr sc)]

[definearg-val (interp arg-expr sc)])
((closureV-p fun-val)
arg-val))]

Having reduced the function and argument positions to values, the interpreter extracts the Scheme procedure
that represents the function (the boxed expression), and applies it to the argument value.

In short, afun expression now evaluates to a Scheme procedure that takes aFAE value as its argument.
Function application inFAE is now just procedure application in Scheme. Figure 7.1 presents the entire
revised interpreter.

7.3 Types of Interpreters

We have seen a few different implementations of interpreters that are quite different in flavor. They suggest
the following taxonomy.

Definition 12 (syntactic interpreter) A syntactic interpreter is one that uses the interpreting language to
represent onlytermsof the interpreted language, implementing all the corresponding behavior explicitly.

Definition 13 (meta interpreter) A meta interpreter is an interpreter that uses language features of the
interpreting language todirectly implement behaviorof the interpreted language.

While our substitution-basedFAE interpreter was very nearly a syntactic interpreter, we haven’t written
any purely syntactic interpreters so far: even that interpreter directly relied on Scheme’s implementation
of numbers. The interpreter we have studied here, that employs Scheme’slambda (and its attendant static
scope) to representfun , is distinctly a meta interpreter.

With a good match between the interpreted language and the interpreting language, writing a meta
interpreter can be very easy. With a bad match, though, it can be very hard. With a syntactic interpreter,

56 CHAPTER 7. REPRESENTATIONS AND META-INTERPRETERS

implementingeachsemantic feature will be somewhat hard,1 but in return you don’t have to worry as much
about how well the interpreting and interpreted languages match up. In particular, if there is a particularly
strongmismatchbetween the interpreting and interpreted language, it may take less effort to write a syntactic
interpreter than a meta interpreter.

As an exercise, we can build upon our latest interpreter to remove the encapsulation of the interpreter’s
response in theFAE-Value type. The resulting interpreter is shown in Figure 7.2. This is a true meta
interpreter: it uses Scheme closures to implementFAE closures, Scheme procedure application forFAE
function application, Scheme numbers forFAE numbers, and Scheme arithmetic forFAE arithmetic. In fact,
ignoring some small syntactic differences between Scheme andFAE, this latest interpreter can be classified
as something more specific than a meta interpreter:

Definition 14 (meta-circular interpreter) A meta-circular interpreter is a meta interpreter in which the
interpreting and interpreted language are the same.

(Put differently, the trivial nature of the interpreter clues us in to the deep connection between the two
languages, whatever their syntactic differences may be.)

Meta-circular interpreters do very little to promote understanding. To gain an understanding of the
language being interpreted—one of the reasons we set out to write interpreters—we must already thoroughly
understand that language so we can write or understand the interpreter! Therefore, meta-circular interpreters
are elegant but not very effective educational tools (except, perhaps, when teaching one particular language).
In this text, therefore, we will write interpreters that balance between syntactic and meta elements, using
only those meta features that we have already understood well (such as Scheme closures). This is the only
meta-circular interpreter we will write.

That said, meta-circular interpreters do serve in one very important role: they’re good at finding weak-
nesses in language definitions! For instance, if you define a new scripting language, no doubt you will put
great effort into the design of its domain-specific feature, such as those to parse data files or communicate
over a network. But will you get the domain-independent parts—procedures, scope, etc.—right also? And
how can you be sure? One good way is to try and write a meta, then meta-circular interpreter using the
language. You will probably soon discover all sorts of deficiencies in the core language. The failure to
apply this simple but effective experiment is partially responsible for the messy state of so many scripting
languages (Tcl, Perl, JavaScript, Python, etc.) for so long; only now are they getting powerful enough to
actually support effective meta-circular interpreters.

In short, by writing a meta-circular interpreter, you are likely to find problems, inconsistencies and, in
particular, weaknesses that you hadn’t considered before. In fact, some people would argue thata truly
powerful language is one that makes it easy to write its meta-circular interpreter.2

1Though a poor choice of meta language can make this much harder than necessary! We choose Scheme in part because it has
so many powerful features to draw upon in a meta interpreter.

2Indeed, if this meta-circular interpreter for Scheme seems rather concise, try to find a meta-circular interpreter for Prolog. It
looks like a cheat.

7.3. TYPES OF INTERPRETERS 57

(define-typeFAE-Value
[numV(n number?)]
[closureV(p procedure?)])

;; interp :FAE SubCache→ FAE-Value

(define(interp expr sc)
(type-caseFAE expr

[num (n) (numV n)]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(closureV(lambda (arg-val)
(interp bound-body

(aSub bound-id arg-val sc))))]
[app(fun-expr arg-expr)

(local ([definefun-val(interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])

((closureV-p fun-val)
arg-val))]))

Figure 7.1: Closure Representation of Functions

58 CHAPTER 7. REPRESENTATIONS AND META-INTERPRETERS

(define(number-or-procedure? v)
(or (number? v)

(procedure? v)))

(define-typeSubCache
[mtSub]
[aSub(name symbol?) (value number-or-procedure?) (sc SubCache?)])

;; interp :FAE SubCache→ number-or-procedure

(define(interp expr sc)
(type-caseFAE expr

[num (n) n]
[add (l r) (+ (interp l sc) (interp r sc))]
[sub(l r) (− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(lambda (arg-val)
(interp bound-body

(aSub bound-id arg-val sc)))]
[app(fun-expr arg-expr)

(local ([definefun-val(interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])

(fun-val arg-val))]))

Figure 7.2: Meta-Circular Interpreter

Part IV

Recursion

59

Chapter 8

Understanding Recursion

Definition 15 (environment) Anenvironmentis a substitution cache.

In the remainder of this text, we will use these synonymous terms interchangeably.
Can we write the factorial function inFAE? We currently don’t have multiplication, or a way of making

choices in ourFAE code. But those two are easy to address. At this point adding multiplication is trivial,
while to make choices, we can add a simple conditional construct, leading to this language:

<CFAE> ::= <num>
| {+ <CFAE> <CFAE>}
| {- <CFAE> <CFAE>}
| { * <CFAE> <CFAE>}
| <id>
| {fun {<id>} <CFAE>}
| {<CFAE> <CFAE>}
| {if0 <CFAE> <CFAE> <CFAE>}

An if0 evaluates its first sub-expression. If this yields the value0 it evaluates the second, otherwise it
evaluates the third. For example,

{if0 {+ 5 -5}
1
2}

evaluates to 1.
Given CFAE, we’re ready to write factorial (recall from Section 6.3 thatwith can be handled by a

pre-processor or by the parser):

{with {fac {fun {n}
{if0 n

1
{ * n {fac {+ n -1}}}}}}

{fac 5}}

61

62 CHAPTER 8. UNDERSTANDING RECURSION

What does this evaluate to? 120? No. Consider the following simpler expression, which you were asked to
contemplate when we studied substitution:

{with {x x} x}

In this program, thex in the named expression position of thewith has no binding. Similarly, the environ-
ment in the closure bound tofac binds no identifiers. Therefore, only the environment of the first invocation
(the body of thewith) has a binding forfac . Whenfac is applied to5, the interpreter evaluates the body
of fac in the closure environment, which has no bound identifiers, so interpretation stops on the intended
recursive call tofac with an unbound identifier error. (As an aside, notice that this problem disappears with
dynamicscope! This is why dynamic scope persisted for as long as it did.)

Before you continue reading, please pause for a moment, study the program carefully, write down the
environments at each stage, step by hand through the interpreter, even run the program if you wish, to
convince yourself that this error will occur. Understanding the error thoroughly will be essential to following
the remainder of theis section.

8.1 A Recursion Construct

It’s clear that the problem arises from the scope rules ofwith : it makes the new binding available only in its
body. In contrast, we need a construct that will make the new binding available to the named expression also.
Different intents, so different names: Rather than changewith , let’s add a new construct to our language,
rec .

<RCFAE> ::= <num>
| {+ <RCFAE> <RCFAE>}
| {- <RCFAE> <RCFAE>}
| { * <RCFAE> <RCFAE>}
| <id>
| {fun {<id>} <RCFAE>}
| {<RCFAE> <RCFAE>}
| {if0 <RCFAE> <RCFAE> <RCFAE>}

| {rec {<id> <RCFAE>} <RCFAE>}

RCFAE is CFAE extended with a construct for recursive binding. We can userec to write a description of
factorial as follows:

{rec {fac {fun {n}
{if0 n

1
{ * n {fac {+ n -1}}}}}}

{fac 5}}

Simply defining a new syntactic construct isn’t enough; we must also describe what it means. Indeed,
notice that syntactically, there is nothing but the keyword distinguishingwith from rec . The interesting
work lies in the interpreter. But before we get there, we’ll first need to think hard about the semantics at a
more abstract level.

8.2. ENVIRONMENTS FOR RECURSION 63

8.2 Environments for Recursion

It’s clear from the analysis of our failed attempt at writingfac above that the problem has something to do
with the environments. Let’s try to make this intuition more precise.

One way to think about constructs such aswith is asenvironment transformers. That is, they are
functions that consume an environment and transform it into one for each of their sub-expressions. We will
call the environment they consume—which is the one active outside the use of the construct—theambient
environment.

There are two transformers associated withwith : one for its named expression, and the other for its
body. Let’s write them both explicitly.

ρwith ,named(e) = e

In other words, whatever the ambient environment for awith , that’s the environment used for the named
expression. In contrast,

ρwith ,body(e) = (aSub bound-id
bound-value
e)

wherebound-idandbound-valuehave to be replaced with the corresponding identifier name and value,
respectively.

Now let’s try to construct the intended transformers forrec in the factorial definition above. Sincerec
has two sub-expressions, just likewith , we will need to describe two transformers. The body seems easier
to tackle, so let’s try it first. At first blush, we might assume that the body transformer is the same as it was
for with , so:

ρrec ,body(e) = (aSub’ fac
(closureV· · ·)
e)

Actually, we should be a bit more specific than that: we must specify the environment contained in the clo-
sure. Once again, if we had awith instead of arec , the closure would close over the ambient environment:

ρrec ,body(e) = (aSub’ fac
(closureV’n ;; bound id

(if0 · · ·) ;; body
e)

e)

But this is no good! When thefac procedure is invoked, the interpreter is going to evaluate its body in the
environment bound toe, which doesn’t have a binding forfac . So this environment is only good for the
first invocation offac ; it leads to an error on subsequent invocations.

Let’s understand how this closure came to have that environment. The closure simply closes over what-
ever environment was active at the point of the procedure’s definition. Therefore, the real problem is making
sure we have the right environment for the named-expression portion of therec . If we can do that, then
the procedure in that position would close over the right environment, and everything would be set up right
when we get to the body.

64 CHAPTER 8. UNDERSTANDING RECURSION

We must therefore shift our attention to the environment transformer for the named expression. If we
evaluate an invocation offac in the ambient environment, it fails immediately becausefac isn’t bound. If
we evaluate it in (aSub’ fac (closureV· · · e) e), we can perform one function application before we halt with
an error. What if we wanted to be able to perform two function calls (i.e., one to initiate the computation,
and one recursive call)? Then the following environment would suffice:

ρrec ,named(e) =
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
e)

e))
e)

That is, when the body offac begins to evaluate, it does so in the environment

(aSub’ fac
(closureV’n

(if0 · · ·) ;; body
e)

e)

which contains the “seed” for one more invocation offac . That second invocation, however, evaluates its
body in the environment bound toe, which has no bindings forfac , so any further invocations would halt
with an error.

Let’s try this one more time: the following environment will suffice for one initial andtwo recursive
invocations offac :

ρrec ,named(e) =
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
e)

e))
e))

e)

8.2. ENVIRONMENTS FOR RECURSION 65

There’s a pattern forming here. To get true recursion, we need to not “bottom out”, which happens when we
run out of extended environments. This would not happen if the “bottom-most” environment were somehow
to refer back to the one enclosing it. If it could do so, we wouldn’t even need to go to three levels; we only
need one level of environment extension: the place of the boxede in

ρrec ,named(e) =
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
e)

e)

should instead be a reference to the entire right-hand side of that definition. The environment must be a
cyclicdata structure, or one that refers back to itself.

We don’t seem to have an easy way to represent this environment transformer, because we can’t formally
just draw an arrow from the box to the right-hand side. However, in such cases we can use a variable to name
the box’s location, and specify the constraint externally (that is, once again, name and conquer). Concretely,
we can write

ρrec ,named(e) =
(aSub’ fac

(closureV’n
(if0 · · ·) ;; body
E)

e)

But this has introduced an unbound (free) identifier,E. There is an easy way of making sure it’s bound:

ρrec ,named(e) =
λ E .

(aSub’ fac
(closureV’n

(if0 · · ·) ;; body
E)

e)

We’ll call this apre-transformer, because it consumes bothe, the ambient environment, andE, the environ-
ment to put in the closure. For some ambient environmente0, let’s set

Fe0 = ρrec ,named(e0)

Remember thatFe0 is a procedure ready to consume anE, the environment to put in the closure. What does
it return? It returns an environment that extends the ambient environment. If we feed the right environment
for E, then recursion can proceed forever. WhatE will enable this?

Whatever we get by feeding someE0 to Fe0—that is,Fe0(E0)—is precisely the environment that will
be bound in the closure in the named expression of therec , by definition ofFe0. We also want that the

66 CHAPTER 8. UNDERSTANDING RECURSION

environment we get back be thesameenvironment: one that extends the ambient environment with a suitable
binding forfac . In short, we want

E0 = Fe0(E0)

That is, the environmentE0 we need to feedFe0 needs to be the same as the environment we will get from
applyingFe0 to it. This looks pretty tricky: we’re being asked to pass in the very environment we want to
get back out!

We call such a value—one such that the function’s output is the same as its input—afixed-pointof a
function. In this particular case, the fixed-point is an environment that extends the ambient environment
with a binding of a name to a closure whose environment is . . . itself.

Exercise 8.2.1This discussion about recursion has taken place in the context of environments, i.e., substi-
tution caches. How would it differ if we were performing explicit (i.e., uncached) substitution?

Fixed-Points

You’ve already seen fixed points in mathematics. For example, consider functions over the real
numbers. The functionf (x) = 0 has exactly one fixed point, becausef (n) = n only whenn = 0.
But not all functions over the reals have fixed points: considerf (x) = x+ 1. A function can have
two fixed points: f (x) = x2 has fixed points at 0 and 1 (but not, say, at−1). And because a fixed
point occurs whenever the graph of the function intersects the liney = x, the functionf (x) = x has
infinitely many fixed points.
The study of fixed points over topological spaces is fascinating, and yields many rich and surprising
theorems. One of these is the Brouwer fixed point theorem. The theorem says that every continuous
function from the unitn-ball to itself must have a fixed point. A famous consequence of this theorem
is the following result. Take two instances of the same map, align them, and lay them flat on a table.
Now crumple the upper copy, and lay it atop the smooth map any way you like (but entirely fitting
within it). No matter how you place it, at least one point of the crumpled map lies directly above its
equivalent point on the smooth map!

The mathematics we must use to carefully define this fixed-point is not trivial. Fortunately for us, we’re
using programming instead of mathematics! In the world of programming, the solution will be to generate
acyclicenvironment.

8.3. A HAZARD 67

Recursiveness and Cyclicity

It is important to distinguish betweenrecursiveandcyclic data. A recursive object contains refer-
ences to instances of objects of the same type as it. A cyclic object is a special case of a recursive
object. A cyclic object contains references not only to objects of the samekind as itself, it contains
an actual reference toitself.
To easily recall the distinction, think of a typical family tree as a canonical recursive structure.
Each person in the tree refers to two more family trees, one each representing the lineage of their
mother and father. However, nobody is (usually) their own ancestor, so a family tree is never cyclic.
Therefore, structural recursion over a family tree will always terminate. In contrast, the Web is
not merely recursive, it’s cyclic: a Web page can refer to another page which can refer back to the
first one (or, a page can refer to itself). Naı̈ve recursion over a cyclic datum will potentially not
terminate: the recursor needs to either not try traversing the entire object, or must track which nodes
it has already visited and accordingly prune its traversal. Web search engines face the challenge of
doing this efficiently.

8.3 A Hazard

When programming withrec , we have to be extremely careful to avoid using bound values prematurely.
Specifically, consider this program:

{rec {f f}
f}

What should this evaluate to? Thef in the body has whatever value thef did in the named expression of
therec —whose value is unclear, because we’re in the midst of a recursive definition. What you get really
depends on the implementation strategy. An implementation could give you some sort of strange, internal
value. It could even result in an infinite loop, asf tries to look up the definition off , which depends on the
definition off , which . . .

There is a safe way out of this pickle. The problem arises because the named expression can be any
complex expression, including the identifier we are trying to bind. But recall that we went to all this trouble
to create recursiveprocedures. If we merely wanted to bind, say, a number, we have no need to write

{rec {n 5}
{+ n 10}}

when we could write

{with {n 5}
{+ n 10}}

just as well instead. Therefore, instead of the liberal syntax forRCFAE above, we could use a more conserva-
tive syntax that restricts the named expression in arec to syntacticallybe a procedure (i.e., the programmer
may only write named expressions of the form{proc ...}). Then, interpretation of the named expres-
sion immediately constructs a closure, and the closure can’t be applied until we interpret the body—by
which time the environment is in a stable state.

68 CHAPTER 8. UNDERSTANDING RECURSION

Exercise 8.3.1Are there any other expressions we can allow, beyond just syntactic procedures, that would
not compromise the safety of this conservative recursion regime?

Exercise 8.3.2Can you write a useful or reasonable program that is permitted in the liberal syntax, and
that safely evaluates to a legitimate value, that the conservative syntax prevents?

Chapter 9

Implementing Recursion

We have now reduced the problem of creating recursive functions to that of creating cyclic environments.
The interpreter’s rule forwith looked like this:

[with (bound-id named-expr bound-body)
(interp bound-body

fun-defs
(aSub bound-id

(interp named-expr
fun-defs
sc)

sc))]

It is tempting to write something similar forrec , perhaps making a concession for the recursive environment
by using a different constructor:

[rec (bound-id named-expr bound-body)
(interp bound-body

fun-defs
(recSub bound-id

(interp named-expr
fun-defs
sc)

sc))]

This is, however, unlikely to work correctly. The problem is that it interprets the named expression in the
environmentenv. We have decided in Section 8.3 that the named expression must syntactically be afun
(using, say, the parser to enforce this restriction), which means its value is going to be a closure. That closure
is going to capture its environment, which in this case will beenv, the ambient environment. Butenvdoesn’t
have a binding for the identifier being bound by therec expression, which means the function won’t be
recursive. So this does us no good at all.

Rather than hasten to evaluate the named expression, we could pass the pieces of the function to the
procedure that will create the recursive environment. When it creates the recursive environment, it can

69

70 CHAPTER 9. IMPLEMENTING RECURSION

generate a closure for the named expression that closes over this recursive environment. In code,

[rec (bound-id named-expr bound-body)
(interp bound-body

(cyclically-bind-and-interp bound-id
named-expr
sc))]

This puts the onus oncyclically-bind-and-interp, but hopefully also gives it the pieces it needs to address
the problem. That procedure is expected to create and return the appropriate environment, which associates
the bound identifier with a closure whose environment is the containing environment.

Recall that Section 7 introduced a second representation for environments, so we now have two. We
will study the implementation of recursion for each environment representation. In both cases, we’re trying
to provide an implementation for a procedure with this type:

;; cyclically-bind-and-interp : symbolfunenv→ env

(Section 8.3 explains why the second argument is guaranteed to be afun and not any other kind of expres-
sion.)

9.1 Procedural Representation of Recursive Environments

Assume that we’re using Scheme procedures to represent environments. Clearly,cyclically-bind-and-interp
must begin as follows:

(define(cyclically-bind-and-interp bound-name named-expr env)
· · ·)

We know that the following code pattern must exist because of how procedural representations of environ-
ments work:

(define(cyclically-bind-and-interp bound-name named-expr env)
...
(lambda (want-name)

(cond
[(symbol=? want-name bound-name)
· · ·]

[else(lookup want-name env)]))
· · ·)

If the symbols match, what do we want to return? Looking up identifiers in environments produces values.
Recall that the named expression must be a function, so its value must be a closure. Thus, the response if
the symbols match must yield a closure:

(define(cyclically-bind-and-interp bound-name named-expr env)
...
(lambda (want-name)

9.1. PROCEDURAL REPRESENTATION OF RECURSIVE ENVIRONMENTS 71

(cond
[(symbol=? want-name bound-name)
(closureV(fun-param named-expr)

(fun-body named-expr)
· · ·)]

[else(lookup want-name env)]))
· · ·)

What’s not yet clear is what environment to close over. It clearly can’t beenv(defeats the purpose ofrec),
and it must be something with this additional binding. So how about we give a name to this new environment
that knows about the binding forbound-name?

(define(cyclically-bind-and-interp bound-name named-expr env)
(local ([definerec-ext-env

(lambda (want-name)
(cond

[(symbol=? want-name bound-name)
(closureV(fun-param named-expr)

(fun-body named-expr)
· · ·)]

[else(lookup want-name env)]))])
· · ·))

Having named it, it’s now easy to fill in the two ellipses. What environment do we want to close over in the
closure? One that has a binding for the function named inbound-name. This is the environmentrec-ext-
env. What do we want to return from this procedure? The recursively extended environment. This is also
rec-ext-env. Thus, ignoring the box momentarily,

(define(cyclically-bind-and-interp bound-name named-expr env)
(local ([definerec-ext-env

(lambda (want-name)
(cond

[(symbol=? want-name bound-name)
(closureV(fun-param named-expr)

(fun-body named-expr)
rec-ext-env)]

[else(lookup want-name env)]))])
rec-ext-env))

The relevant portions of the interpreter are in Figure 9.1 and Figure 9.2.
This definition raises two natural questions:

1. Is this really a recursive environment? Yes it is, though you’ll just have to take the word of the authors
of DrScheme thatlocal does indeed definerec-ext-envas arecursiveprocedure, so references to that
name in the procedure’s body will indeed refer back to the same procedure.

72 CHAPTER 9. IMPLEMENTING RECURSION

2. Doesn’t the boxed reference torec-ext-envhave the same problem we were trying to avoid with
expressions such as{rec {x x} x} ? Actually, it doesn’t. The reference here is “under a lambda”,
that is, it is separated from the binding instance by a procedure declaration. Therefore, when the
named expression portion of thelocal is evaluated, it associates a closure withrec-ext-envthat doesn’t
get invoked until much later—by which time the recursive environment of thelocal is safely defined.
This is the same issue we discussed in Section 8.3.

Reassuring as these responses may be, there is still something deeply unsatisfying about this solution.
We set out to add recursive functions toRCFAE. We reduced this to the problem of defining recursive
environments, which is legitimate (and, arguably, recursive environments are easier to think about than
recursive functions themselves). But we thenimplementedrecursive environments by falling right back on
Scheme’s recursive functions: an abuse of meta-interpretive power, if ever there was any! What we’d like is
a much more coherent, self-contained account ofrec that doesn’t rely on advanced knowledge of Scheme
(or, at least, no knowledge of features that we don’t also find in more mainstream programming languages).

As an aside, this discussion highlights both a power and peril of meta-interpretive choices. The power
of choosing the procedural representation is that we can add recursion to the language very easily. If our
goal is to add it as quickly as possible, while minimizing error, it makes sense to exploit the effort put into
implementing recursion for Scheme. But the peril is that this implementation does not hold descriptive
power: it still begs the question of how to implement recursion from scratch.

Exercise 9.1.1Is it possible to implement recursive environments using the procedural representationwith-
out employing Scheme’s constructs for creating recursive procedures? That is, canFAE alone express
recursive functions?

9.2 Datatype Representation of Recursive Environments

Let’s now turn our attention to the datatype representation of environments. In the procedural case we
extended the environment to capture cyclic bindings, so we do the same here:

(define-typeSubCache
[mtSub]
[aSub(name symbol?)

(value RCFAE-Value?)
(env SubCache?)]

[aRecSub(name symbol?)
(value RCFAE-Value?)
(env SubCache?)])

We will again push the work from the interpreter into the helper function:

[rec (bound-id named-expr bound-body)
(interp bound-body

(cyclically-bind-and-interp bound-id
named-expr
sc))]))

9.2. DATATYPE REPRESENTATION OF RECURSIVE ENVIRONMENTS 73

so the interesting work happens incyclically-bind-and-interp.
Before we can create a cyclic environment, we must first extend it with the new variable. We don’t yet

know what it will be bound to, so we’ll stick a dummy value into the environment:

;; cyclically-bind-and-interp : symbolRCFAE env→ env

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder(numV1729)]

[definenew-env(aRecSub bound-id value-holder env)])
· · ·))

If the program uses the identifier being bound before it has its real value, it’ll get the dummy value as
the result. But because we have assumed that the named expression is syntactically a function, this can’t
happen.1

Now that we have this extended environment, we can interpret the named expression in it:

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder(numV1729)]

[definenew-env(aRecSub bound-id value-holder env)]
[definenamed-expr-val(interp named-expr new-env)])

· · ·))

Because the named expression is a closure, it will close over the extended environment (new-env). Notice
that this environment is half-right and half-wrong: it has the right names bound, but the newest addition is
bound to the wrong (indeed, dummy) value.

Now comes the critical step. The value we get from evaluating the named expression is the same value
we want to get on all subsequent references to the name being bound. Therefore, the dummy value—the
one bound to the identifier named in therec —needs to bereplacedwith the new value.

To perform this replacement, we need to ensure that the environment ismutable. We will use Scheme
values known asboxesto implement this.2 The type of thevaluefield of aaRecSubtherefore really needs
to satisfy this predicate:

(define(boxed-RCFAE-Value? v)
(and (box? v)

(RCFAE-Value?(unbox v))))

This forces us to box the dummy value also:

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder (box(numV1729))]

[definenew-env(aRecSub bound-id value-holder env)]

1Suppose we lifted this restriction on the named expression. In a more sophisticated implementation, we would then introduce
a special kind of value that designates “there’s no value here (yet)”; when a computation produces that value, the evaluator should
halt with an error.

2A Scheme box is a mutable cell. Boxes have three operations:box : Value→ box, which creates a fresh cell containing the
argument value;unbox: box→ Value, which returns the value stored in a box; andset-box!: box Value→ void, which changes the
value held in a box but returns no value of interest.

74 CHAPTER 9. IMPLEMENTING RECURSION

[definenamed-expr-val(interp named-expr new-env)])
· · ·))

Now that we have a box in the environment, it’s ripe for mutation:

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder(box(numV1729))]

[definenew-env(aRecSub bound-id value-holder env)]
[definenamed-expr-val(interp named-expr new-env)])

(set-box! value-holder named-expr-val)))

Since any closures in the value expressionshare the same binding, they automatically avail of this update.
Finally, we must remember thatcyclically-bind-and-interphas to actually return the updated environment
for the interpreter to use when evaluating the body:

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder(box(numV1729))]

[definenew-env(aRecSub bound-id value-holder env)]
[definenamed-expr-val(interp named-expr new-env)])

(begin
(set-box! value-holder named-expr-val)
new-env)))

There’s one last thing we need to do. Because we have introduced a new kind of environment, we must
update the environment lookup procedure to recognize it.

[aRecSub(bound-name boxed-bound-value rest-sc)
(if (symbol=? bound-name name)

(unbox boxed-bound-value)
(lookup name rest-sc))]

This only differs from the rule foraSubin that we must remember that the actual value is encapsulated
within a box. Figure 9.1 and Figure 9.3 present the resulting interpreter.

Working through our factorial example from earlier, the ambient environment is (mtSub), so the value
bound tonew-envin cyclically-bind-and-interpis

(aRecSub’ fac
(box(numV1729))
(mtSub))

Next,named-expr-valis bound to

(closureV’n
(if0 · · ·)
(aRecSub’ fac

(box(numV1729))
(mtSub)))

9.2. DATATYPE REPRESENTATION OF RECURSIVE ENVIRONMENTS 75

Now the mutation happens. This has the effect of changing the value bound to ’fac in the environment:

(aRecSub’ fac
(box(closureV· · ·))
(mtSub))

But we really should be writing the closure out in full. Now recall that this is thesameenvironment contained
in the closure bound to ’fac. So the environment is really

(aRecSub’ fac
(box(closureV’n

(if0 · · ·)
�))

(mtSub))

where� is a reference back to this very same environment! In other words, we have a cyclic environment
that addresses the needs of recursion. The cyclicity ensures that there is always “one more binding” forfac
when we need it.

Exercise 9.2.1The two implementations differ slightly in the way they treat illegal named expressions (i.e.,
ones that are not syntactic procedures). Do you see why? How would you make them behave identically?

76 CHAPTER 9. IMPLEMENTING RECURSION

;; interp :FAE env→ RCFAE-Value

(define(interp expr sc)
(type-caseRCFAE expr

[num (n) (numV n)]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[mult (l r) (num∗ (interp l sc) (interp r sc))]
[if0 (test thenelse)

(if (num-zero?(interp test sc))
(interp then sc)
(interpelsesc))]

[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(closureV bound-id bound-body sc)]
[app(fun-expr arg-expr)

(local ([definefun-val(interp fun-expr sc)])
(interp (closureV-body fun-val)

(aSub(closureV-param fun-val)
(interp arg-expr sc)
(closureV-sc fun-val))))]

[rec (bound-id named-expr bound-body)
(interp bound-body

(cyclically-bind-and-interp bound-id
named-expr
sc))]))

Figure 9.1: Common Core Interpreter for Recursion

9.2. DATATYPE REPRESENTATION OF RECURSIVE ENVIRONMENTS 77

(define-typeRCFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body RCFAE?)
(sc SubCache?)])

;; cyclically-bind-and-interp : symbolfunenv→ env

(define(cyclically-bind-and-interp bound-name named-expr env)
(local ([definerec-ext-env

(lambda (want-name)
(cond

[(symbol=? want-name bound-name)
(closureV(fun-param named-expr)

(fun-body named-expr)
rec-ext-env)]

[else(lookup want-name env)]))])
rec-ext-env))

Figure 9.2: Recursion with Procedural Representation of Environments

78 CHAPTER 9. IMPLEMENTING RECURSION

(define-typeRCFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body RCFAE?)
(sc SubCache?)])

(define(boxed-RCFAE-Value? v)
(and (box? v)

(RCFAE-Value?(unbox v))))

(define-typeSubCache
[mtSub]
[aSub(name symbol?)

(value RCFAE-Value?)
(env SubCache?)]

[aRecSub(name symbol?)
(value boxed-RCFAE-Value?)
(env SubCache?)])

;; lookup : symbol env→ RCFAE-Value

(define(lookup name sc)
(type-caseSubCache sc

[mtSub() (error ’ lookup " no binding for identifier")]
[aSub(bound-name bound-value rest-sc)

(if (symbol=? bound-name name)
bound-value
(lookup name rest-sc))]

[aRecSub(bound-name boxed-bound-value rest-sc)
(if (symbol=? bound-name name)

(unbox boxed-bound-value)
(lookup name rest-sc))]))

;; cyclically-bind-and-interp : symbolRCFAE env→ env

(define(cyclically-bind-and-interp bound-id named-expr env)
(local ([definevalue-holder(box(numV1729))]

[definenew-env(aRecSub bound-id value-holder env)]
[definenamed-expr-val(interp named-expr new-env)])

(begin
(set-box! value-holder named-expr-val)
new-env)))

Figure 9.3: Recursion with Data Structure Representation of Environments

Part V

Laziness

79

Chapter 10

Programming with Laziness

10.1 Haskell

The paradigmatic modern lazy programming language is called Haskell, in honor of Haskell Curry, a pio-
neering researcher who laid the foundation for a great deal of modern programming language theory. We
will study the experience of programming in Haskell (using its own syntax) to get a feel for the benefits of
laziness.

What follows is only a brief sampler of Haskell’s many wonders. In particular, it is colored by the fact
that this text uses Haskell primarily to illustrate specific linguistic features, as opposed to providing a general
introduction to Haskell. The Haskell language Web site1 has references to several texts and tutorials that
describe the language in far greater detail and from several perspectives.

10.1.1 Expressions and Definitions

Like Scheme, simple Haskell programs do not need to be wreathed in scaffolding; and like most Scheme
implementations, most Haskell implementations provide an interactive environment. These notes use one
called Helium; others have a similar interface.

Prelude> 3
3
Prelude> True
True

(Prelude> is a Haskell prompt whose significance will soon become clear.) Haskell employs a traditional
algebraic syntax for operations (with the corresponding order of precedence), with parentheses representing
only grouping:

Prelude> 2 * 3+5
11
Prelude> 2+3 * 5

1http://www.haskell.org/

81

82 CHAPTER 10. PROGRAMMING WITH LAZINESS

17
Prelude> mod 7 4
3
Prelude> mod (mod 7 4) 2
1

As in most programming languages other than Scheme, some built-in operators are written in infix notation
while most others, including user-defined ones, are written in prefix. A prefix operator can always be used
in an infix position, however, using a special syntactic convention (note that these arebackquotes):

Prelude> 7 ‘mod‘ 4
3
Prelude> (7 ‘mod‘ 4) ‘mod‘ 2
1

and infix operators can, similarly, be treated as a procedural value, even used in a prefix position:

Prelude> ((<) 4 ((+) 2 3))
True

The latter is syntactically unwieldy; why would one need it?2

We have seen integers (Int) and booleans (Bool). Haskell also has characters (of typeChar) that are
written inside single-quotes:’c’ (the character ‘c’),’3’ (the character ‘3’),’\n’ (the newline character),
and so on.

Based on what we’ve seen so far, we can begin to write Haskell functions. This one proposes a grading
scale for a course:

scoreToLetter :: Int -> Char

scoreToLetter n
| n > 90 = ’A’
| n > 80 = ’B’
| n > 70 = ’C’
| otherwise = ’F’

The first line of this excerpt tells Haskell the type to expect for the corresponding definition (read:: as
“has the type”). The rest of the excerpt defines the actual function using a series of rules, akin to a Scheme
conditional. Loading this definition into the Haskell evaluator makes it available to execute.3 To test the
function, we use it in the evaluator:

2Answer: Because we may want to use a traditionally infix operator as an argument to another function. If Haskell lacked this
notation, the use of the operator would lead to syntactic, type or semantic errors.

3In Helium, this definition must be saved in a file whose name begins with a capital letter. Helium’s file functions can be
accessed from the menus or, as in most other Haskell implementations, from the Haskell command-line:: l followed by a filename
loads the definitions in the named file,: r reloads the file loaded most recently, and so on. The implementation manual will describe
other short-cuts.

10.1. HASKELL 83

CS173> scoreToLetter 83
’B’
CS173> scoreToLetter 51
’F’
CS173> scoreToLetter 99
’A’

Note that in typical Haskell implementations, upon loading a file, the prompt changes fromPrelude to
the name of the file, indicating in which context the expression will be evaluated. The Prelude is the set of
definitions built into Haskell.

10.1.2 Lists

Haskell naturally has more sophisticated types as well. As in Scheme, lists are inductively (or recursively)
defined data-structures; the empty list is written[] and non-empty list constructor is written: . Haskell also
offers a convenient abbreviation for lists. Thus:

Prelude> []
[]
Prelude> 1:[]
[1]
Prelude> 1:2:[]
[1,2]
Prelude> 1:[2,3,2+2]
[1,2,3,4]

Note, however, that lists must behomogenous: that is, all values in a list must be of the same type.

Prelude> [1,’a’]
Type error in element of list

expression : [1, ’a’]
term : ’a’

type : Char
does not match : Int

(The exact syntax of the type error will depend on the specific Haskell implementation, but the gist should
be the same. Here, Helium tells us that the second element of the list has typeChar , whereas Helium was
expecting a value of typeInt based on the first list element.)

Haskell’s Prelude has many useful functions already built in, including standard list manipulatives:

CS173> filter odd [1, 2, 3, 4, 5]
[1,3,5]
CS173> sum [1, 2, 3, 4, 5]
15
CS173> product [1, 2, 3, 4, 5]
120

84 CHAPTER 10. PROGRAMMING WITH LAZINESS

We can, of course, use these in the context of our new definition:

CS173> map scoreToLetter [83, 51, 99]
"BFA"
CS173> length (map scoreToLetter [83, 51, 99])
3

It takes a little practice to know when one can safely leave out the parentheses around an expression. Eliding
them in the last interaction above leads to this error:

CS173> length map scoreToLetter [83, 51, 99]
Type error in application

expression : length map scoreToLetter [83, 51, 99]
term : length

type : [a] -> Int
does not match : ((b -> c) -> [b] -> [c]) -> (Int -> Char) -> [Int] -> d

probable fix : remove first and second argument

What?!? With practice (and patience), we realize that Haskell is effectively saying thatlength takes only
one argument, while the use has three:length , scoreToLetter and[83, 51, 99] . In this case,
Helium’s suggestion is misleading: the fix is not to remove the arguments but rather to inform Haskell of
our intent (first map the function, the determine the length of the result) with parentheses.

Suppose Haskell didn’t havelength built in. We could build it easily, using Haskell’s pattern-matching
notation:

len [] = 0
len (x:s) = 1 + len s

The use of pattern-matching (here, the term(x:s) automatically deconstructs the list, though Haskell also
provides the operatorshead andtail for explicit manipulation). Notice, however, that we haven’t written
a type declaration for length. This brings us to two interesting aspects of Haskell.

10.1.3 Polymorphic Type Inference

We can ask Haskell for the type of any expression using the:type or :t directive. For instance:

CS173> :t 3
3 :: Int
CS173> :t True
True :: Bool
CS173> :t 3 + 4
3 + 4 :: Int

What should we expect when we ask Haskell for the type oflen ? Haskell responds with

CS173> :t len
len :: [a] -> Int

10.1. HASKELL 85

What does this type mean? It says thatlen consumes a list and returns aInt , but it says a little more.
Specifically, it says that the list consumed bylen must have elements (recall that lists are homogenous) of
type. . .a. But a is not a concrete type likeInt or Bool ; rather, it is atype variable. Mathematically, we
would write this as

∀α . len : [α]→ Int

That is, α is bound to a concrete type, and remains bound to that type for a particular use oflen ; but
different uses oflen can bindα to different concrete types. We call such typespolymorphic, and will study
them in great detail in Section 31.

We can see the type parameter at work more clearly using the following (trivial) function:

listCopy [] = []
listCopy (x:s) = x : listCopy s

Haskell reports this type as

CS173> :t listCopy
listCopy :: [a] -> [a]

which is Haskell’s notation for
∀α . listCopy : [α]→ [α]

When we applylistCopy to different argument list types, we see that it produces lists of the same type
as the input each time:

CS173> :t listCopy [1,2,3]
listCopy [1,2,3] :: [Int]
CS173> :t listCopy [’a’,’b’,’c’]
listCopy [’a’,’b’,’c’] :: [Char]
CS173> :t listCopy [[1], [1, 2], []]
listCopy [[1], [1, 2], []] :: [[Int]]

In the last instance, notice that we are applyinglistCopy to—and obtaining as a result—a list of type list
of Int (i.e., a nested list of integers).

Why does Haskell assign the type parameter a name (a)? When there is only one parameter the name
isn’t necessary, but some functions are parameterized over multiple types. For instance,map is of this form:

CS173> :t map
map :: (a -> b) -> [a] -> [b]

which we might write with explicit quantifiers as

∀α,β . map: (α → β)→ [α]→ [β]

Just from reading the type we can guess atmap’s behavior: it consumes a function that transforms eachα

into a correspondingβ , so given a list ofα ’s it generates the corresponding list ofβ ’s.
In the process of studying polymorphism, we may have overlooked something quite remarkable: that

Haskell was able to generate types without our ever specifying them! This process is known astype in-
ference. Indeed, not only is Haskell able to infer a type, it infers themost generaltype it can for each
expression. We will study the machinery behind this remarkable power in Section 31.

86 CHAPTER 10. PROGRAMMING WITH LAZINESS

Exercise 10.1.1What would you expect is the type of the empty list? Check your guess using a Haskell
implementation.

Exercise 10.1.2Why does Haskell print the type of multi-argument functions with arrows between each
adjacent pair of arguments? Experiment with Haskell by providing what appears to be a two-argument
function (such asmap) with only one argument.

10.1.4 Laziness

Is Haskell eager or lazy? We can test this using a simple interaction:

CS173> head []
exception: Prelude.head: empty list.

This tells us that attempting to ask for the first element of the empty list will result in a run-time exception.
Therefore, if Haskell used eager evaluation, the following expression should also result in an error:

CS173> (\ x -> 3) (head [])
3

The expression(\ x -> 3) uses Haskell’s notation for defining an anonymous procedure: it is the syn-
tactic analog of Scheme’s (lambda (x) 3). Thus, the whole expression is equivalent to writing

((lambda (x) 3) (first empty))

which in Scheme would indeed result in an error. Instead, Haskell evaluates it to3. From this, we can posit
that Haskell does not evaluate the argument until it is used, and therefore follows a lazy evaluation regime.

Why is laziness useful? Clearly, we rarely write a function that entirely ignores its argument. On
the other hand, functions do frequently use different subsets of their arguments in different circumstances,
based on some dynamic condition. Most programming languages offer a form ofshort-circuitedevaluation
for the branches of conditional (based on the value of the test expression, only one or the other branch
evaluates) and for Boolean connectives (if the first branch of a disjunction yields true the second branch
need not evaluate, and dually for conjunction). Haskell simply asks why this capability should not be lifted
to function arguments also.

In particular, since Haskell treatsall function applications lazily, this also encompasses the use of most
built-in constructors, such as the list constructor. As a result, when confronted with a definition such as

ones = 1 : ones

Haskell does not evaluate the second argument to: until necessary. When it does evaluate it, there is a
definition available forones : namely, a1 followed by The result is therefore an infinite list, but only
the act of examining the list actually constructs any prefix of it.

How do we examine an infinite list? Consider a function such as this:

front :: Int -> [a] -> [a]
front _ [] = []
front 0 (x:s) = []
front n (x:s) = x : front (n-1) s

10.1. HASKELL 87

When used,front causes as many list constructions ofones as necessary until the recursion terminates—

CS173> front 5 ones
[1,1,1,1,1]
CS173> front 10 ones
[1,1,1,1,1,1,1,1,1,1]

—but no more. Because the language does not forcefront to evaluate its arguments until necessary,
Haskell does not construct any more ofones than is needed forfront to terminate. That is, it is the act
of pattern-matching that forcesones to grow, since the pattern-matcher must determine the form of the list
to determine which branch of the function to evaluate.

Obtaining the prefix of a list of ones may not seem especially impressive, but there are many good uses
for front . Suppose, for instance, we have a function that generates the eigenvalues of a matrix. Natural
algorithms for this problem generate the values in decreasing order of magnitude, and in most applications,
only the first few are meaningful. In a lazy language, we can pretend we have the entire sequence of
eigenvalues, and usefront to obtain just as many as the actual application needs; this in turn causes only
that many to be computed. Indeed, any application can freely generate an infinite list of values, safe in the
knowledge that a consumer can use operators such asfront to inspect the prefix it cares about.

The functionfront is so useful when programming in Haskell that it is actually built into the Pre-
lude, under the nametake . Performing the same computation in an eager language is considerably more
complex, because the computation that generates values and the one that consumes them must explicitly
coordinate with each other: in particular, the generator must be programmed to explicitly expect requests
from the consumer. This complicates the construction of the generator, which may already have complex
domain-specific code; worse, if the generator was not written with such a use in mind, it is not easy to adapt
it to behave accordingly.

Where else are infinite lists useful? Consider the process of generating a table of data whose rows cycle
between a fixed set of colors. Haskell provides a functioncycle that consumes a list and generates the
corresponding cyclic list:

CS173> take 5 (cycle ["blue", "rondo"])
["blue","rondo","blue","rondo","blue"]

The proedure for displaying the data can consume the cyclic list and simply extract as many elements from
it as necessary. The generator of the cyclic list doesn’t need to know how many rows there will be in the
table; laziness ensures that the entire infinite list does not get generated unless necessary. In other words,
programmers often find it convenient to create cyclic data structure not so much to build a truly infinite data
structure, but rather to produce one that is large enough for all possible consumers (none of whom will ever
examine more than a finite prefix, but each of whom may want a different number of prefix elements).

Consider one more example. At the end of some stages of the Tour de France, the top finishers receive a
“time bonus”, which we can think of as a certain number of bonus points. Let us suppose that the top three
finishers receive 20-, 12- and 8-second bonuses, respectively, while the others receive none. Given a list
reflecting the order in which contestants completed a stage, we would like a list that pairs each name with
the number of points that person received. That is, we would like a functiontimeBonuses such that

88 CHAPTER 10. PROGRAMMING WITH LAZINESS

CS173> timeBonuses ["Lance", "Jan", "Tyler", "Roberto", "Iban"]
[("Lance",20),("Jan",12),("Tyler",8),("Roberto",0),("Iban",0)]

where the notation(−,. . .) indicates an anonymous tuple of zero or more elements. Note that the result is
therefore a list of two-tuples (or pairs), where the heterogeneity of lists forces each tuple to be of the same
type (a string in the first projection and a number in the second).

We can writetimeBonuses by employing the following strategy. Observe that every position gets a
fixed bonus (20, 12, and 8, followed by zero for everyone else), but we don’t know how many finishers there
will be. In fact, it isn’t even clear there will be three finishers if the organizers run a particularly brutal stage!
First let’s create a list of all the bonuses:

[20, 12, 8] ++ cycle [0]

where++ appends lists. We can check that this list’s content matches our intuition:

Prelude> take 10 ([20, 12, 8] ++ cycle [0])
[20,12,8,0,0,0,0,0,0,0]

Now we need a helper function that will match up the list of finishers with the list of scores. Let’s define
this function in parts:

tB :: [String] -> [Int] -> [(String,Int)]
tB [] _ = []

Clearly, if there are no more finishers, the result must also be the empty list; we can ignore the second
argument. In contrast, if there is a finisher, we want to assign him the next available time bonus:

tB (f:fs) (b:bs) = (f,b) : tB fs bs

The right-hand side of this definition says that we create an anonymous pair out of the first elements of each
list, and construct a list out of this pair and the natural recursion.

At this point our helper function definition is complete. A Haskell implementation ought to complain
that we haven’t specified what should happen if the second argument is empty but the first is not:

(26,1): Warning: Missing pattern in function bindings:
tBb (_ : _) [] = ...

This message says that the case where the first list is not empty (indicated by(_ : _)) and the second one
is ([]) hasn’t been covered. Since we know the second list is infinitely long, we can ignore this warning.

Given this definition oftB , it is now straightforward to definetimeBonuses :

timeBonuses finishers =
tB finishers ([20, 12, 8] ++ cycle [0])

This definition matches the test case above. We should also be sure to test it with fewer than three finishers:

CS173> timeBonuses ["Lance", "Jan"]
[("Lance",20),("Jan",12)]

10.1. HASKELL 89

Indeed, the helper functiontB is so helpful, it too (in a slightly different form) is built into the Haskell
Prelude. This more general function, which terminates the recursion when the second list is empty, too, is
calledzip :

zip [] _ = []
zip _ [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

Notice that the type ofzip is entirely polymorphic:

CS173> :type zip
zip :: [a] -> [b] -> [(a, b)]

Its name is suggestive of its behavior: think of the two lists as the two rows of teeth, and the function as the
zipper that pairs them.

Haskell can equally comfortably accommodate non-cyclic infinite lists. To demonstrate this, let’s first
define the functionzipOp . It generalizeszip by consuming an operator to apply to the pair of first
elements:

zipOp :: (a -> b -> c) -> [a] -> [b] -> [c]
zipOp f [] _ = []
zipOp f _ [] = []
zipOp f (a:as) (b:bs) = (f a b) : zipOp f as bs

We can recover thezip operation fromzipOp easily:4

myZip = zipOp (\ a b -> (a,b))

But we can also passzipOp other operators, such as(+) :5

CS173> zipOp (+) [1, 1, 2, 3, 5] [1, 2, 3, 5, 8]
[2,3,5,8,13]

In fact,zipOp is also built into the Haskell Prelude, under the namezipWith .
In the sample interaction above, we are clearly beginning to build up the sequence of Fibonacci numbers.

But there is an infinite number of these and, indeed, there is no reason the arguments tozipOp must be
finite lists. Let us therefore generate the entire sequence. The code above is suggestive: clearly the first and
second argument are the same list (the list of all Fibonacci numbers), but the second is the first list “shifted”
by one, i.e., the tail of that list. We might therefore try to seed the process with the initial values, then use
that seed to construct the remainder of the list:

seed = [1, 1]
output = zipOp (+) seed (tail seed)

4Recall that(\ · · ·) is Haskell’s equivalent of (lambda · · ·).
5We have to enclose+ to avoid parsing errors, since+ is an infix operator. Without the parentheses, Haskell would try to add

the value ofzipOp to the list passed as the first argument.

90 CHAPTER 10. PROGRAMMING WITH LAZINESS

But this produces only one more Fiboanacci number before running out of input values, i.e.,output is
bound to[2] . So we have made progress, but need to find a way to keepseed from exhausing itself.
Indeed, it would seem that we want a way to makeseed andoutput be the same, so that each new value
computed triggers one more computation! Indeed,

fibs = 1 : 1 : zipOp (+) fibs (tail fibs)

We can test this in Haskell:

CS173> take 12 fibs
[1,1,2,3,5,8,13,21,34,55,89,144]

and indeedfibs represents the entire infinite list of Fibonacci numbers, ready for further use.

Exercise 10.1.3Earlier, we saw the following interaction:

Prelude> take 10 ([20, 12, 8] ++ cycle [0])
[20,12,8,0,0,0,0,0,0,0]

What happens if you instead writetake 10 [20, 12, 8] ++ cycle [0] ? Does it result in a type
error? If not, do you get the expected answer? If so, is it for the right reasons? Try this by hand before
entering it into Haskell.

Exercise 10.1.4The definition of the Fibonacci sequence raises the question of which “algorithm” Haskell
is employing. Is it computing the nth Fibonacci number in time linear in n (assuming constant-time arith-
metic) or exponential in n?

1. First, try to determine this experimentally by asking for the nthterm for large values of n (though you
may have trouble with arithmetic overflow).

2. Of course, even if you observe linear behavior, this is notproof; it may simply be that you didn’t use
a large enough value of n to observe the exponential. Therefore, try to reason about this deductively.
What about Haskell will determine the computation time of the nth Fibonacci?

10.1.5 An Interpreter

Finally, we demonstrate an interpreter forWAE written in Haskell. First we define some type aliases,

type Identifier = String
type Value = Int

followed by the two important type definitions:

type SubCache = [(Identifier, Value)]
data WAE = Num Int

| Add WAE WAE
| Id Identifier
| With Identifier WAE WAE

10.1. HASKELL 91

The core interpreter is defined by cases:

interp :: WAE -> SubCache -> Value
interp (Num n) sc = n
interp (Add lhs rhs) sc = interp lhs sc + interp rhs sc
interp (Id i) sc = lookup i sc
interp (With bound_id named_expr bound_body) sc =

interp bound_body
(extend sc bound_id (interp named_expr sc))

The helper functions are equally straightforward:

lookup :: Identifier -> SubCache -> Value
lookup var ((i,v):r)

| (eqString var i) = v
| otherwise = lookup var r

extend :: SubCache -> Identifier -> Value -> SubCache
extend sc i v = (i,v):sc

This definition oflookup uses Haskell’s pattern-matching notation as an alternative to writing an explicit
conditional. Finally, testing these yields the expected results:

CS173> interp (Add (Num 3) (Num 5)) []
8
CS173> interp (With "x" (Add (Num 3) (Num 5)) (Add (Id "x") (Id "x"))) []
16

If we comment out the type declaration forinterp (a line beginning with two dashes (--) is treated as a
comment), Haskell infers this type for it:

interp :: WAE -> SubCache -> Int

This is the same type as the one we ascribed, differing only in the use of the type alias in one case but not
the other.

Exercise 10.1.5Extend the Haskell interpreter to implement functions using Haskell functions to represent
functions in the interpreted language. Ensure that the interpreted language evaluates under aneager, not
lazy, regime.

Exercise 10.1.6It is instructive to extend the Haskell interpreter to implement recursion. Use the data
structure representation of the environment. In Section 9, this required mutation. Haskell does not support
mutation. Do you need it?

92 CHAPTER 10. PROGRAMMING WITH LAZINESS

10.2 Shell Scripting

While most programmers have never programmed in Haskell before, manyhaveprogrammed in a lazy
language: the language of most Unix shells. In this text we’ll use the language of bash (the Bourne Again
Shell), though most of these programs work identically or have very close counterparts in other popular shell
languages.

The classical shell model assumes that all programs can potentially generate an infinite stream of output.
The simplest such example is the programyes , which generates an infinite stream ofy ’s:

> yes
y
y
y

and so on, forever. (Don’t try this at home without your fingers poised over the interrupt key!) To make
it easier to browse the output of (potentially infinite) stream generators, Unix provides helpful applications
such asmore to page through the stream. In Haskell, function composition makes the output of one function
(the equivalent of a stream-generating application) the input to another. In a shell, the| operator does the
same. That is,

> yes | more

generates the same stream, but lets us view finite prefixes of its content in segments followed by a prompt.
Quitting frommore terminatesyes .

What good isyes ? Suppose you run the following command:

> rm -r Programs/Sources/Java

Say some of these files are write-protected. For each such file, the shell will generate the query

rm: remove write-protected file ‘Programs/Sources/Java/frob.java’?

If you know for sure you want to delete all the files in the directory, you probably don’t want to manually
typey in response to each such question. How many can there be? Unfortunately, it’s impossible to predict
how many write-protected files will be in the directory. This is exactly whereyes comes in:

> yes | rm -r Programs/Sources/Java

generates as manyy inputs as necessary, satisfying all the queries, thereby deleting all the files.
We’ve seen thatmore is a useful way of examining part of a stream. Butmore is not directly analogous

to Haskell’stake . In fact, there is a Unix application that is: it’s calledhead . head prints the firstn entries
in a stream, wheren is given as an argument (defaulting to 10):

> yes | head -5
y
y
y
y
y

10.2. SHELL SCRIPTING 93

These examples already demonstrate the value of thinking of Unix programs as generators and con-
sumers of potentially infinite streams, composed with| . Here are some more examples. The applicationwc
counts the number of characters (-c), words (-w) and lines (-l) in its input stream. Thus, for instance,

> yes | head -5 | wc -l
5

(not surprisingly). We can similarly count the number of files with suffix.scm in a directory:

> ls * .scm | wc -l
2

We can compose these into longer chains. Say we have a file containing a list of grades, one on each
line; say the grades (in any order in the file) are two10s, one15 , one17 , one21 , three5s, one2, and
ten3s. Suppose we want to determine which grades occur most frequently (and how often), in descending
order.

The first thing we might do is sort the grades, usingsort . This arranges all the grades in order. While
sorting is not strictly necessary to solve this problem, it does enable us to use a very useful Unix application
calleduniq . This application eliminates adjacent lines that are identical. Furthermore, if supplied the-c
(“count”) flag, it prepends each line in the output with a count of how many adjacent lines there were. Thus,

> sort grades | uniq -c
2 10
1 15
1 17
1 2
1 21

10 3
3 5

This almost accomplishes the task, except we don’t get the frequencies in order. We need to sort one more
time. Simply sorting doesn’t do the right thing in two ways:

> sort grades | uniq -c | sort
1 15
1 17
1 2
1 21
2 10
3 5

10 3

We want sorting to be numeric, not textual, and we want the sorting done in reverse (decreasing) order.
Therefore:

94 CHAPTER 10. PROGRAMMING WITH LAZINESS

> sort grades | uniq -c | sort -nr
10 3

3 5
2 10
1 21
1 2
1 17
1 15

There is something fundamentally beautiful—and very powerful!—about the structure of the Unix shell.
Virtually all Unix commands respect the stream convention, and so do even some programming languages
built atop it: for instance, by default, Awk processes its input one-line-at-a-time, so the Awk program
{print $1} prints the first field of each line, continuing until the input runs out of lines (if ever), at
which point the output stream terminates. This great uniformity makes composing programs easy, thereby
encouraging programmers to do it.

Alan Perlis recognized the wisdom of such a design in this epigram: “It is better to have 100 functions
operate on one data structure than 10 functions on 10 data structures” (the data structure here being the
stream). The greatest shortcoming of the Unix shell is that is is so lacking in data-sub-structure, relying
purely on strings, that every program has to repeatly parse, often doing so incorrectly. For example, if a
directory holds a filename containing a newline, that newline will appear in the output ofls ; a program
like wc will then count the two lines as two different files. Unix shell scripts are notoriously fragile in these
regards. Perlis recognized this too: “The string is a stark data structure and everywhere it is passed there is
much duplication of process.”

The heart of the problem is that the output of Unix shell commands have to do double duty: they must
be readable by humans but also ready for processing by other programs. By choosing human readability as
the default, the output is sub-optimal, even dangerous, for processing by programs: it’s as if the addition
procedure in a normal programming language always returned strings because you mighteventuallywant
to print an answer, instead of returning numbers (which are necessary to perform further arithmethic) and
leaving conversion of numbers to strings to the appropriate input/output routine.6

In short, Unix shell languages are both a zenith and a nadir of programming language design. Please
study their design very carefully, but also be sure to learn the right lessons from them!

6We might fantasize the following way of making shell scripts more robust: all Unix utilities are forced to support a-xmlout
flag that forces them to generate output in a standardXML language that did no more than wrap tags around each record (usually,
but not always, line) and each field, and a-xmlin flag that informs them to expect data in the same format. This would eliminate
the ambiguity inherent in parsing text.

Chapter 11

Implementing Laziness

Now that we’ve seen Haskell and shell scripts at work, we’re ready to study the implementation of laziness.
That is, we will keep thesyntaxof our language unchanged, but alter thesemanticsof function application
to be lazy.

11.1 Implementing Laziness

Consider the following expression:

{with {x {+ 4 5}}
{with {y {+ x x}}

{with {z y}
{with {x 4}

z}}}}

Recall that in a lazy language, the argument to a function—which includes the named expression of a
with —does not get evaluated until use. Therefore, we can naively think of the expression above reducing
as follows:

{with {x {+ 4 5}}
{with {y {+ x x}}

{with {z y}
{with {x 4}

z}}}}
= {with {y {+ x x}}

{with {x 4}
{with {z y}

z}}} [x -> {+ 4 5}]
= {with {x 4}

{with {z y}
z}} [x -> {+ 4 5}, y -> {+ x x}]

95

96 CHAPTER 11. IMPLEMENTING LAZINESS

= {with {z y}
z} [x -> 4, y -> {+ x x}]

= z [x -> 4, y -> {+ x x}, z -> y]
= y [x -> 4, y -> {+ x x}, z -> y]
= {+ x x} [x -> 4, y -> {+ x x}, z -> y]
= {+ 4 4}
= 8

In contrast, suppose we used substitution instead of environments:

{with {x {+ 4 5}}
{with {y {+ x x}}

{with {z y}
{with {x 4}

z}}}}
= {with {y {+ {+ 4 5} {+ 4 5}}}

{with {z y}
{with {x 4}

z}}}
= {with {z {+ {+ 4 5} {+ 4 5}}}

{with {x 4}
z}}

= {with {x 4}
{+ {+ 4 5} {+ 4 5}}}

= {+ {+ 4 5} {+ 4 5}}
= {+ 9 9}
= 18

We perform substitution, which means we replace identifiers whenever we encounter bindings for them,
but we don’t replace them only with values: sometimes we replace them with entireexpressions. Those
expressions have themselves already had all identifiers substituted.

This situation should look highly familiar by now: this is exactly the same problem we encountered
when trying to correctly define functions as values. Substitution produces the answer that we should take
to be the definition of what a program should produce. Using environments to defer substitutions, however,
sometimes (inadvertently) changes the behavior of the program.

The way we addressed this problem before was to use closures. That is, the text of a function was closed
over (i.e., wrapped in a structure containing) its environment at the point of definition, which was then used
when evaluating the function’s body. The difference here is that we must create closures forall expressions
that are not immediately reduced to values, so their environments can be used when the reduction to a value
actually happens.

We shall refer to these new kinds of values asexpression closures. Since they can be the result of
evaluating an expression (as we will soon see), it makes sense to extend the set of values with this new kind of
value. We will also assume that our language has conditionals (since they help illustrate an some interesting

11.1. IMPLEMENTING LAZINESS 97

points about laziness). Thus we will define the languageCFAL (where theL will denote “laziness”) with the
following grammar:

<CFAL> ::= <num>
| {+ <CFAL> <CFAL>}
| {- <CFAL> <CFAL>}
| <id>
| {fun {<id>} <CFAL>}
| {<CFAL> <CFAL>}
| {if0 <CFAL> <CFAL> <CFAL>}

Observe that the eager counterpart of this language would have the samesyntax. The difference lies en-
tirely in its interpretation. As before, we will continue to assume thatwith expressions are converted into
immediate function applications by the parser or by a pre-processor.

For this language, we can define the extended set of values:

(define-typeCFAL-Value
[numV(n number?)]
[closureV(param symbol?)

(body CFAL?)
(sc SubCache?)]

[exprV (expr CFAL?)
(sc SubCache?)])

That is, aexprV is just a wrapper that holds an expression and the environment of its definition.
What needs to change in the interpreter? Obviously, procedure application must change. By definition,

we should not evaluate the argument expression; furthermore, to preserve static scope, we should close it
over its environment:1

[app(fun-expr arg-expr)
(local ([definefun-val(interp fun-expr sc)]

[definearg-val (exprV arg-expr sc)])
(interp (closureV-body fun-val)

(aSub(closureV-param fun-val)
arg-val
(closureV-sc fun-val))))]

As a consequence, an expression such as

{with {x 3}
x}

will evaluate to some expression closure value, such as

#(|struct:exprV|#(struct:num3) #(|struct:mtSub|))
1The argument expression results in an expression closure, which we then bind to the function’s formal parameter. Since

parameters are bound to values, it becomes natural to regard the expression closure as a kind of value.

98 CHAPTER 11. IMPLEMENTING LAZINESS

This says that the representation of the3 is closed over the empty environment. We will return to the
problem of presenting this more usefully later.

That may be an acceptable output for a particularly simple program, but what happens when we evaluate
this one?

{with {x 3}
{+ x x}}

The interpreter evaluates eachx in the body to an expression closure (because that’s what’s bound tox in the
environment), but the addition procedure cannot handle these. Indeed, the addition procedure (and similarly
any other arithmetic primitive) needs to know exactly which number the expression closure corresponds to.
The interpreter must therefore “force” the expression closure to reduce to an actual value. Indeed, we must
do so in other positions as well: the function position of an application, for instance, needs to know which
procedure to invoke. If we do not force evaluation at these points, then even a simple expression such as

{with {double {fun {x} {+ x x}}}
{+ {double 5}

{double 10}}}

cannot be evaluated (since at the points of application,double is bound to anexpressionclosure, not a
proceduralclosure with an identifiable parameter name and body).

Because we need to force expression closures to values in several places in the interpreter, it makes sense
to write the code to do this only once:

;; strict :CFAL-Value→ CFAL-Value [excludingexprV]
(define(strict e)

(type-caseCFAL-Value e
[exprV (expr sc)

(strict (interp expr sc))]
[elsee]))

Now we can use this for numbers,

(define(num+ n1 n2)
(numV(+ (numV-n (strict n1)) (numV-n (strict n2)))))

and similarly in other arithmetic primitives, and also for applications:

[app(fun-expr arg-expr)
(local ([definefun-val (strict (interp fun-expr sc))]

[definearg-val (exprV arg-expr sc)])
(interp (closureV-body fun-val)

(aSub(closureV-param fun-val)
arg-val
(closureV-sc fun-val))))]

11.2. CACHING COMPUTATION 99

The points where the implementation of a lazy language forces an expression to reduce to a value (if
any) are called thestrictnesspoints of the language; hence the perhaps odd name,strict, for the procedure
that annotates these points of the interpreter.

We can exercise the lazy portion of our interpreter in several ways. Consider the following simple
example:

{with {f {undef x}}
4}

Had the language been strict, it would have evaluated the named expression, halting with an error (that
undef is not defined). In contrast, out interpreter yields the value4.

There is actually one more strictness point in our language: the evaluation of the conditional. It needs
to know the precise value that the test expression evaluates to so it can determine which branch to proceed
evaluating. This highlights a benefit of studying languages through interpreters: failing this strictness test
(but assuming good test cases!), we would quickly determine this problem. (In practice, we might bury the
strictness requirement in a helper function such asnum-zero?, just as the arithmetic primitives’ strictness is
buried in procedures such asnum+. We therefore need to trace which expression evaluations invoke such
strictness-forcing primitives to truly understand the language’s strictness positions.)

Figure 11.1 and Figure 11.2 present the heart of the interpreter.

Exercise 11.1.1Did we need to add conditionals as a primitive construct in the language? A conditional
(such asif0) serves two purposes: to make a decision about a value, and to avoid evaluating an un-
necessary expression. Which of these does laziness encompass? Explain your thoughts with a modified
interpreter.

Exercise 11.1.2Interactive Haskell environments usually have one other, extra-lingual strictness point: the
top-level of the Interaction window. (How) Is this reflected in your interpreter?

11.2 Caching Computation

Evaluating an expression like

{with {x {+ 4 5}}
{with {y {+ x x}}

{with {z y}
{with {x 4}

z}}}

can be rather wasteful: we see in the hand-evaluation, for instance, that we reduce the same expression,
{+ 4 5} , to 9 two times. The waste arises because we bind identifiers to expressions, rather than to their
values. So whereas one of our justifications for laziness was that it helped us avoid evaluating unnecessary
expressions, laziness has had a very unfortunate (and unforeseen) effect: it has has forced the re-evaluation
of necessaryexpressions.

100 CHAPTER 11. IMPLEMENTING LAZINESS

Let’s make a small change to the interpreter to study the effect of repeated evaluation. Concretely, we
should modifystrict to notify us every time it reduces an expression closure to a value:

(define(strict e)
(type-caseCFAL-Value e

[exprV (expr sc)
(local ([definethe-value(strict (interp expr sc))])

(begin
(printf " Forcing exprV to ˜a˜n" the-value)
the-value))]

[elsee]))

This will let us track the the amount of computation being performed by the interpreter on account of
laziness. (How many times for our running example? Determine the answer by hand, then modifystrict in
the interpreter to check your answer!)

Can we do better? Naturally: once we have computed the value of an identifier, instead of only using it,
we can alsocacheit for future use. Where should we store it? The expression closure is a natural container:
that way we can easily access it the next time we need to evaluate that closure.

To implement caching, we modify the interpreter as follows. First, we have to create a field for the
value of the expression closure. What’s the value of this field? Initially it needs to hold a dummy value, to
eventually be replaced by the actual one. “Replaced” means its value needs tochange; therefore, it needs to
be a box. Concretely, we’ll use the boolean valuefalse as the initial value.

(define-typeCFAL-Value
[numV(n number?)]
[closureV(param symbol?)

(body CFAL?)
(sc SubCache?)]

[exprV (expr CFAL?)
(sc SubCache?)
(value boxed-boolean/CFAL-Value?)])

We define the cache’s field predicate as follows:

(define(boxed-boolean/CFAL-Value? v)
(and (box? v)

(or (boolean?(unbox v))
(numV?(unbox v))
(closureV?(unbox v)))))

Notice that we carefully excludeexprVvalues from residing in the box. The box is meant to cache the result
of strictness, which by definition and construction cannot result in aexprV. Therefore, this exclusion should
never result in an error (and an indication to the contrary should be investigated).

Having changed the number of fields, we must modify all uses of the constructor. There’s only one: in
function application.

[app(fun-expr arg-expr)

11.2. CACHING COMPUTATION 101

(local ([definefun-val(strict (interp fun-expr sc))]
[definearg-val (exprV arg-expr sc(boxfalse))])

(interp (closureV-body fun-val)
(aSub(closureV-param fun-val)

arg-val
(closureV-sc fun-val))))]

That leaves only the definition ofstrict. By now, it should be clear how to implement it using the box:

(define(strict e)
(type-caseCFAL-Value e

[exprV (expr sc value)
(if (boolean?(unbox value))

(local [(definethe-value(strict (interp expr sc)))]
(begin

(printf " Forcing exprV ˜a to ˜a˜n" expr the-value)
(set-box! value the-value)

the-value))
(begin

(printf " Using cached value˜n")
(unbox value)))]

[elsee]))

With these changes, we see that interpreting the running example needs to force an expression closure
fewer times (how many?). The other instances reuse the value of a prior reduction. Figure 11.3 and Fig-
ure 11.4 present the heart of the interpreter. Haskell uses the value cache we have just studied, so it combines
the benefit of laziness (not evaluating unnecessary arguments) with reasonable performance (evaluating the
necessary ones only once).

Exercise 11.2.1An expression closure is awfully similar to a regular (function) closure. Indeed, if should
be possible to replace the former with the latter. When doing so, however, we don’t really need all the pieces
of function closures: there are no arguments, so only the body and environment matter. Such a closure
is called athunk, a name borrowed from the technique used to implement a form of laziness in Algol 60.
Implement laziness entirely using thunks, getting rid of expression closures.

Exercise 11.2.2We could have achieved the same effect as using thunks (see Exercise 11.2.1) by simply
using one-argument procedures with a dummy argument value. Why didn’t we propose this? Put otherwise,
what benefit do we derive by keeping expression closures as a different kind of value?

Exercise 11.2.3Extend this language with recursion and list primitives so you can run the equivalent of
the programs we saw in Section 10.1. In this extended language, code up the Fibonacci example, run it with
and without value caching, and arrive at a conclusion about the time complexity of the Haskell definition.

102 CHAPTER 11. IMPLEMENTING LAZINESS

11.3 Caching Computations Safely

Any language that caches computation (whether in an eager or lazy regime) is making a very strong tacit
assumption: that an expressioncomputes the same value every time it evaluates. If an expression can yield a
different value in a later evaluation, then the value in the cache is corrupt, and using it in place of the correct
value can cause the computation to go awry. So we must examine this evaluation decision of Haskell.

This assumption cannot be applied to most programs written in traditional languages, because of the use
of side-effects. A method invocation in Java can, for instance, depend on the values of fields (directly, or
indirectly via method accesses) in numerous other objects, any one of which may later change, which will
almost certainly invalidate a cache of the method invocation’s computed value. To avoid having to track
this complex web of dependencies, languages like Java avoid caching values altogether in the general case
(though an optimizing compiler may introduce a cache under various circumstances).

Haskell implementations can cache values because Haskell does not provide explicit mutation opera-
tions. Haskell instead forces programmers to perform all computations by composing functions. While
this may seem an onerous style to those unaccustomed to it, the resulting programs are in fact extremely
elegant, and Haskell provides a powerful collection of primitives to enable their construction; we caught a
glimpse of both the style and the primitives in Section 10.1. Furthermore, the lack of side-effects makes
it possible for Haskell compilers to perform some very powerful optimizations not available to traditional
language compilers, so what seems like an inefficient style on the surface (such as the creation of numerous
intermediate tuples, lists and other data structures) often has little run-time impact.

Of course, no useful Haskell program is an island; programs must eventually interact with the world,
which itself has true side-effects (at least in practice). Haskell therefore provides a set of “unsafe” operators
that conduct input-output and other operations. Computations that depend on the results of unsafe operations
cannot be cached. Haskell does, however, have a sophisticated type system (featuring quite a bit more, in
fact, than we saw in Section 10.1) that makes it possible to distinguish between the unsafe and “safe”
operations, thereby restoring the benefits of caching to at least portions of a program’s computation. In
practice, Haskell programmers exploit this by limiting unsafe computations to a small portion of a program,
leaving the remainder in the pure style espoused by the language.

The absence of side-effects benefits not only the compiler but, for related reasons, the programmer
also. It greatly simplifies reasoning about programs, because to understand what a particular function is
doing a programmer doesn’t need to be aware of the global flow of control of the program. In particular,
programmers can study a program throughequational reasoning, using the process of reduction we have
studied in high-school algebra. The extent to which we can apply equational reasoning depends on the
number of expressions we can reasonably substitute with other, equivalent expressions (including answers).

11.3. CACHING COMPUTATIONS SAFELY 103

Referential Transparency

People sometimes refer to the lack of mutation as “referential transparency”, as in, “Haskell is
referentially transparent” (and, by extension, languages like Java, C++, Scheme and ML are not).
What do they really mean?
Referential transparency is commonly translated as the ability to “replace equals with equals”. For
example, we can always replace 1+ 2 with 3. Now think about that (very loose) definition for
a moment: when can younot replace something with something else that the original thing is
equal to? Never, of course—you always can. So by that definition, every language is “referentially
transparent” (in this rather informal sense). That informal definition therefore renders the term
vaculous.
Referential transparency really describes arelation: it relates pairs of terms exactly when they can
be considered equivalent in all contexts. Thus, in most languages, 1+2 is referentially transparent
to 3 (assuming no overflow), and

√
4 (written in the appropriate notation) is referentially transparent

to 2 (assuming the square root function returns only the positive root).
Given this understanding, we can now ask the following question: what is thesize of the referential
transparency relationfor a program in a given language? While even a language like C subscribes a
referential transparency relation, and some C programs have larger relations (because they minimize
side-effects), the size of this relation is inherently larger for programs written in a language without
mutation. This larger relation enables a much greater use of equational reasoning.
As a programmer, you should strive to make this relation as large as possible, no matter what lan-
guage you program in: this has a positive impact on long-term program maintenance (for instance,
when other programmers need to modify your code). As a student of programming languages,
however, please use this term with care; in particular, always remember that it describes a relation
between phrases in a program, and is rarely meaningful when applied to languages as a whole.

We have argued that caching computation is safe in the absence of side-effects. But the eager version of
our interpreted language doesn’t have side-effects either! We didn’t need to cache computation in the same
way we have just studied, because by definition an eager language associates identifiers with values in the
environment, eliminating the possibility of re-computation on use. There is, however, a slightly different
notion of caching that applies in an eager language.

104 CHAPTER 11. IMPLEMENTING LAZINESS

Memoization

Memoizationassociates a cache with each function. The cache tracks actual argument tuples and
their corresponding return values. When the program invokes a “memoized” function, the evaluator
first tries to find the function’s value in the cache, and only invokes the function proper if that
argument tuple hadn’t been cached before. If the function is recursive, the recursive calls might also
go through the memoized version. Memoization in this instance reduces the exponential number
of calls in computing Fibonacci numbers to a linear number, without altering the natural recursive
definition.
It’s important to note that what we have implemented for lazy languages isnotmemoization. While
we do cache the value of each expression closure, this is different from caching the value of all
expression closures that contain the same expression closed over the same environment. In our
implementation, if a program contains the same source expression (such as a function invocation)
twice, each use of that expression results in a separate evaluation.

Of course, to use memoization safely, the programmer or implementation would have to establish that
the function’s body does not depend on side-effects—or invalidate the cache when a relevant effect happens.
Memoization is sometimes introduced automatically as a compiler optimization.

Exercise 11.3.1There are no lazy languages that permit mutation. Why not? Is there a deeper reason
beyond the invaldation of several compiler optimizations?

Exercise 11.3.2Why do you think there are no lazy languages without type systems?
Hint : This is related to Exercise 11.3.1.

11.4 Scope and Evaluation Regimes

Students of programming languages often confuse the notions of scope (static versus dynamic) and evalua-
tion regimes (eager versus lazy). In particular, readers often engage in the following fallacious reasoning:

Becauselazy evaluation substitutes expressions, not values, andbecausesubstituting expres-
sions (naively) results in variables getting their values from the point of use rather than the
point of definition,thereforelazy evaluation must result in dynamic scope.

It is very important to not be trapped by this line of thought. The scoping rules of a language are determined
a priori by the language designer. (For the reasons we have discussed in Section 6.5, this should almost
always bestatic scope.) It is up to the language implementor to faithfully enforce them. Likewise, the
language designer determines the reduction regime, perhaps based on some domain constraints. Again, the
implementor must determine how to correctly implement the chosen regime. We have seen how the use of
appropriate closure values can properly enforce static scope in both eager and lazy evaluation regimes.

11.4. SCOPE AND EVALUATION REGIMES 105

(define-typeCFAL
[num (n number?)]
[add (lhs CFAL?) (rhs CFAL?)]
[sub(lhs CFAL?) (rhs CFAL?)]
[id (name symbol?)]
[fun (param symbol?) (body CFAL?)]
[app(fun-expr CFAL?) (arg-expr CFAL?)]
[if0 (test CFAL?) (then CFAL?) (elseCFAL?)])

(define-typeCFAL-Value
[numV(n number?)]
[closureV(param symbol?)

(body CFAL?)
(sc SubCache?)]

[exprV (expr CFAL?)
(sc SubCache?)])

(define-typeSubCache
[mtSub]
[aSub(name symbol?) (value CFAL-Value?) (sc SubCache?)])

;; num+ :CFAL-Value CFAL-Value→ numV

(define(num+ n1 n2)
(numV(+ (numV-n(strict n1)) (numV-n(strict n2)))))

;; num-zero? :CFAL-Value→ boolean

(define(num-zero? n)
(zero?(numV-n(strict n))))

;; strict :CFAL-Value→ CFAL-Value [excludingexprV]

(define(strict e)
(type-caseCFAL-Value e

[exprV (expr env)
(strict (interp expr env))]

[elsee]))

Figure 11.1: Implementation of Laziness: Support Code

106 CHAPTER 11. IMPLEMENTING LAZINESS

;; interp :CFAL SubCache→ CFAL-Value

(define(interp expr sc)
(type-caseCFAL expr

[num (n) (numV n)]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(closureV bound-id bound-body sc)]
[app(fun-expr arg-expr)

(local ([definefun-val(strict (interp fun-expr sc))]
[definearg-val (exprV arg-expr sc)])

(interp (closureV-body fun-val)
(aSub(closureV-param fun-val)

arg-val
(closureV-sc fun-val))))]

[if0 (test pass fail)
(if (num-zero?(interp test sc))

(interp pass sc)
(interp fail sc))]))

Figure 11.2: Implementation of Laziness: The Interpreter

11.4. SCOPE AND EVALUATION REGIMES 107

(define(boxed-boolean/CFAL-Value? v)
(and (box? v)

(or (boolean?(unbox v))
(numV?(unbox v))
(closureV?(unbox v)))))

(define-typeCFAL-Value
[numV(n number?)]
[closureV(param symbol?)

(body CFAL?)
(sc SubCache?)]

[exprV (expr CFAL?)
(sc SubCache?)
(value boxed-boolean/CFAL-Value?)])

;; strict :CFAL-Value→ CFAL-Value [excludingexprV]

(define(strict e)
(type-caseCFAL-Value e

[exprV (expr sc value)
(if (boolean?(unbox value))

(local [(definethe-value(strict (interp expr sc)))]
(begin

(set-box! value the-value)
the-value))

(unbox value))]
[elsee]))

Figure 11.3: Implementation of Laziness with Caching: Support Code

108 CHAPTER 11. IMPLEMENTING LAZINESS

;; interp :CFAL SubCache→ CFAL-Value

(define(interp expr sc)
(type-caseCFAL expr

[num (n) (numV n)]
[add (l r) (num+ (interp l sc) (interp r sc))]
[sub(l r) (num− (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[fun (bound-id bound-body)

(closureV bound-id bound-body sc)]
[app(fun-expr arg-expr)

(local ([definefun-val(strict (interp fun-expr sc))]
[definearg-val (exprV arg-expr sc(boxfalse))])

(interp (closureV-body fun-val)
(aSub(closureV-param fun-val)

arg-val
(closureV-sc fun-val))))]

[if0 (test pass fail)
(if (num-zero?(interp test sc))

(interp pass sc)
(interp fail sc))]))

Figure 11.4: Implementation of Laziness with Caching: The Interpreter

Part VI

State

109

Chapter 12

Church and State

In past programs we have freely employed Scheme boxes, but we haven’t really given an account of how
they work (beyond an informal intuition). In this lecture, we will discuss the meaning of boxes. Boxes
provide a way to employmutation—the changing of values associated with names—to endow a language
with state.

Mutation is a standard feature in most programming languages. The programs we have written in
Scheme have, however, been largely devoid of state. Indeed, Haskell has no mutation operations at all.
It is, therefore, possible to design and use languages—even quite powerful ones—that have no explicit no-
tion of state. Simply because the idea that one can program without state hasn’t caught on in the mainstream
is no reason to reject it.

That said, state does have its place in computation. If we create programs to model the real world, then
some of those programs are going to have to accommodate the fact that there the real world has events that
truly alter it. For instance, cars really do consume fuel as they run, so a program that models a fuel tank
needs to record changes in fuel level.

Despite that, it makes sense to shirk state where possible because state makes it harder to reason about
programs. Once a language has mutable entities, it becomes necessary to talk about the programbefore
a mutation happened andafter the mutation (i.e., the different “states” of the program). Consequently,
it becomes much harder to determine what a program actuallydoes, because any such answer becomes
dependent onwhenone is asking: that is, they become dependent on time.

Because of this complexity, programmers should use care when introducing state into their programs. A
legitimate use of state is when it models a real world entity that really is itself changing: that is, it models a
temporalor time-variantentity. Contrast that with a use of state in the following loop:

{
int i;
sum = 0;
for (i = 0; i < 100; i = i++)

sum += f(i);
}

There are two instances of state in this fragment (the mutation ofi and ofsum), neitherof which is es-

111

112 CHAPTER 12. CHURCH AND STATE

sential. Any other part of the program that depends on the value ofsum remaining unchanged is going to
malfunction. You might argue that at least the changes toi are innocuous, since the identifier is local to the
block defined above; even that assumption, however, fails in a multi-threaded program! Indeed, the use of
state is the source of most problems in multi-threaded software. In contrast, the following program

(foldl + 0 (map f (build-list 99 add1)))

(where (build-list 99 add1) generates (list 0 · · · 99)) computes the same value, but is thread-safe by virtue of
being functional (mutation-free). Better still, a compiler that can be sure that this program will not be run in
a multi-threaded context can, if it proves to be more efficient, generate the mutation-based version from this
specification.

Chapter 13

Mutable Data Structures

Let’s extend our source language to support boxes. Once again, we’ll rewind to a simple language so we
can study the effect of adding boxes without too much else in the way. That is, we’ll defineBCFAE, the
combination of boxes, conditionals, functions and arithmetic expressions. We’ll continue to usewith
expressions with the assumption that the parser converts these into function applications. In particular, we
will introduce four new constructs:

<BCFAE> ::= <num>
| {+ <BCFAE> <BCFAE>}
| {- <BCFAE> <BCFAE>}
| <id>
| {fun {<id>} <BCFAE>}
| {<FWAE> <FWAE>}

| {if0 <BCFAE> <BCFAE> <BCFAE>}
| {newbox <BCFAE>}
| {setbox <BCFAE> <BCFAE>}
| {openbox <BCFAE>}
| {seqn <BCFAE> <BCFAE>}

We can, of course, implementBCFAE by exploiting boxes in Scheme. This would, however, be a meta-
interpreter (Section 7) that sheds little light on the nature of boxes. We should instead try to model boxes
more explicitly.

What other means have we? If we can’t use boxes, or any other notion of state, then we’ll have to stick
to purely functional programming to define boxes. Well! It seems clear that this won’t be straightforward.

Let’s first understand boxes better. Suppose we write

(defineb1 (box5))
(defineb2 (box5))
(set-box! b16)
(unbox b2)

What response do we get?

113

114 CHAPTER 13. MUTABLE DATA STRUCTURES

This suggests that whatever is bound tob1 and tob2 must inherently be different. That is, we can
think of each value being held in a different place, so changes to one don’t affect the other.1 The natural
representation of a “place” in a modern computer is, of course, a memory cell.

13.1 Implementation Constraints

Before we get into the details of memory, let’s first understand the operational behavior of boxes a bit better.
Examine this program:

{with {b {newbox 0}}
{seqn {setbox b {+ 1 {openbox b}}}

{openbox b}}}

which is intended to be equivalent to this Scheme program:

(local ([defineb (box0)])
(begin

(set-box! b(+ 1 (unbox b)))
(unbox b)))

which evaluates to1. Let’s consider a naive interpreter forseqn statements. It’s going to interpret the first
term in the sequence in the environment given to the interpreter, then evaluate the second term in the same
environment:

[seqn(e1 e2)
(begin

(interp e1 env)
(interp e2 env))]

Besides the fact that this simply punts to Scheme’sbegin form, thiscan’t possibly be correct! Why not?
Because the environment is the only term common to the interpretation ofe1ande2. If the environment is
immutable—that is, it doesn’t contain boxes—and if we don’t employ any global mutation, then the outcome
of interpreting the first sub-expression can’t possibly have any effect on interpreting the second!2 Therefore,
something more complex needs to happen.

One possibility is that we update the environment, and the interpreter always returns both the value of
an expressionand the updated environment. The updated environment can then reflect the changes wrought
by mutation. The interpretation ofseqn would then use the environment resulting from evaluating the first
sequent to interpret the second.

While this is tempting, it can significantly alter the intended meaning of a program. For instance,
consider this expression:

1Here’s a parable adapted from one I’ve heard ascribed to Guy Steele. Say you and I have gone on a trip. Over dinner, you say,
“You know, I have a Thomas Jefferson $2 note at home!” That’s funny, I say; so do I! We wonder whether it’s actually thesame$2
bill that we both think is ours alone. When I get home that night, I call my spouse and ask her to tear my $2 bill in half. You then
call your spouse and ask, “Is our $2 bill intact?” Guy Steele is Solomonic.

2Depends on what we mean by “effect”. The first branch of the sequence could, of course, fail to terminate or could result in an
error, which are observable effects. But they are not effects that permit the evaluation of the second branch of the sequence.

13.1. IMPLEMENTATION CONSTRAINTS 115

{with {a {newbox 1}}
{seqn {with {b 3}

b}
b}}

This program should halt with an error, because static scope dictates that the second sequent (b) contains an
unbound identifier. But passing the environment from the first sequent to the second would bindb. In other
words, this strategy destroys static scope.

Even if we were to devise a sophisticated form of this environment-passing strategy (such as removing
all new bindings introduced in a sub-expression), it still wouldn’t be satisfactory. Consider this example:

{with {a {newbox 1}}
{with {f {fun {x} {+ x {openbox a}}}}

{seqn
{setbox a 2}
{f 5}}}}

We want the mutation to affect the box stored in the closure bound tof . But that closure already closes over
the environment present at the time of evaluating the named expression—an environment that still reflects
that a is bound to1. Even if we update the environment after thesetbox operation, we cannot use the
updated environment to evaluate the closure’s body, at least not without (again!) violating static scope.

As an aside, notice that in the program fragment above, changing the value ofa is not a violation of
static scope! The scoping rule only tells us where each identifier is bound; it does not (in the presence of
mutation) fix the value bound to that identifier. To be pedantic, the value bound to the identifier does in fact
remain the same: it’s the same box for all time. The content of the box can, however, change over time.

We thus face an implementation quandary. There are two possible evaluation strategy for this last code
fragment, both flawed:

• Use the environment (which mapsa to 1) stored in the closure forf when evaluating{f 5} . This
will, however, ignore the mutation in the sequencing statement. The program will evaluate to6 rather
than7.

• Use the environment present at the time of procedure invocation:{f 5} . This will certainly record
the change toa (assuming a reasonable adaptation of the environment), but this reintroduces dynamic
scope!

To see the latter, we don’t even need a program that uses mutation or sequencing statements. Even a program
such as

{with {x 3}
{with {f {fun {y} {+ x y}}}

{with {x 5}
{f 10}}}}

which should evaluate to13 evaluates to15 instead.

116 CHAPTER 13. MUTABLE DATA STRUCTURES

The preceding discussion does, however, give us some insight into a solution. It tells us that we need
to havetwo repositories of information. One, the environment, is the guardian of static scope. The other
will become responsible for tracking dynamic changes. This latter entity is known in the parlance as the
store. Determining the value bound to an identifier will become a two-step process: we will first use the
environment to map the identifier to something that the store will then map to a value. What kind of thing is
this intermediary? It’s the index that identifies a mutable cell of memory—that is, it’s amemory location.

Using this insight, we slightly alter our environments:

(define-typeSubCache
[mtSub]
[aSub(name symbol?)

(location number?)
(sc SubCache?)])

On to the implementation of the store. The store is really a partial function from address locations to
values. This, too, we shall implement as a data structure.

(define-typeStore
[mtSto]
[aSto(location number?)

(value BCFAE-Value?)
(store Store?)])

Correspondingly, we need two lookup procedures:

;; env-lookup : symbolSubCache→ location

(define(env-lookup name sc)
(type-caseSubCache sc

[mtSub() (error ’env-lookup " no binding for identifier")]
[aSub(bound-name bound-location rest-sc)

(if (symbol=? bound-name name)
bound-location
(env-lookup name rest-sc))]))

;; store-lookup : locationStore→ BCFAE-Value

(define(store-lookup loc-index sto)
(type-caseStore sto

[mtSto() (error ’store-lookup " no value at location")]
[aSto(location value rest-store)

(if (= location loc-index)
value
(store-lookup loc-index rest-store))]))

Notice that the types of the two procedures ensure that composing them appropriately will still map identi-
fiers to values, as the environment did before.

13.2. STORE-PASSING STYLE 117

Let’s now dive into the terms of the interpreter. We’ll assume that two identifiers,scandstore, are bound
to values of the appropriate type. Some cases are easy: for instance,

[num (n) (numV n)]
[id (v) (store-lookup(env-lookup v sc) store)]
[fun (bound-id bound-body)

(closureV bound-id bound-body sc)]

would all appear to be unchanged. Let’s consider a slightly more complex term, namely the conditional:

[if0 (test pass fail)
(if (numV-zero?(interp test env store))

(interp pass env store)
(interp fail env store))]

Suppose, with this implementation, we evaluate the following program:

{with {b {newbox 0}}
{if0 {seqn {setbox b 5}

{openbox b}}
1
{openbox b}}}

We would want this to evaluate to5. However, the implementation does not accomplish this, because
mutations performed while evaluating thetestexpression are not propagated to thethenandelsebranches.

In short, what we really want is a(potentially) modified storeto result from evaluating the condition’s
test expression. It is this store that we must use to evaluate the branches of the conditional. But the ultimate
goal of the interpreter is to produce answers, not just stores. What this means is that the interpreter must
now return two results: the value corresponding to the expression, and a store that reflects modifications
made in the course of evaluating that expression.

13.2 Store-Passing Style

To implement state without relying on the meta-language’s mutation operations, we have seen that we must
modify the interpreter significantly. The environment must map names to locations in memory, while the
store maps these locations to the values they contain. Furthermore, we have seen that we must force the
interpreter to return not only the value of each expression but also an updated store that reflects mutations
made in the process of computing that value.

To capture this pair of values, we introduce a new datatype,3

(define-typeValue×Store
[v×s (value BCFAE-Value?) (store Store?)])

and reflect it in the type of the interpreter:

;; interp :BCFAE SubCache Store→ Value×Store

3In Scheme source programs, we would writeValue×Store asValue * Store andv×s asv* s .

118 CHAPTER 13. MUTABLE DATA STRUCTURES

Before defining the interpreter, let’s look at how evaluation proceeds on a simple program involving boxes.

13.2.1 An Example of Evaluation using Store-Passing Style

Now that we have boxes in our language, we can model things that have state. For example, let’s look at
a simple stateful object: a light switch. We’ll use number to represent the state of the light switch, where
0 means off and1 means on. The identifierswitch is bound to a box initially containing0; the function
toggle flips the light switch by mutating the value inside this box:

{with {switch {newbox 0}}
{with {toggle {fun {dum}

{if0 {openbox switch}
{seqn

{setbox switch 1}
1}

{seqn
{setbox switch 0}
0}}}}

...}}

(Sincetoggle doesn’t require a useful argument, we call its parameterdum.) The interesting property of
toggle is that it can have different behavior on two invocations with the same input. In other words, the
function has memory. That is, if we apply the function twice to thesame(dummy) argument, it produces
different values:

{with {switch {newbox 0}}
{with {toggle {fun {dum}

{if0 {openbox switch}
{seqn

{setbox switch 1}
1}

{seqn
{setbox switch 0}
0}}}}

{+ {toggle 1729}
{toggle 1729}}}}

This expression should return1—the first application oftoggle returns1, and the second returns0. To
see why, let’s write down the environment and store at each step.

The firstwith expression:

{with {switch {newbox 0}}
...}

13.2. STORE-PASSING STYLE 119

does two things: it allocates the number0 as some store location (say100), and then binds the identifier
switch to this location. We’ll assume locations are represented using theboxVconstructor. This gives the
following environment and store:

env= [switch→ 101]
sto= [101→ (boxV100), 100→ (numV0)]

Notice that composing the environment and store mapsswitch to a box containing0.
After the secondwith expression:

{with {switch {newbox 0}}
{with {toggle {fun {dum}

{if0 {openbox switch}
{seqn

{setbox switch 1}
1}

{seqn
{setbox switch 0}
0}}}}

...}}

the environment and store are:

env= [toggle→ 102, switch→ 101]
sto= [102→ (closureV’{fun ...} [switch→ 101]),

101→ (boxV100),
100→ (numV0)]

Now we come to the two applications oftoggle . Let’s examine the first call. Recall the type ofinterp:
it consumes an expression, an environment, and a store. Thus, the interpretation of the first application looks
like:

(interp ’{toggle 1729}
[toggle→ 102, switch→ 101]
[102→ (closureV’{fun ...} [switch→ 101]),
101→ (boxV100),
100→ (numV0)])

Interpretingswitch results in the value (boxV100), so interpreting{openbox switch} reduces to a
store dereference of location100, yielding the value (numV0).

The successful branch of theif0 expression:

{seqn
{setbox switch 1}
1}}

modifies the store; after thesetbox , the environment and store are:

120 CHAPTER 13. MUTABLE DATA STRUCTURES

env= [toggle→ 102, switch→ 101]
sto= [102→ (closureV’{fun ...} [switch→ 101]),

101→ (boxV100),
100→ (numV1)]

For the first application oftoggle , the interpreter returns aValue×Store where the value is (numV1) and
the store is as above.

Now consider the second application oftoggle. It uses the store returned from the first application, so
its interpretation is:

(interp ’{toggle 1729}
[toggle→ 102, switch→ 101]
[102→ (closureV’{fun ...} [switch→ 101]),
101→ (boxV100),
100→ (numV1)])

This time, in the body oftoggle , the expression{openbox switch} evaluates to1, so we follow the
failing branch of the conditional. The interpreter returns the value (numV0) and a store whose location100
maps to (numV0).

Look carefully at the two (interp · · ·) lines above that evaluate the two invocations oftoggle . Although
both invocations took the same expression argument, they were evaluated with different stores; thus, they
returned different results. Notice how the interpreter passed the store through the computation: it passed the
original store from addition to the firsttoggle application, which return a modified store; it then passed
the modified store to the secondtoggle application, which returned yet another store. The interpreter
returned this final store with the sum of0 and1. Therefore, the result of the entire expression is1.

13.2.2 Implementing the Interpreter

What we have just seen is an example of how an interpreter written instore-passing styleevaluates a expres-
sion with boxes. Keep this example in mind as we turn to writing the interpreter.

Terms that are already syntactically values do not affect the store (since they require no further evalua-
tion). Therefore, they return the store unaltered:

[num (n) (v×s (numV n) store)]
[id (v) (v×s (store-lookup(env-lookup v sc) store) store)]
[fun (bound-id bound-body)

(v×s (closureV bound-id bound-body sc) store)]

The interpreter for conditionals reflects a pattern that will soon become very familiar:

[if0 (test pass fail)
(type-caseValue×Store (interp test sc store)

[v×s (test-value test-store)
(if (num-zero? test-value)

(interp pass sctest-store)
(interp fail sc test-store))])]

13.2. STORE-PASSING STYLE 121

In particular, note the store used to interpret the branches: It’s the store thatresults from evaluating the
condition. The store bound totest-storeis “newer” than that bound tostore, because it reflects mutations
made while evaluating the test expression.

Exercise 13.2.1An extremelyuseful exercise is to modify this interpreter to use the wrong store—in this
case, store rather than test-store in the success and failure branches—and then write a program that actually
catches the intrepreter producing faulty output. Until you can do this, you have not truly understood how
programs that use state should evaluate.

When we get to arithmetic expressions and function evaluation, we have a choice to make: in which
order do we evaluate the sub-expressions? Given the program

{with {b {newbox 4}}
{+ {openbox b}

{with {dummy {setbox b 5}}
{openbox b}}}}

evaluating from left-to-right yields9 while evaluating from right-to-left produces10 ! We’ll fix a left-to-
right order for binary operations, and function-before-argument (also a kind of “left-to-right”) for applica-
tions. Thus, the rule for addition is

[add (l r)
(type-caseValue×Store (interp l sc store)

[v×s (l-value l-store)
(type-caseValue×Store (interp r sc l-store)

[v×s (r-value r-store)
(v×s (num+ l-value r-value)

r-store)])])]

Notice again the stores used in the two invocations of the interpreter as well as the one returned with the
resulting value.

To upgrade aCFAE interpreter to store-passing style, we must also adapt the rule for applications. This
looks more complex, but for the most part it’s really just the same pattern carried through:

[app(fun-expr arg-expr)
(type-caseValue×Store (interp fun-expr scstore)

[v×s (fun-value fun-store)
(type-caseValue×Store (interp arg-expr scfun-store)

[v×s (arg-value arg-store)
(local ([definenew-loc(next-location arg-store)])

(interp (closureV-body fun-value)
(aSub(closureV-param fun-value)

new-loc
(closureV-sc fun-value))

(aSto new-loc

122 CHAPTER 13. MUTABLE DATA STRUCTURES

arg-value
arg-store)))])])]

Notice that every time we extend the environment, we map the binding to a new location (usingnext-
location, defined below). This new location is used then bound to the result of evaluating the argument. As
a result, tracing the formal parameter through both the environment and the store still yields the same result.

Finally, we need to demonstrate the interpretation of boxes. After all this groundwork, what remains is
actually quite simple. First, we must extend our notion of values:

(define-typeBCFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body BCFAE?)
(sc SubCache?)]

[boxV (location number?)])

Given this new kind of value, let’s study the interpretation of the four new constructs.
Sequences are easy. The interpreter evaluates the first sub-expression, ignores the resulting value (thus

having evaluated the sub-expression only for the effect it will have on the store)—notice that thee1-valueis
bound but never used—and returns the result of evaluating the second expression in the store (potentially)
modified by evaluating the first sub-expression:

[seqn(e1 e2)
(type-caseValue×Store (interp e1 sc store)

[v×s (e1-value e1-store)
(interp e2 sc e1-store)])]

The essence ofnewbox is to obtain a new storage location, wrap its address in aboxV, and return the
boxVas the value portion of the response accompanied by an extended store.

[newbox(value-expr)
(type-caseValue×Store (interp value-expr sc store)

[v×s (expr-value expr-store)
(local ([definenew-loc(next-location expr-store)])

(v×s (boxV new-loc)
(aSto new-loc expr-value expr-store)))])]

To modify the content of a box, the interpreter first evaluates the first sub-expression to a location, then
updates the store with anew value for the same location. Because all expressions must return a value,
setbox chooses to return the new value put in the box as the value of the entire expression.

[setbox(box-expr value-expr)
(type-caseValue×Store (interp box-expr sc store)

[v×s (box-value box-store)
(type-caseValue×Store (interp value-expr sc box-store)

[v×s (value-value value-store)
(v×s value-value

13.3. SCOPE VERSUS EXTENT 123

(aSto(boxV-location box-value)
value-value
value-store))])])]

Opening a box is straightforward: get a location, look it up in the store, and return the resulting value.

[openbox(box-expr)
(type-caseValue×Store (interp box-expr sc store)

[v×s (box-value box-store)
(v×s (store-lookup(boxV-location box-value)

box-store)
box-store)])]

Of course, the term “the store” is ambiguous, because there are different stores before and after evaluating
the sub-expression. Which store should we use? Does this interpreter do the right thing?

All that remains is to implementnext-location. Here’s one implementation:

(definenext-location
(local ([define last-loc(box−1)])

(lambda (store)
(begin

(set-box! last-loc(+ 1 (unbox last-loc)))
(unbox last-loc)))))

This might seem like an extremely unsatisfying way to implementnext-location, because it ultimately relies
on a box! However, this box is not essential. Can you get rid of it?

The core of the interpreter is in Figure 13.1 and Figure 13.2.

13.3 Scope versus Extent

Notice that while closures refer to the environment of definition, they do not refer to the corresponding
store. The store is therefore a global record of changes made during execution. As a result, stores and
environments have differentpatterns of flow. Whereas the interpreter employs the same environment for
both arms of an addition, for instance, it cascades the store from one arm to the next and then back out
alongside the resulting value. This latter kind of flow is sometimes calledthreading, since it resembles the
action of a needle through cloth.

These two flows of values through the interpreter correspond to a deep difference between names and
values. A value persists in the store long after the name that introduced it has disappeared from the envi-
ronment. This is not inherently a problem, because the value may have been the result of a computation,
and some other name may have since come to be associated with that value. In other words, identifiers have
lexical scope; values themselves, however, potentially have indefinite,dynamic extent.

Some languages confuse these two ideas. As a result, when an identifier ceases to be in scope, they
remove the value corresponding to the identifier. That value may be the result of the computation, however,
and some other identifier may still have a reference to it. This premature removal of the value will, therefore,
inevitably lead to a system crash. Depending on how the implementation “removes” the value, however, the

124 CHAPTER 13. MUTABLE DATA STRUCTURES

system may crash later instead of sooner, leading to extremely vexing bugs. This is a common problem in
languages like C and C++.

In most cases, garbage collection (Section 23) lets languages dissociate scope from the reclamation of
space consumed by values. The performance of garbage collectors is often far better than we might naı̈vely
imagine (especially in comparison to the alternative).

In terms of language design, there are many reasons why C and C++ have adopted the broken policy of
not distinguishing between scope and extent. These reasons roughly fall into the following categories:

• Justified concerns about fine-grained performance control.

• Mistakes arising from misconceptions about performance.

• History (we understand things better now than we did then).

• Ignorance of concepts that were known even at that time.

Whatever their reasons, these language design flaws have genuine and expensive consequences: they cause
both errors and poor performance in programs. These errors, in particular, can lead to serious security
problems, which have serious financial and social consequences. Therefore, the questions we raise here are
not merely academic.

While programmers who are experts in these languages have evolved a series of ad hoc techniques for
contending with these problems, we students of programming languages should know better. We should
recognize their techniques for what they are, namely symptoms of a broken programming language design
rather than proper solutions to a problem. Serious students of languages and related computer science
technologies take these flaws as a starting point for exploring new and better designs.

Exercise 13.3.1Modify the interpreter to evaluate addition from right to left instead of left-to-right. Con-
struct a test case that should yield different answers in the two cases, and show that your implementation
returns the right value on your test case.

Exercise 13.3.2Modify seqn to permit an arbitrary number of sub-expressions, not just two. They should
evaluate in left-to-right order.

Exercise 13.3.3Modify the implementation of stores so that they have at most one assignment for each
location. New assignments to a location currently mask the old thanks to the way we’ve defined store-
lookup, but the data structure still has a record of the old assignments.

Exercise 13.3.4Use Scheme procedures to implement the store as a partial function.

Exercise 13.3.5Define next-location in a purely functional manner.

Exercise 13.3.6We have said in Section 12 that programming in a purely functional fashion means es-
chewing state; yet we have used precisely that technique to implement state. Reconcile. Can we safely
multi-thread the interpreter presented in this section without having to worry about race conditions?

13.3. SCOPE VERSUS EXTENT 125

;; interp :BCFAE SubCache Store→ Value×Store

(define(interp expr sc store)
(type-caseBCFAE expr

[num (n) (v×s (numV n) store)]
[add (l r)

(type-caseValue×Store (interp l sc store)
[v×s (l-value l-store)

(type-caseValue×Store (interp r sc l-store)
[v×s (r-value r-store)

(v×s (num+ l-value r-value)
r-store)])])]

[sub(l r)
(type-caseValue×Store (interp l sc store)

[v×s (l-value l-store)
(type-caseValue×Store (interp r sc l-store)

[v×s (r-value r-store)
(v×s (num− l-value r-value)

r-store)])])]
[id (v) (v×s (store-lookup(env-lookup v sc) store) store)]
[fun (bound-id bound-body)

(v×s (closureV bound-id bound-body sc) store)]
[app(fun-expr arg-expr)

(type-caseValue×Store (interp fun-expr sc store)
[v×s (fun-value fun-store)

(type-caseValue×Store (interp arg-expr sc fun-store)
[v×s (arg-value arg-store)

(local ([definenew-loc(next-location arg-store)])
(interp (closureV-body fun-value)

(aSub(closureV-param fun-value)
new-loc
(closureV-sc fun-value))

(aSto new-loc
arg-value
arg-store)))])])]

[if0 (test pass fail)
(type-caseValue×Store (interp test sc store)

[v×s (test-value test-store)
(if (num-zero? test-value)

(interp pass sc test-store)
(interp fail sc test-store))])]

...

Figure 13.1: Implementing Mutable Data Structures , Part 1

126 CHAPTER 13. MUTABLE DATA STRUCTURES

...
[newbox(value-expr)

(type-caseValue×Store (interp value-expr sc store)
[v×s (expr-value expr-store)

(local ([definenew-loc(next-location expr-store)])
(v×s (boxV new-loc)

(aSto new-loc expr-value expr-store)))])]
[setbox(box-expr value-expr)

(type-caseValue×Store (interp box-expr sc store)
[v×s (box-value box-store)

(type-caseValue×Store (interp value-expr sc box-store)
[v×s (value-value value-store)

(v×s value-value
(aSto(boxV-location box-value)

value-value
value-store))])])]

[openbox(box-expr)
(type-caseValue×Store (interp box-expr sc store)

[v×s (box-value box-store)
(v×s (store-lookup(boxV-location box-value)

box-store)
box-store)])]

[seqn(e1 e2)
(type-caseValue×Store (interp e1 sc store)

[v×s (e1-value e1-store)
(interp e2 sc e1-store)])]))

Figure 13.2: Implementing Mutable Data Structures, Part 2

Chapter 14

Variables

In Section 13 we studied the implementation of mutable data structures. The boxes we studied there could
just as well have been vectors or othercontainertypes, such as objects with fields.

In traditional languages like C and Java Java, there are actually two forms of mutation. One is mutation
to a container value, such as an object (in Java). A program expression such as

o.f = e

evaluateso to an object,e to some value, and mutates the fieldf of the former object to hold the result of
evaluatinge instead. Note thato can be an arbitrary expression (for instance, it can look up an object in
some other data structure) that isevaluatedto a value. In contrast, a programmer can also write a method
such as

void m (int i) {
i = 4;

}

Here, i must literally be an identifier; it cannot be an arbitrary expression that evaluates to an identifier.
That is, we are not mutating the value contained within a box (or position in a vector, or a field); rather, we
are mutating the value bound to an identifier itself. That makes the identifier avariable. A more interesting
example would be a pattern that repeatedly occurs in object-oriented programming:

private int x;
void set_x (int y) {

x = y;
}
void get_x () {

return y;
}

Here, the variablex is private to the object, and can be accessed only through the getter and setter methods.
The setter assigns a new value tox .

127

128 CHAPTER 14. VARIABLES

14.1 Implementing Variables

First, let’s extend our language to include variables:

<MCFAE> ::= <num>
| {+ <MCFAE> <MCFAE>}
| {- <MCFAE> <MCFAE>}
| <id>
| {fun {<id>} <MCFAE>}
| {<FWAE> <FWAE>}
| {if0 <MCFAE> <MCFAE> <MCFAE>}
| {set <id> <MCFAE>}
| {seqn <MCFAE> <MCFAE>}
| {<MCFAE> <MCFAE>}

Observe that theset expression expects a literal identifier after the keyword.
Implementing variables is a little different from implementing boxes. In the latter case, we first evaluate

the position that identifies the box:

[setbox(box-expr value-expr)
(type-caseValue×Store (interp box-expr sc store)

[v×s (box-value box-store)
...])]

In contrast, in a language with variables, identifiers do not represent boxes. Therefore, the corresponding
code:

[set(var value)
(type-caseValue×Store (interp var sc store)

[v×s (var-value var-store)
...])]

would be counter-productive. Evaluating the identifier would result in a value, which we cannot mutate, as
opposed to a location, which we can by updating the store.

This immediately suggests a slightly different evaluation strategy:

[set(var value)
(type-caseValue×Store (interp value sc store)

[v×s (value-value value-store)
(local ([definethe-loc(env-lookup var sc)])

...)])]

That is, we evaluate the expression that represents the new value to be stored in the interpreter. Instead of
evaluating the identifier, however, we only look it up in the environment. This results in a location where
the new value should be stored. In particular,notice an unusual pattern: the interpreter dereferences the

14.2. INTERACTION BETWEEN VARIABLES AND FUNCTION APPLICATION 129

identifier in the environment, but doesnot dereference the result (the identifier’s location) in the store. We
have not seen this pattern before, and will not see it elsewhere.

Many languages make a distinction between mutable data structures and mutable identifiers. When a
mutable identifier appears in the assignment position of an assignment operator (many languages use the
same syntactic operator,= or := , to represent both operations), the language implementation only partially
resolves the identifier. This special kind of value—the location of an identifier—is traditionally known as
an l-value.

Whence this unusual name? Consider the following two statements in C:

x = 2;
y = x;

In the second statement,x must be reduced to a value—i.e.,store-lookupandenv-lookupmust be composed
and applied to its content—whereas in the second statement,x must only be reduced to a location, not to a
value. In languages where locations are not values (more on that below), this odd kind of “value” is known
as an “l-value”, since it appearsonlyon the left-hand-side of assignment statements.

Given this insight, we can now easily complete the definition of the assignment statement:

[set(var value)
(type-caseValue×Store (interp value sc store)

[v×s (value-value value-store)
(local ([definethe-loc(env-lookup var sc)])

(v×s value-value
(aSto the-loc value-value value-store)))])]

The rest of the interpreter remains unchanged. Note, in particular, that it still employs store-passing style.
Figure 14.1 and Figure 14.2 present the core of the interpreter.

14.2 Interaction Between Variables and Function Application

Variables and function application appear to be two independent language features, but perhaps they are not.
Consider the following program:

{with {v 0}
{with {f {fun {y}

{set y 5}}}
{seqn {f v}

v}}}

What do we expect it to evaluate to? There are two different, reasonable answers:0 and5. The first assumes
that the mutation is to the formal variable,y , and does not affect the actual argument,v ; the second assumes
that this mutation does have the effect of modifying the actual argument.

Our current implementation yields the value0. This is because the act of invoking the function binds
the formal parameter to a new location:

130 CHAPTER 14. VARIABLES

(local ([definenew-loc(next-location arg-store)])
(interp (closureV-body fun-value)

(aSub(closureV-param fun-value)
new-loc
(closureV-sc fun-value))

(aSto new-loc
arg-value
arg-store)))

The evaluated argument is held in this new location. Therefore, changes to the content of that location in
the store do not affect the actual parameter.

Let’s now explore the alternative. This form of evaluation is calledcall-by-reference, in contrast to the
“eager” technique we have studied thusfar, which is known ascall-by-value. This new technique gets its
name because we will pass areferenceto the actual argument, rather than merely its value. Thus, updates to
the reference within the called procedure will become visible to the calling context, too.

To explore this design, let’s extend our language further so we have two kinds of procedures: call-by-
value (fun) and call-by-reference (refun):

<RMCFAE> ::= <num>
| {+ <RMCFAE> <RMCFAE>}
| {- <RMCFAE> <RMCFAE>}
| <id>
| {fun {<id>} <RMCFAE>}
| {refun {<id>} <RMCFAE>}
| {<FWAE> <FWAE>}
| {if0 <RMCFAE> <RMCFAE> <RMCFAE>}
| {set <id> <RMCFAE>}
| {seqn <RMCFAE> <RMCFAE>}
| {<RMCFAE> <RMCFAE>}

That is, syntactically a call-by-reference procedure looks the same as a call-by-value procedure other than
the distinguishing keyword. It is their interpretation that will distinguish them.

All the code we have developed thusfar remains the same for call-by-value procedure invocation. In
particular,with expressions should continue to expand into immediate applications offun -defined proce-
dures. Let us proceed to defining the interpretation of call-by-reference procedures.

The first step is to evaluate a reference procedure definition. This is straightforward:

[refun(bound-id bound-body)
(v×s (refclosV bound-id bound-body sc) store)]

We create a new kind of closure so we can later distinguish what kind of procedure we are about to apply,
but its fields are the same:

(define-typeRMCFAE-Value
[numV(n number?)]
[closureV(param symbol?)

14.2. INTERACTION BETWEEN VARIABLES AND FUNCTION APPLICATION 131

(body RMCFAE?)
(sc SubCache?)]

[refclosV(param symbol?)
(body RMCFAE?)
(sc SubCache?)])

Now let us study the interpretation of application. After evaluating the procedure position, we must check
which kind of procedure it is before evaluating the argument. If it’s a call-by-value procedure, we proceed
as before:

[app(fun-expr arg-expr)
(type-caseValue×Store (interp fun-expr sc store)

[v×s (fun-value fun-store)
(type-caseRMCFAE-Value fun-value

[closureV(cl-param cl-body cl-sc)
(type-caseValue×Store (interp arg-expr sc fun-store)

[v×s (arg-value arg-store)
(local ([definenew-loc(next-location arg-store)])

(interp cl-body
(aSub cl-param

new-loc
cl-sc)

(aSto new-loc
arg-value
arg-store)))])]

[refclosV(cl-param cl-body cl-sc)
...]

[numV() (error ’ interp " trying to apply a number")])])]

We can thus focus our attention on the interpretation of function applications where the function position
evaluates to a reference procedure closure.

When applying a call-by-reference procedure, we must supply it with the location of the actual argument.
This presupposes that the actual argument will be a variable. We put this down to an implicit constraint of
the language, namely that whenever applying a reference procedure, we assume that the argument expres-
sion issyntacticallya variable. Given this, we can easily determine its location, and extend the closure’s
environment with the formal parameter bound to this location:

[refclosV(cl-param cl-body cl-sc)
(local ([definearg-loc (env-lookup(id-name arg-expr) sc)])

(interp cl-body
(aSub cl-param

arg-loc
cl-sc)

fun-store))]

132 CHAPTER 14. VARIABLES

Notice the recurrence of the l-value pattern: an environment lookup without a corresponding store lookup.
As a result, any mutations to the formal parameter are now changes to the same location as the actual pa-
rameter, and are thus effectively mutations to the actual parameter also. Thus, the example that inaugurated
this section will yield the result5.

Figure 14.3 and Figure 14.4 present the core of the interpreter.

14.3 Perspective

Should languages have reference procedures? Passing references to procedures has the following dangerous
property: the formal parameter becomes analias of the actual parameter, as all changes to the formal
manifest as changes to the actual also. This is especially insidiuous because the programmer may not
know he is about to apply a reference procedure: Some languages like C offer the ability to mark specific
parameters of multi-parameter procedures with keywords such as& andref , meaning they alone should be
passed by reference (these are known asreference parameters). The client of such a procedure may thus find
that, mysteriously, the act of invoking this procedure has changed the value of his identifiers. Thisaliasing
effect can lead to errors that are particularly difficult to detect and diagnose.

This phenomenon cannot occur with call-by-value: changes to the variable in the called procedure do
not affect the caller. There is, therefore, nearly universal agreement in modern languages that arguments
should be passed by value. If the called procedure intends to mutate a value, it must consume a box (or other
container data structure); the caller must, in turn, signal acceptance of this behavior by passing a box as the
actual argument. The caller then has the freedom to inspect the content of the (possibly mutated) box and
determine whether to accept this mutation in the remainder of the program, or to reject it by ignoring the
altered content of the box.

Why did languages introduce reference parameters? For one thing, they are “cheaper”: they do not
require additional allocation. (We can see this difference clearly when we contrast the two kinds of procedure
application.) However, the problems they introduce arguably far outweigh this small savings in memory
(which can anyway be reclaimed by modern memory management systems).

Reference parameters do, however, also confer a small expressiveness benefit. Without reference pa-
rameters, we cannot define a procedure that swaps the content of two variables. In the following code,

{with {swap {fun {x}
{fun {y}

{with {z x}
{seqn {set x y}

{set y z}}}}}}
{with {a 3}

{with {b 2}
{seqn {{swap a} b}

b}}}}

the result of the computation is still2, because the mutations tox andy inside the procedure do not affect
a andb. In contrast,

14.3. PERSPECTIVE 133

{with {swap {refun {x}
{refun {y}

{with {z x}
{seqn {set x y}

{set y z}}}}}}
{with {a 3}

{with {b 2}
{seqn {{swap a} b}

b}}}}

results in the value3: sincex andy are just aliases toa andb, mutations to the former are reflected as
mutations to the latter. (Note that both procedures must berefun s and notfun s, else the swap is at best
partial.)

This example also, however, illustrates why aliasing can cause problems. The implementor of the pro-
cedure may have used mutation accidentally, without meaning to affect the caller. The procedure boundary
abstraction has, however, been compromised by the aliasing, and accidental side-effects can leak into the
calling contexts, exposing unnecessary implementation details of the procedure.

In the early days of programming language design, before programs were particularly sophisticated, the
ability to write simple abstractions such asswap was considered valuable (since it is used, for instance, in
the implementation of some sorting algorithms). Today, however, we recognize that such abstractions are
rather meager in the face of the needs of modern systems. We pay greater attention, instead, to the need
for creating useful abstraction boundaries between units of modularity such as procedures: the fewer hidden
interactions they have, and the less they interfere with one another, the more easily we can reason about their
behavior in isolation.

Exercise 14.3.1While call-by-value preserves the value ofvariablesin the calling context, it does not
protect all values. In particular, in many call-by-value languages, a composite data structure (such as a
vector) passed as an argument may be mutated by the callee, with the effects visible to the caller.

1. Does this behavior contradict the claim that the language is passing “values” as arguments? Use our
investigation of mutable data structures in Section 13 to make your argumentrigorous.
Hint : Implement an interpreter for a language with both boxes and call-by-reference application,
then argue about similarities and differences.

2. Languages like ML tackle this problem by forcing programmers to annotate all mutable data struc-
tures using references, the ML counterpart to boxes. Any data structure not so mutated is considered
immutable. What trade-offs does ML’s design introduce?

Exercise 14.3.2There appears to be a neutral ground between call-by-value and call-by-reference. Con-
sider the following proposed syntax:

{with {swap {fun {x}
{fun {y}

{with {z x}

134 CHAPTER 14. VARIABLES

{seqn {set x y}
{set y z}}}}}}

{with {a 3}
{with {b 2}

{seqn {{swap {ref a}} {ref b}}
b}}}}

Theref notation is an indicator to the interpreter to pass the variable’s location rather than its value; that
is, by using{ref a} and {ref b} , the invoker of the procedure indicates his willingness to have his
variables be aliased and thus, potentially, be mutated.

1. Modify the interpreter to support the use ofref for procedure arguments.

2. Does this proposal result in a procedural abstraction of the process of swapping the values of two
variables? If it does, this would reconcile the design tension between the two invocation techniques:
it avoids the difficulty of call-by-value (the inability to write a swap procedure) as well as that of
call-by-reference (aliasing of parameters without the caller’s knowledge). Discuss.

3. Suppose programmers are allowed to applyref to variables elsewhere in the program. What type
should the interpreter use to represent the resulting value? How does this compare to an l-value?
Does this introduce the need for additional operators in the language? How does this relate to the&
operator in C?

14.3. PERSPECTIVE 135

;; interp :MCFAE SubCache Store→ Value×Store

(define(interp expr sc store)
(type-caseMCFAE expr

[num (n) (v×s (numV n) store)]
[add (l r)

(type-caseValue×Store (interp l sc store)
[v×s (l-value l-store)

(type-caseValue×Store (interp r sc l-store)
[v×s (r-value r-store)

(v×s (num+ l-value r-value)
r-store)])])]

[sub(l r)
(type-caseValue×Store (interp l sc store)

[v×s (l-value l-store)
(type-caseValue×Store (interp r sc l-store)

[v×s (r-value r-store)
(v×s (num− l-value r-value)

r-store)])])]
[id (v) (v×s (store-lookup(env-lookup v sc) store) store)]
[fun (bound-id bound-body)

(v×s (closureV bound-id bound-body sc) store)]
[app(fun-expr arg-expr)

(type-caseValue×Store (interp fun-expr sc store)
[v×s (fun-value fun-store)

(type-caseValue×Store (interp arg-expr sc fun-store)
[v×s (arg-value arg-store)

(local ([definenew-loc(next-location arg-store)])
(interp (closureV-body fun-value)

(aSub(closureV-param fun-value)
new-loc
(closureV-sc fun-value))

(aSto new-loc
arg-value
arg-store)))])])]

...

Figure 14.1: Implementing Variables, Part 1

136 CHAPTER 14. VARIABLES

...
[if0 (test pass fail)

(type-caseValue×Store (interp test sc store)
[v×s (test-value test-store)

(if (num-zero? test-value)
(interp pass sc test-store)
(interp fail sc test-store))])]

[set(var value)
(type-caseValue×Store (interp value sc store)

[v×s (value-value value-store)
(local ([definethe-loc(env-lookup var sc)])

(v×s value-value
(aSto the-loc value-value value-store)))])]

[seqn(e1 e2)
(type-caseValue×Store (interp e1 sc store)

[v×s (e1-value e1-store)
(interp e2 sc e1-store)])]))

Figure 14.2: Implementing Variables, Part 2

14.3. PERSPECTIVE 137

(define-typeRMCFAE-Value
[numV(n number?)]
[closureV(param symbol?)

(body RMCFAE?)
(sc SubCache?)]

[refclosV(param symbol?)
(body RMCFAE?)
(sc SubCache?)])

;; interp :RMCFAE SubCache Store→ Value×Store

(define(interp expr sc store)
(type-caseRMCFAE expr

[num (n) (v×s (numV n) store)]
[add (l r)

(type-caseValue×Store (interp l sc store)
[v×s (l-value l-store)

(type-caseValue×Store (interp r sc l-store)
[v×s (r-value r-store)

(v×s (num+ l-value r-value)
r-store)])])]

[sub(l r)
(type-caseValue×Store (interp l sc store)

[v×s (l-value l-store)
(type-caseValue×Store (interp r sc l-store)

[v×s (r-value r-store)
(v×s (num− l-value r-value)

r-store)])])]
[id (v) (v×s (store-lookup(env-lookup v sc) store) store)]
[if0 (test pass fail)

(type-caseValue×Store (interp test sc store)
[v×s (test-value test-store)

(if (num-zero? test-value)
(interp pass sc test-store)
(interp fail sc test-store))])]

...

Figure 14.3: Implementing Call-by-Reference, Part 1

138 CHAPTER 14. VARIABLES

...
[fun (bound-id bound-body)

(v×s (closureV bound-id bound-body sc) store)]
[refun(bound-id bound-body)

(v×s (refclosV bound-id bound-body sc) store)]
[app(fun-expr arg-expr)

(type-caseValue×Store (interp fun-expr sc store)
[v×s (fun-value fun-store)

(type-caseRMCFAE-Value fun-value
[closureV(cl-param cl-body cl-sc)

(type-caseValue×Store (interp arg-expr sc fun-store)
[v×s (arg-value arg-store)

(local ([definenew-loc(next-location arg-store)])
(interp cl-body

(aSub cl-param
new-loc
cl-sc)

(aSto new-loc
arg-value
arg-store)))])]

[refclosV(cl-param cl-body cl-sc)
(local ([definearg-loc (env-lookup(id-name arg-expr) sc)])

(interp cl-body
(aSub cl-param

arg-loc
cl-sc)

fun-store))]
[numV() (error ’ interp " trying to apply a number")])])]

[set(var value)
(type-caseValue×Store (interp value sc store)

[v×s (value-value value-store)
(local ([definethe-loc(env-lookup var sc)])

(v×s value-value
(aSto the-loc value-value value-store)))])]

[seqn(e1 e2)
(type-caseValue×Store (interp e1 sc store)

[v×s (e1-value e1-store)
(interp e2 sc e1-store)])]))

Figure 14.4: Implementing Call-by-Reference, Part 2

Part VII

Continuations

139

Chapter 15

Some Problems with Web Programs

Web programs are notoriously buggy. For instance, consider the following interaction with a popular com-
mercial travel Web site.

1. Choose the option to search for a hotel room, and enter the corresponding information.

2. Suppose the Web site response with two hotels, optionsA andB.

3. Using your browser’s interactive facilities, open the link to hotelA in a separate window.

4. Suppose you findA reasonable, but are curious about the details ofB. You therefore return to the
window listing all the hotels and open the details forB in a separate window.

5. Having scanned the details ofB, you findA a more attractive option. Since the window forA is still
on-screen, you switch to it and click the reservation link.

6. The travel site makes your reservation at hotelB.

If an error like this were isolated to a single Web page, or even to a single site, we can put it down to pro-
grammer error. But when the same error occurs on numerous sites, it forces us to systematically investigate
their cause and to more carefully consider the design and implementation of Web programs.

Before we investigate the problem in general, it helps to understand its breadth. The following is an
uncontroversial property that we would expect of a travel reservation site:

The user should receive a reservation at the hotel that was displayed on the page he submitted.

Can we generalize this? That is, should a user receive information based strictly on the information displayed
on the page on which the user clicked a button?

This appears reasonable at first blush. For instance, software that satisfies it avoids the embarassing
problem that we saw above, where abandoned investigations can nonetheless affect the program’s output.
But consider an airline reservation system, where a user must choose between multiple flights for each of
the outbound and return legs. Depending on what information is presented on each page, it may not: in a
poor Web design, the page that displays the return leg choices may not display the chosen outward leg. But

141

142 CHAPTER 15. SOME PROBLEMS WITH WEB PROGRAMS

even if the site were designed to avoid this problem, there are sites where wedo want “interference” from
other explored options.

Consider an on-line bookstore. Conduct the same sequence of interactions as above, except with books
instead of hotels. Upon examining choiceB, suppose you clicked to add it to your “shopping cart”. Now
when you go to the page for bookA and add it, too, to your shopping cart, what do you expect to find in it?
Certainly, the bookseller hopes you have bothA and Bin the cart (since, after all, they are in the business of
selling as many books as possible). This is a clear violation of the property we elucidated above.

The problem is compounded by the number of interaction operations supported by modern Web browsers.
In addition to opening Web pages in new windows, browsers offer the ability to clone the currently-visible
page, to go back to a previous page, to go forward to a page (from which the user had previously gone back),
to create bookmarks, and so on. The number of interactive operations appears to grow with each browser
release. Worse, most of these operations aresilent: the browser does not notify the Web application that
they have been executed, so the application must reconstruct events based on the submissions it receives.

Many of the problems with Web programs trace back to their structure. The Web’s architecture dictates
that every time a Web program sends an Web page to a user, it is forced to terminate; this is because the Web
implements astatelessprotocol. If and when the user chooses to resume the computation (by clicking on a
link or button), some other program must resume the computation. This forces a rather perverse program
structure on the programmer. We will now study the implications of this structure in some detail.

143

Stateful and Stateless Protocols

Suppose a client-server computation relies on performing multiple interactions. In a stateful proto-
col, the server maintains some state information recording its context in the dialog. A well-known
example of a stateful protocol isFTP, the Internet file-transfer protocol. In anFTP session, the user
can enter multiple commands, and the interpretation of each command is relative to the history of
past commands. That is, two invocations ofls (to list files in a directory) will produce different
answers if the user has invokedcd (to change the directory) betwixt. (The context information here
is the current directory.)
In contrast to many traditional Internet protocols, the Web implements a stateless protocol, meaning
it does not retain any record of prior communication. As a result, in principle the Web application is
responsible for completely restoring the state of the computation on each interaction. By analogy,
suppose you were executing an editor such as Emacs within anSSH session (which is also state-
ful: this state is lost when the connection dies). In a statelessSSH, after every unit of output the
connection would close. When the user entered another keystroke, the communication would have
to carry with it the entire state of running applications (indeed, the entirehistory, to enable Undo
operations), the server would have to invoke Emacs afresh, run all the commnands entered so far
and, having restored the application to its past state. . . enter the new keystroke.
Put this way, a stateless protocol seems quite ludicrous. So why would anyone employ a stateless
protocol? They confer the advantage that the server has to tolerate far lower loads. If a server can
matinain only 1,000 connections at any instant, in a stateful protocol (that keeps connections open
until the transaction terminates) the server would not be able to service more than 1,000 users at a
time. Worse, it would need a policy for determining when to terminate connections that appear to
no longer be active. A stateless protocol avoids this; the server can serve many more clients in rapid
order, and can ignore clients who are not interested in completing a computation. It pays the price
of transmitting enough data to resume the compuation.
Using a stateless protocol for very fine-grained communication (as in a text editor) is obviously a bad
idea. Most Web applications are therefore instead designed to communicate at a corse granularity.
That said, stateful protocols are easier to program because the developer is not responsible for setup
and breakdown of the state at each interaction. Thus,APIs such as Java servlets, or especially the
implementation ofweb-read/kwe have posited above, relieve some of this burden by providing a
partially stateful interface to the Web developer. The developer must, however, pay the price of
determining how to manage resources. If a Web user does not explicitly “log out” or otherwise
signal premature termination, when can the server reap the corresponding session object?

144 CHAPTER 15. SOME PROBLEMS WITH WEB PROGRAMS

Chapter 16

The Structure of Web Programs

Suppose we are trying to implement the following simple Web program. The program presents the user with
a prompt for a number. Given an input, it presents a prompt for a second number. Given a second input, it
displays the sum of the two numbers in a Web page:1

(web-display
(+ (web-read" First number: ")

(web-read" Second number: ")))

While this is an extremely simple application, it is sufficient for demonstrating many concepts. Furthermore,
it is a microcosm of a more serious Web application such as one that consumes name, address and credit
card information in multiple stages—

(web-display
(purchase-item(web-read" Name: ")

(web-read" Credit Card Number: ")))

—or one that offers multiple flight choices for the outward and return legs of a flight and makes a reservation
given the two choices:

(web-display
(make-reservation(web-read" Select outward flight: ")

(web-read" Select return flight: ")))

Even this “addition server” is difficult to implement:

1. The Web developer must turn this application into three programs:

(a) The first program displays the first form.

(b) The second program consumes the form values from the first form, and generates the second
form.

1We are assuming the existence of some simple primitives that mask the necessary but, for now, irrelevant complexity of
generatingHTML forms, and so on.

145

146 CHAPTER 16. THE STRUCTURE OF WEB PROGRAMS

(c) The third program consumes the form values from the second form, computes the output, and
generates the result.

2. Because the value entered in the first form is needed by the third program to compute its output, this
value must somehow be transmitted between from the first program to the third. This is typically done
by using the hidden field mechanism ofHTML .

3. Suppose, instead of using a hidden field, the application developer used a Java Servlet session object,
or a database field, to store the first number. (Application developers are often pushed to do this
because that is the feature most conveniently supported by the language andAPI they are employing.)
Then, if the developer were to exploratorily open multiple windows, as we discussed in Section 15,
the application can compute the wrong answer.

In particular, the programs we have written above, which would appear to be perfectly normal programs
to run on a display console, cannot run on the Web: the momentweb-readdispatches its Web form to the
user, the Web protocol forces the computation to terminate, taking with it all memory of what had to happen
next, i.e., the pending computation.

Where is this pending computation specified? The system resumes execution at theURL specified in
the “action” field of the generated form. The developer is therefore responsible for making sure that the
application that resides at thatURL is capable of resuming the computation in its entirety. We have entirely
neglected this problem by assuming the existence of aweb-readprocedure, but in fact the entire problem is
that we cannot implement it without a more explicit handle on the pending computation.

16.1 Explicating the Pending Computation

For our motivating example, what is the pending computation at the point of the first interaction? In words, it
is to consume the result from the form (the first number), generate a form for the second number, add them,
then display their result. Since natural language is unwieldy, we would benefit from writing this pending
computation in code instead:

(web-display
(+ •

(web-read" Second number: ")))

where we use• to represent the result from the user’s form submission. What is•, exactly? It appears to be
an invented notation that we must then explain formally. Instead, we can treat it as an identifier, binding it
in the traditional way:

(lambda (•)
(web-display

(+ •
(web-read" Second number: ")))

This procedure, then, represents the computation pending at the point of the first interaction. Apply this
procedure to the result of that interaction, and it should successfully resume the computation. Similarly, the
pending computation at the point of the second interaction is

16.2. A BETTER SERVER PRIMITIVE 147

Figure 16.1: Form generated byweb-read/k

(lambda (•2)
(web-display

(+ •
•2)))

where• is the user’s response to the first prompt, which is presumably in the closure of this procedure.

16.2 A Better Server Primitive

Suppose, therefore, that we had a modified version ofweb-readthat we’ll call web-read/k. This new pro-
cedure takes two arguments. The first is a string that it converts into a form, as before. The second is a
procedure of one argument representing the pending computation, which we’ll henceforth call thereceiver.

Every timeweb-read/kis invoked, it creates a fresh entry in a hash table. It stores the receiver in this
entry, and generates a form actionURL that contains the hash table key for this procedure. The hash table is
kept in memory by the Web server (which, we’ll assume, doesn’t terminate).web-read/kgenerates a page
and then terminates the Web application’s execution, in conformance with the Web protocol.

This generated page is shown in Figure 16.1. The image shows, in outline, the Web page generated by
invoking web-read/kwith the first argument reading" First" . This string becomes the prompt. Next to the
prompt is a text box where the user can provide input. The action field of theHTML form has a reference to
the hash table key of the corresponding fresh entry (in this instance,k2592).

When the user submits a response, the server invokes the application namedlaunch . This application
does two things. First, it uses the key associated with theid argument to obtain a receiver closure from the
hash table. Second, it extracts the input typed by the user in the text box. The receiver is then applied to this
extracted value. This resumes the computation.

Assuming the existence of such a primitive, we might try to rewrite our running application as

(web-display
(+ (web-read/k" First number: "

148 CHAPTER 16. THE STRUCTURE OF WEB PROGRAMS

(lambda (•)
•))

(web-read" Second number: ")))

but this won’t work at all! Recall that at every Web interaction, the Web application entirely terminates.
That means, any computation that has not been included in the receiver is lost forever. As a consequence,
when this application resumes, the only “remembered” computation is that in the receiver, which is just the
identity function: the second Web input, as well as the ensuing computation and the display of the result,
have all been irretrievably lost.

In other words,any computation that isn’t explicitly mentioned in the receiver simply never gets per-
formed, because of the program’s termination after each interaction. This forces us to moveall pending
computation into the receiver. Here’s what we might try:

(web-read/k" First number: "
(lambda (•)

(web-display
(+ •

(web-read" Second number: ")))))

This, however, is subject to the same analysis: it still uses the hypotheticalweb-readprocedure, which we’ve
conceded we don’t quite know how to implement. We must, therefore, instead employweb-read/kagain, as
follows:

(web-read/k" First number: "
(lambda (•)

(web-read/k" Second number: "
(lambda (•)

(web-display
(+ • •))))))

Oh, not quite: we want to add the first number to the second, not just compute twice the second number.
Therefore:

(web-read/k" First number: "
(lambda (•1)

(web-read/k" Second number: "
(lambda (•2)

(web-display
(+ •1 •2))))))

Now, when the program finally generates the sum, it can safely halt without having registered any receivers,
because there aren’t any computations left to perform. Relative to the original source program, however, the
structure of this application is considerably more intricate.

Exercise 16.2.1To be entirely pedantic, there is one thing left to do, which is to explicitly halt the program.
Extend the program to do this, then transform it to correctly employ web-read/k.

16.3. TESTING WEB TRANSFORMATIONS 149

16.3 Testing Web Transformations

One of the subtle problems with transforming interactive programs for the Web is that they are difficult to
test. This difficulty has at least two facets. First, the use ofHTML makes programs unwieldy, so we would
rather defer its use until the end, but without it we cannot interact with a Web browser. Second, testing a
program at the console can be misleading: a computation may not have been properly moved into a receiver
but, because Scheme programs do not terminate after every interaction, we would never notice this problem
until we ran the program on the Web.

Fortunately, it is easy to simulate the Web’s behavior at the console with the following code. The fol-
lowing implementation ofweb-read/kstores the receiver and prompt in a box, and terminates the program’s
execution usingerror:

(definethe-receiver(box ’dummy-value))
(definereceiver-prompt(box ’dummy-value))

(define(web-display n)
(printf " Web output: ˜a˜n" n))

(define(web-read/k p k)
(begin

(set-box! receiver-prompt p)
(set-box! the-receiver k)
(error ’web-read/k " run (resume) to enter number and simulate clicking Submit")))

The procedureresumeuses the values in these boxes to resume the computation:

(define(resume)
(begin

(display(unbox receiver-prompt))
((unbox the-receiver) (read))))

We can therefore test a program such as the addition application as follows:

Welcome to DrScheme, version 208p1.
Language: PLAI - Advanced Student.
web-read/k: run (resume) to enter number and simulate clicking Submit
>

This means the program has arrived atweb-read/kfor the first time. We run

> (resume)

which prompts us for the first input. Providing an input results in the same terminating “error” message,
corresponding to the next interaction point. Running (resume) prompts for the second input. When we
provide the second, we see the sum of the two numbers printed to the console.

150 CHAPTER 16. THE STRUCTURE OF WEB PROGRAMS

16.4 Executing Programs on a Traditional Server

Suppose we must run our Web application on a traditional Web server, which does not provide support for
the hash table used byweb-read/k. This doesn’t mean we must waste the effort we expended transforming
the program: that effort was a direct consequence of the Web’s protocol, which the traditional server also
obeys (even more slavishly!).

What’s the problem with executing this program on a traditional server?

(web-read/k" First number: "
(lambda (•1)

(web-read/k" Second number: "
(lambda (•2)

(web-display
(+ •1 •2))))))

If web-read/kcannot behave in a privileged fashion, then its receiver argument will not be invoked automat-
ically by the server. Instead, the entire computation will terminate with the first interaction.

To reflect this problem, let us use a different primitive,web-read/rin place ofweb-read/k. The suffix
indicates that it will be given thenameof a receiver as a second argument.web-read/ruses this name
in the URL inserted in the action field of the generated form. To do so, however, each receiver must be a
named Web application that the server can invoke directly, whereas the receivers are currently anonymous
procedures nested within other procedures!

The process of making nested procedures into top-level ones is known aslifting. That is, each anony-
mous procedure is moved to the top-level and given an unique name. In the example program above, the
innermost procedure might become

(define(f2 •2)
(web-display

(+ •1
•2)))

which the outer procedure can refer to:

(define(f1 •1)
(web-read/r" Second number: "

" f2"))

The main program then becomes

(web-read/r" First number: "
" f1")

Note that we intend forweb-read/rto be able to terminate safely after dispatching its form. All the remaining
work must be completed by the top-level procedure named in the second argument (in particular, this is now
a string, rather than a procedural value). Each top-level procedure consumes one argument, which is the
data provided by the user.

16.4. EXECUTING PROGRAMS ON A TRADITIONAL SERVER 151

Unfortunately, by sloppily lifting the procedures to the top-level, we’ve created a problem:•1 is a free
identifier inf2! The problem is that we were simplistic in the way we lifted the procedures. (A different sim-
plistic method—failing to keep the two instances of• separate—would, of course, have created a different
problem, namely thatf2 would have just added• to itself, ignoring the user’s first input.)

In general, when lifting we must add parameters for all the free variables of the procedure being lifted,
then pass along the values for parameters from the point of closure creation. In general, procedure lifting re-
quires the computation of atransitive closure(because lifting one procedure may render another procedure’s
previously-bound identifiers free). That is, the Web program ought to become:

(define(f2 •1 •2)
(web-display

(+ •1
•2)))

(define(f1 •1)
(web-read/r" Second number: "

" f2"))
(web-read/r" First number: "

" f1")

But how isf2 to get this extra argument? Recall that each top-level procedure takes only one argument: the
user’s input. The (traditional) Web server can’t know that it has to hold on to this value and communicate it.

In practice, the Web protocol provides a technique for burying such values in forms using theHTML

construct known as ahidden field. Every top-level receiver has to be sensitive to creating and extracting
these form values. Specifically, the converted Web application has the following form:

(define(f2 user-input)
(local ([definen1 (get-form-field user-input’n1)]

[definen2 (get-form-field user-input’n2)])
(web-display

(+ •1
•2))))

(define(f1 user-input)
(web-read/r/fields" Second number: "

" f2"
user-input
(list ’n1)))

(web-read/r" First number: "
" f1")

wheren1 andn2 are the names used in the form. The procedureweb-read/r/fieldstakes the same first two
inputs asweb-read/r. The third argument is the data structure representing the user’s inputs. This is followed
by a list of field names; these fields are extracted from the user input and inserted into the generatedHTML

form using hidden fields.
How wouldf1 know which parameters must be passed tof2 using the hidden fields? Because the lifting

process would (at least conceptually) generate the following intermediate program:

152 CHAPTER 16. THE STRUCTURE OF WEB PROGRAMS

(web-read/k" First number: "
((lambda ()

(lambda (•1)
(web-read/k" Second number: "

((lambda (•1)
(lambda (•2)

(web-display
(+ •1 •2))))

•1))))))

That is, each procedure has been closed over its free variables by the creation of an additional “wrapping”
procedure. These otherwise-free variables become the form fields; the inner procedure is the one that is
lifted to the top-level.

Exercise 16.4.1Automatethis transformation, i.e., write a program that implements it without the need for
human intervention.

Chapter 17

More Web Transformation

We have already seen how the application

(web-display
(+ (web-read" First number: ")

(web-read" Second number: ")))

must be transformed into

(web-read/k" First number: "
(lambda (•1)

(web-read/k" Second number: "
(lambda (•2)

(web-display
(+ •1 •2))))))

to execute on the Web. Let us now examine some more applications of a more complex flavor.

17.1 Transforming Recursive Code

Suppose we have the functiontally. It consumes a list of items and prompts the user for the cost of each item.
When done, it generates the sum of these items. A programmer could, for instance, invoke this function to
compute the sum, then display the result on the Web. The code fortally is as follows:

(define(tally item-list)
(if (empty? item-list)

0
(+ (web-read(generate-item-cost-prompt(first item-list)))

(tally (rest item-list)))))

This version oftally is clearly not Web-friendly, due to the use ofweb-read, which we do not know how to
implement. We must therefore transform this code.

The first thing to observe is that on its own,tally is not a complete program: it doesn’t do anything!
Instead, it is a library function that may be used in many different contexts. Because it has a Web interaction,

153

154 CHAPTER 17. MORE WEB TRANSFORMATION

however, there is the danger that at the point of interaction, the rest of the computation—i.e., the computation
that invokedtally—will be lost. To prevent this,tally must consume an extra argument, a receiver, that
represents the rest of the pending computation. To signify this change in contract, we will use the convention
of appending/k to the name of the function andk to name the receiver parameter.

(define(tally/k item-list k)
(if (empty? item-list)

0
(+ (web-read(generate-item-cost-prompt(first item-list)))

(tally (rest item-list)))))

What is the first thing this function does? It checks for whether the list is empty. Does this involve any
Web interaction? Clearly not; all the data and primitives are available locally. If the list is not empty, then
tally prompts for a user input through the Web. This must happen throughweb-read/k. What is the receiver
of this Web invocation? That is, what computation remains to be done? Clearly the recursive invocation of
tally; but there is also the receiver,k, which represents the rest of the waiting computation. Therefore, the
Web-friendly version oftally appears to become

(define(tally/k item-list k)
(if (empty? item-list)

0
(web-read/k(generate-item-cost-prompt(first item-list))

(lambda (v)
(+ v

(tally/k (rest item-list)
k))))))

We can read the second argument toweb-read/kas saying: “Consume the value provided by the user and
add it to the value generated by the recursion. The receiver in the recursive is the samek as before, because
the computation pending outside the function has not changed.”

This may look reasonable, but it suffers from an immediate problem. When the recursive call occurs, if
the list had two or more elements, then there will immediately be another Web interaction. Because this will
terminate the program, the pending addition will be lost! Therefore, the addition ofv has to moveinto the
receiver fed to tally/k!That is,

(define(tally/k item-list k)
(if (empty? item-list)

0
(web-read/k(generate-item-cost-prompt(first item-list))

(lambda (first-item-cost)
(tally/k (rest item-list)

(lambda (tally-of-remaining-costs)
(k (+ first-item-cost

tally-of-remaining-costs))))

17.2. TRANSFORMING MULTIPLE FUNCTIONS 155

That is, the receiver of the Web interaction is invoked with the cost of the first item. Whentally/k is invoked
recursively, it is applied to the rest of the list. Its receiver must therefore receive the tally of costs of the
remaining items. That explains the pattern in the receiver.

The only problem is, where does a receiver ever get a value? We create larger-and-larger receivers on
each recursive invocation, but the only place we ever feed a value to a receiver is inside a procedure—how
does that procedure get invoked in the first place?

Here is the same problem, but approached from an entirely different angle (that also answers the question
above). Notice that each recursive invocation oftally/k takes place in the aftermath of a Web interaction. We
have already seen how the act of Web interaction terminates the pending computation. Therefore, when the
list empties, where is the value0 going? Presumably to the pending computation—but all that computation
has now been recorded ink, which is expecting a value. Therefore, the correct transformation of this function
is

(define(tally/k item-list k)
(if (empty? item-list)

(k 0)
(web-read/k(generate-item-cost-prompt(first item-list))

(lambda (first-item-cost)
(tally/k (rest item-list)

(lambda (tally-of-remaining-costs)
(k (+ first-item-cost

tally-of-remaining-costs))))

Now we have a truly reusable abstraction. Whatever the computation pending outside the invocation of
tally/k, its proper Web transformation yields a receiver. If this receiver is fed as the second parameter to
tally/k, then it is guaranteed to be invoked with the value thattally would have produced in a non-Web (e.g.,
console) interaction. The pattern of receiver creation withintally/k ensures that no pending computation
gets lost due to the behavior of the Web protocol.

Exercise 17.1.1There is a strong formal claim hidden behind this manual transformation: that the value
given to the initial k fed to tally/k isthe sameas that returned by tally in the non-Web version. Prove this.

17.2 Transforming Multiple Functions

Suppose we have the functionstotal+s&h. It consumes a list of items to purchase, queries the user for the
cost of each item, then generates another prompt for the corresponding shipping-and-handling cost,1 and
finally prints the result of adding these together. The functiontotal+s&h relies ontally to compute the sum
of the goods alone.

(define(total+s&h item-list)
(local ([definetotal (tally item-list)])

1The termshipping and handlingrefers to a cost levied in the USA by companies that handle long-distance product orders
placed by the mail, phone and Internet. It is ostensibly the price of materials to package and labor to dispatch the ordered goods.
This rate is usually a (step) function of the cost of items ordered, and must hence be calculated at the end of the transaction.

156 CHAPTER 17. MORE WEB TRANSFORMATION

(+ (web-read(generate-s&h-prompt total))
total)))

Just as we argued in the transformation oftally, this function alone does not constitute a computation. It
must therefore consume an extra parameter, representing a receiver that will consume its result. Likewise,
it cannot invoketally, because the latter performs a Web interaction; it must instead invoketally/k, passing
along a suitable receiver to ensure no computation is lost.

(define(total+s&h/k item-list k)
(local ([definetotal (tally/k item-list ???)])

(+ (web-read(generate-s&h-prompt total))
total)))

Reasoning as before, what is the first thingtotal+s&h/kdoes? It invokes a function to compute the tally.
Because this function involves a Web interaction, it must be invoked appropriately. That is, the transformed
function must take the form

(define(total+s&h/k item-list k)
(tally/k item-list

(lambda (tally-of-items)
???)))

What is the pending computation? It is to bind the resulting value tototal, then perform another Web
interaction:

(define(total+s&h/k item-list k)
(tally/k item-list

(lambda (tally-of-items)
(local ([definetotal tally-of-items])

???))))

(Notice that the Web transformation has forced us to give names to intermediate results, thereby rendering
the nametotal unnecessary. We will, however, leave it in the transformed program so that the transformation
appears as mechanical as possible.) With the pending computation, this is

(define(total+s&h/k item-list k)
(tally/k item-list

(lambda (tally-of-items)
(local ([definetotal tally-of-items])

(web-read/k(generate-s&h-prompt total)
(lambda (s&h-amount)

(k (+ s&h-amount
total))))))))

Notice howtotal+s&h/k had to create a receiver to pass totally/k, the transformed version oftally. Reading
this receiver, it says to consume the value computed bytally/k (in tally-of-items), bind it, ask the user to enter
the shipping-and-handling amount, compute the final total, and convey this amount to the initial receiver.

17.3. TRANSFORMING STATE 157

It’s easy to forget this last step: to applyk, the initial receiver supplied tototal+s&h/k, to the final value.
Doing so would effectively “forget” all the computation that was waiting for the result oftotal+s&h/k, i.e.,
the computation awaiting the result oftotal+s&h in the original program. This is obviously undesirable.

You might worry that thelocal might be “forgotten” by theweb-read/kthat follows. But all we care
about is that the nametotal be associated with its value, and the receiver will take care of that (since it is a
closure, it must be closed over the value oftotal).

17.3 Transforming State

Suppose we want to write a program that keeps track of an account’s balance. On every invocation it presents
the current balance and asks the user for a change (i.e., deposit or withdrawal, represented respectively by
positive and negative numbers). In principle, the Web application might look like this:

(defineaccount
(local ([definebalance0])

(lambda ()
(begin

(set!balance(+ balance
(web-read

(format" Balance: ˜a; Change" balance))))
(account)))))

Note thataccountis bound to a closure, which holds a reference tobalance. Recall that mutable variables
introduce a distinction between their location and the value at that location. The closure closes over the
location, while the store is free to mutate underneath. Thus, even thoughbalancealways refers to the same
location, its value (the actual account balance) changes with each interaction.

How do we transform this program? Clearly the procedure bound toaccountmust take an additional
argument to represent the remainder of the computation:

(defineaccount/k
(local ([definebalance0])

(lambda (k)
(begin

(set!balance(+ balance
(web-read

(format" Balance: ˜a; Change" balance))))
(account/k ???)))))

More importantly, we must move theweb-readto be the first action in the procedure:

(defineaccount/k
(local ([definebalance0])

(lambda (k)
(begin

(web-read/k(format" Balance: ˜a; Change" balance)

158 CHAPTER 17. MORE WEB TRANSFORMATION

(lambda (v)
(begin

(set!balance(+ balance v))
(account/k ???))))))))

What’s left is to determine what argument to pass as the receiver in the recursive call. What new pending
activity have we created? The only thing the function does on each recursion is to mutatebalance, which
is already being done in the receiver to the Web interaction primitive. Therefore, the only pending work is
whatever was waiting to be done before invokingaccount/k. This results in the following code:

(defineaccount/k
(local ([definebalance0])

(lambda (k)
(begin

(web-read/k(format" Balance: ˜a; Change" balance)
(lambda (v)

(begin
(set!balance(+ balance v))
(account/k k))))))))

The closure created as the receiver for the Web interaction has a key property: it closes over the location
of balance, not the value. The value itself is stored in the heap memory that is kept alive by the Web server.

Exercise 17.3.1If we wanted to run this application without any reliance on a custom server (Section 16.4),
we would have to put these heap data somewhere else. Can we put them in hidden fields, as we discussed in
Section 16?

17.4 Transforming Higher-Order Functions

Suppose our Web program were the following:

(define(get-one-temp c)
(web-read(format" Temperature in city ˜a" c)))

(web-display
(average

(map get-one-temp
(list " Bangalore" " Budapest" " Houston" " Providence"))))

(Assume we’ve defineaverageelsewhere.) In principle, converting this program is merely an application of
what we studied in Section 17.1 and Section 17.2, but we’ll work through the details to reinforced what you
read earlier.

Transformingget-one-tempis straightforward:

(define(get-one-temp/k c k)
(web-read/k(format" Temperature in city ˜a" c)

k))

17.4. TRANSFORMING HIGHER-ORDER FUNCTIONS 159

This means we must invoke this modified procedure in themap. We might thus try

(web-display
(average

(map get-one-temp/k
(list " Bangalore" " Budapest" " Houston" " Providence"))))

Unfortunately,mapis expecting its first argument, the procedure, to consume only the elements of the list;
it does not provide the second argument thatget-one-temp/kneeds. So Scheme reports

map: arity mismatch for procedure get-one-temp/k: expects 2 arguments, given 1

It therefore becomes clear that we must modifymapalso. Let’s first writemapin full:

(define(map f l)
(if (empty? l)

empty
(cons(f (first l))

(map f (rest l)))))

Clearly we must somehow modify the invocation off . What can we pass as a second argument? Here’s one
attempt:

(define(map f l)
(if (empty? l)

empty
(cons(f (first l) (lambda (x) x))

(map f (rest l)))))

That is, we’ll pass along the identity function. Does that work? Think about this for a moment.
Let’s try testing it. We get the following interaction:

Welcome to DrScheme, version 208p1.
Language: PLAI - Advanced Student.
web-read/k: run (resume) to enter number and simulate clicking Submit
>

This means the program has arrived atweb-read/kfor the first time. We run

> (resume)

which prompts us for an input. Suppose we enter25 . We then see

Temperature in city Bangalore: 25
25
>

160 CHAPTER 17. MORE WEB TRANSFORMATION

It stopped: the program terminated without ever giving us a second Web prompt and asking us for the
temperature in another city!

Why? Because the value of the receiver stored in the hash table or box is the identity function. When
computation resumes (on the user’s submission), we expect to find the closure representing therest of the
computation. Since the stored closure is instead just the identity function, the program terminates thinking
its task is done.

This gives us a pretty strong hint: the receiver we pass had better make some reference tomap, and
indeed, had better continue the iteration. In fact, let’s think about where we get the first value forcons. This
value is the temperature for a city. It must therefore come fromweb-read/k. But that is exactly the value
thatweb-read/ksupplies to its receiver. Therefore, everything starting with theconsonward must move to
within the closure:

(define(map f/k l)
(if (empty? l)

empty
(f/k (first l)

(lambda (v)
(cons v

(map f (rest l)))))))

This version is still not quite okay. This is because the recursive call invokesmap, which suffers from
the same problem we have just discussed above. Indeed, running this version teminates after reading the
temperature for the second city, and returns just a list containing the second city’s temperature! Instead, it
must invoke a modified version ofmap, namelymap/k, with an appropriate additional argument:

(define(map/k f/k l k)
(if (empty? l)

empty
(f/k (first l)

(lambda (v)
(cons v

(map/k f/k(rest l) ???))))))

We must determine what to pass as an argument in the recursive call. But before we do that, let’s study this
program carefully. When the first Web interaction results in a response, the server will invoke the (lambda
(v) · · ·). Thisconses the input temperature to the value of the recursive call. The recursive call will, however,
eventually result in an invocation ofweb-read/k. That invocation will halt the program. Once the program
halts, we lose record of thecons. So this program can’t work either! We must instead move theconsinside
the receiver, where it won’t be “forgotten”.

Using the intuition that the value given to each receiver is the result of computing the function on its
other arguments, it makes sense to think of the value given on invokingmap/kon the rest of the list as the
list of temperatures for the remaining cities. Therefore, we simply need toconsthe temperature for the first
city onto this result:

(define(map/k f/k l k)

17.4. TRANSFORMING HIGHER-ORDER FUNCTIONS 161

(if (empty? l)
empty
(f/k (first l)

(lambda (v)
(map/k f/k(rest l)

(lambda (v-rest)
(cons v v-rest)))))))

Now we’re ready to modify the main program. We had previously written

(web-display
(average

(map get-one-temp/k
(list " Bangalore" " Budapest" " Houston" " Providence"))))

We have to convert the invocation ofmapto one ofmap/k, and in turn, determine what to pass as the second
argument tomap/k. Using the same reasoning we have employed before (in particular, that as written, the
web-displayandaveragewill never execute, since they will be forgotten when the server terminates the
program), we know to write this:

(map/k get-one-temp/k
(list " Bangalore" " Budapest" " Houston" " Providence")
(lambda (v)

(web-display
(average v))))

This program now runs through the four cities, accepts the temperatures in order, and produces . . . the empty
list.

What went wrong here? We can reason this way. The emptylist cannot result fromaverage(which must
produce a number), so we can reason that the initial receiver must never have been invoked at all. (We can
verify this by commenting out the definition ofaverageand noticing that this doesn’t cause a problem: the
procedure is never invoked.) So it must be the case that the receiver supplied tomap/knever made it any
further.

Studyingmap/k, we see the problem. Though the procedure consumes a receiver, that receiver never
gets used anywhere in its body. In fact, we should be passing the result of theconsto this procedure:

(define(map/k f/k l k)
(if (empty? l)

empty
(f/k (first l)

(lambda (v)
(map/k f/k(rest l)

(lambda (v-rest)
(k (cons v v-rest))))))))

Everything now looks hunky-dory, so we run the program, enter the four temperatures, and still get . . . the
empty list!

162 CHAPTER 17. MORE WEB TRANSFORMATION

Since there is really only one place in the program where we explicitly mention the empty list, we might
suspect it now. Indeed, the first branch in the conditional ofmap/k is indeed the culprit. When a value
becomes available, we should not return it. Why not? Because we know no procedure is awaiting it directly.
Why not? Because according to the Web protocol, any waiting procedures would have terminated when the
whole program terminated at the previous interaction point! Therefore, toreturn a value, a procedure must
insteadhand the value to the receiver. That is,

(define(map/k f/k l k)
(if (empty? l)

(k empty)
(f/k (first l)

(lambda (v)
(map/k f/k(rest l)

(lambda (v-rest)
(k (cons v v-rest))))))))

The moral of this lengthy story is that, to make a program Web-ready, we must (a) generate receivers that
capture pending computations, and (b) pass values to receivers instead of returning them. In rare cases, a
procedure will neither return a value nor generate additional pending computation—get-one-tempis a good
example—in which case, its transformed version will consume a receiver and pass alongthe samereceiver
to other computations (asget-one-temp/kdoes).

Exercise 17.4.1Why did we not transform average? In general, what principle guides whether or not we
transform a given procedure? (Make sure your principle also applies to map!)

17.5 Perspective on the Web Transformation

Notice three implications of the transformation the Web forces us to employ:

1. We have had to make decisions about the order of evaluation. That is, we had to choose whether
to evaluate the left or the right argument of addition first. This was an issue we had specified only
implicitly earlier; if our evaluator had chosen to evaluate arguments right-to-left, the Web program at
the beginning of this document would have asked for the second argument before the first! We have
made this left-to-right order of evaluation explicit in our transformation.

2. The transformation we use is global, namely it (potentially) affects all the procedures in the program
by forcing them all to consume an extra receiver as an argument. We usually don’t have a choice as
to whether or not to transform a procedure. Supposef invokesg andg invokesh, and we transform
f to f/k but don’t transformg or h. Now when f/k invokesg andg invokesh, supposeh consumes
input from the Web. At this point the program terminates, but the last receiver procedure (necessary
to resume the computation when the user supplies an input) is the one given tof/k, with all record of
g andh erased.2

2Indeed, we would have encountered an error even earlier, when the transformed version off , namely f/k, tried to invokeg
with an extra receiver argument thatg was not transformed to accept. In this even simpler way, therefore, the transformation process
has a cascading effect.

17.5. PERSPECTIVE ON THE WEB TRANSFORMATION 163

3. This transformation sequentializes the program. Given a nested expression, it forces the programmer
to choose which sub-expression to evaluate first (a consequence of the first point above); further, every
subsequent operation lies in the receiver, which in turn picks the first expression to evaluate, pushing
all other operations into its receiver; and so forth. The net result is a program that looks an awful lot
like a traditional procedural program. This suggests that this series of transformations can be used to
compile a program in a language like Scheme into one in a language like C! We will return to this
point in Section 21.

Exercise 17.5.1This presentation has intentionally left out the contracts on the functions. Add contracts to
all the functions—both the original programs and the Web versions.

Exercise 17.5.2Adding contracts to the Web versions (Exercise 17.5.1) reveals a very interesting pattern
in the types of the receivers. Do you see a connection between this pattern and the behavior of the Web?

164 CHAPTER 17. MORE WEB TRANSFORMATION

Chapter 18

Conversion into Continuation-Passing Style

Given how much the Web distorts the structure of an application, we would benefit from automating the
Web transformation. Then we could program in the lucid style of the initial versions of the programs, and
leave it to a “Web compiler” to transform these into their corresponding Web forms. This compiler would
be responsible for creating the receivers automatically. With a few further steps we could also implement
lifting and translation into the Web protocol (e.g., employing hidden fields).

The key to such a Web compiler is understanding the true nature of the receiver. At each stage, the
receiver is a procedure representing the rest of the computation. Furthermore, we have seen that once
we have converted applications use the receiver, it is useless to return values in the traditional fashion,
because all the code that would have otherwise received this return value is now encapsulated in the receiver.
Traditionally, the return value propagates using thecontrol stack, which represents the remainder of the
computation. The receiver is therefore aprocedural representation of the stack.

Programs that obey this stylized form of generating and using receivers are said to be incontinuation-
passing style, or CPS. Note thatCPSis astyle of program; many programs can be inCPS. Any program that
satisfies the programming pattern that its stack is represented procedurally can be said to be inCPS. More
to the point, any program that is not inCPScan be converted intoCPS. This is in fact precisely the essence
of the Web compiler: it is a program that converts an arbitrary source program intoCPS.1

18.1 The Transformation, Informally

The translations we have done by hand have been rather informal in nature. If we wish to automate this trans-
formation, we must adhere to more rigid rules. For instance, we have to agree upon a uniform representation
for all CPSterms, so any program processing them knows what kind of term to expect.

Consider our running example of addition. Given this term,

(+ (web-read" First number: ")
(web-read" Second number: "))

1We will often find it convenient to have a verb form to represent the act of performing this transformation. It is common,par
abus de langage, to useCPS itself as a verb (as in, “CPS the following program”). Remember, though, that in proper usage,CPS

itself names a form of program, not an algorithm or procedure used to convert programs into that form.

165

166 CHAPTER 18. CONVERSION INTO CONTINUATION-PASSING STYLE

we hand-translated it to the following:

(web-read/k" First number: "
(lambda (l-val)

(web-read/k" Second number: "
(lambda (r-val)

(+ l-val r-val)))))

This hand-translation is sufficient if this expression is the entire program. If, however, we wish to use it
in a broader context (e.g., as a sub-expression in a larger program), this does not suffice, since it does not
recognize that there may be a pending computation outside its own evaluation. How can we make this
translated expression reflect that fact? We have to introduce a procedure that consumes a receiver, and uses
that receiver to communicate the computed value:

(lambda (k)
(web-read/k" First number: "

(lambda (l-val)
(web-read/k" Second number: "

(lambda (r-val)
(k (+ l-val r-val)))))))

In particular, if a transformer were (recursively) invoked upon the sub-expression

(+ (web-read" First number: ")
(web-read" Second number: "))

it would return

(lambda (k)
(web-read/k" First number: "

(lambda (l-val)
(web-read/k" Second number: "

(lambda (r-val)
(k (+ l-val r-val)))))))

which can then be employed in the transformation of a larger program.
The following convention is therefore particularly useful: Every term, when converted toCPS, will be

represented as a procedure. This procedure will consume one argument, its receiver. The converted body
will communicate any value it computes to this receiver; if the body requires further computation, this will
be done using an augmented version of the receiver (i.e., no prior computation will be lost).

Let us similarly consider the transformation of a function application. For simplicity, we will assume
that functions have only one parameter. Recall that not only the parameter position, but even the function
position, of an application can be an arbitrary expression and must therefore be reduced to a value. For
example, this expression could be an excerpt from the core of a parser:

((extract-from-table next-char)
(get-lookahead LOOKAHEAD-CONSTANT))

18.1. THE TRANSFORMATION, INFORMALLY 167

The next character is used as an index into a table, and the procedure obtained is applied to a constant
number of lookahead characters. The transformation of the function position should be

(extract-from-table/k next-char
(lambda (f-val)

???))

Similarly, the transformation of the argument position would be

(get-lookahead/k LOOKAHEAD-CONSTANT
(lambda (a-val)

???))

Given these two values (f-val, the function, anda-val, the actual parameter), we can now perform the appli-
cation. The following looks reasonable:

(k (f-val a-val))

Unfortunately, if the function itself performs a Web interaction, then that will halt the computation, erasing
any record of returning the value tok. Instead, therefore,k must be given as an argument to the function,
which can then use it appropriately. Putting together the pieces, the transformation intoCPSof the function
application above is

(lambda (k)
(extract-from-table/k next-char

(lambda (f-val)
(get-lookahead/k LOOKAHEAD-CONSTANT

(lambda (a-val)
(f-val a-val k))))))

Reading this sequentially, it says to evaluate the function expression, and store its value inf-val; then evaluate
the argument, and store its value ina-val; and finally invoke the function on the argument. This function’s
receiver is the same as that of the function application itself.

What do we do with variables and simple constants? Recall that every term inCPSmust be a procedure
that consumes a receiver. Since there is no computation to perform, the constant is simply communicated to
the receiver. Thus, theCPSrepresentation of3 is just

(lambda (k)
(k 3))

Suppose we are given the procedure (lambda (x) x). What does it look like inCPS? Since everylambda
expression is also a constant, it is tempting to use the same rule above for these expressions also, i.e.:

(lambda (k)
(k (lambda (x) x)))

However, the transformation is more subtle than that. Observe that a function application invokes the proce-
dure on two arguments, not one, whereas the function (lambda (x) x) consumes only one. What is the second
argument? It’s thedynamicreceiver: i.e., the receiver at the time of the functionapplication(as opposed

168 CHAPTER 18. CONVERSION INTO CONTINUATION-PASSING STYLE

to its definition). This is in direct contrast to what we did with substitution caches and procedures—there
we wanted the static environment—and more in line with our treatment of the store, where we wanted the
current store at the time of procedure application, and therefore did not close over the store. Similarly, we
do not close over the receiver at the point of procedure creation. The transformed version instead reads

(lambda (k)
(k (lambda (dyn-k a-val)

((
(lambda (k)

(k x))
dyn-k)

a-val))))

where the boxed expression is the result of transforming the body, namely,x.
That leaves only one kind of expression to translate, namelyweb-read. We are in a happy position: to

translateweb-readinto web-read/kwe need access to the receiver, which is precisely what our transforma-
tion has given us access to. Therefore, an expression such as

(web-read" First number: ")

simply becomes

(lambda (k)
(web-read/k" First number: "

k))

18.2 The Transformation, Formally

We are now ready to write this transformation formally.
In general, every program transformer is a kind of compiler. The transformer of a program intoCPS

is, however, a peculiar kind of compiler: it is asource-to-sourcetransformation. That is, the transformer
consumes a program in a source language and generates a new program in the same language (assuming the
language has closures and some other properties copacetic to the use ofCPS).

Scheme provides a particularly convenient mechanism, called amacro, for writing source-to-source
transformers. In this section, we present the transformer intoCPSusing macros but without much elaboration
of the macro mechanism. We will discuss macros in considerably more detail in Section 35.

Macros are triggered by a keyword that signals the transformation. We will use the keywordcps, so that
for every term of the form (cpse), the expressione will be transformed intoCPS. Every macro definition
consists of a preamble naming the new keyword being defined and a list of rules dictating how to trans-
form source expressions. The rules employ pattern-matching to extract portions of the input expression for
insertion into the output.

Thecpsmacro’s header has the following form:

(define-syntax cps
(syntax-rules(+ lambda web-read)

18.2. THE TRANSFORMATION, FORMALLY 169

This says we are defining a macro for the keywordcps, and that this macro will treat+, lambda andweb-
read specially: they must match exactly against an input for the corresponding rule to apply. The macro’s
rules are as follows. Note that these are simply the generalization of the instances we studied above.

First, the rule for addition:

[(cps(+ e1 e2))
(lambda (k)

((cpse1) (lambda (l-val)
((cpse2) (lambda (r-val)

(k (+ l-val r-val)))))))]

This says that whenever the term has the form

(cps(+ e1 e2))

where+ is expected to match precisely, the sub-expressions (which can be arbitrary code) are namede1and
e2respectively. The corresponding transformed term has the form

(lambda (k)
((cpse1) (lambda (l-val)

((cpse2) (lambda (r-val)
(k (+ l-val r-val)))))))

wheree1ande2are inserted into the transformed term. Since they are within a (cps·) expression, they will
be transformed intoCPSrecursively by the same macro.

The transformer for a function application is as follows:

[(cps(f a))
(lambda (k)

((cpsf) (lambda (f-val)
((cpsa) (lambda (a-val)

(f-val k a-val))))))]

following the pattern: convert the function expression and apply it to a receiver expecting the function value;
do likewise for the argument; and when both values are handy, apply the function to the current receiver and
the argument value.

The corresponding transformation for a procedure is therefore

[(cps(lambda (a) body))
(lambda (k)

(k (lambda (dyn-k a)
(((cpsbody) dyn-k) a))))]

Recall that every user procedure must now consume the dynamic receiver in addition to its formal parameter.
As we have discussed, the transformation ofweb-read is especially simple:

[(cps(web-readprompt))
(lambda (k)

(web-read/k prompt k))]

170 CHAPTER 18. CONVERSION INTO CONTINUATION-PASSING STYLE

Finally, if all other terms fail to match, we assume that the source program is a simple value (namely an
identifier or a non-procedural constant such as a string or number). The corresponding term inCPSconsumes
a receiver (to maintain the consistency of the interface) and promptly sends the value to the receiver:

[(cpsv)
(lambda (k) (k v))]

Figure 18.1 presents the entireCPSmacro.

Example Given these rules, our transformer will convert

(+ (web-read" First number: ")
(web-read" Second number: "))

into

(lambda (k1)
((lambda (k2)

(web-read/k" First number: " k2))
(lambda (l-val)

((lambda (k3)
(web-read/k" Second number: " k3))

(lambda (r-val)
(k1 (+ l-val r-val)))))))

This may look rather more complicated than we are used to. However, we merely need to perform the inner
function applications, substituting the known receivers fork2andk3. Doing this yields:

(lambda (k1)
(web-read/k" First number: "

(lambda (l-val)
(web-read/k" Second number: "

(lambda (r-val)
(k1 (+ l-val r-val)))))))

which is exactly what we expect!

The Fischer CPS Transformation

TheCPStransformer we have studied here is one of the very oldest, due to Michael Fischer. In the
three decades since Fischer defined this transformation, there has been considerable research into
building a betterCPS transformation. Why? This version, while easy to understand, introduces a
considerable amount of overhead: look at all the functions in the output that weren’t in the source
program! Compare this against the hand-translations.
Building a better transformer is not an idle pursuit. TheCPS form of a program is sometimes
read by computers, but sometimes by humans, too. Both benefit from getting better code from the
transformer. Therefore, the Fischer transformation is primarily of historical interest. We present it
because it’s easy to understand, but if we were to implement the transformation for practical use,
we would use one of its (rather more sophisticated) modern variants.

18.2. THE TRANSFORMATION, FORMALLY 171

Exercise 18.2.1Suppose, instead, theCPSrule for a procedure were

[(cps(lambda (a) body))
(lambda (k)

(k (lambda (ignore-k a)
(((cpsbody) k) a))))]

i.e., the transformed procedure ignored the dynamic receiver and used the static one instead. What impact
would this have on program behavior?

172 CHAPTER 18. CONVERSION INTO CONTINUATION-PASSING STYLE

(define-syntax define-cps
(syntax-rules()

[(define-cps(f arg) body)
(define-cpsf (lambda (arg) body))]

[(define-cpsv val)
(definev ((cpsval) (lambda (x) x)))]))

(define-syntax cps
(syntax-rules(+ lambda web-read)

[(cps(+ e1 e2))
(lambda (k)

((cpse1) (lambda (l-val)
((cpse2) (lambda (r-val)

(k (+ l-val r-val)))))))]
[(cps(lambda (a) body))
(lambda (k)

(k (lambda (dyn-k a)
(((cpsbody) dyn-k) a))))]

[(cps(web-readprompt))
(lambda (k)

(web-read/k prompt k))]
[(cps(f a))
(lambda (k)

((cpsf) (lambda (f-val)
((cpsa) (lambda (a-val)

(f-val k a-val))))))]
[(cpsv)
(lambda (k) (k v))]))

(define-syntax run
(syntax-rules()

[(run e) ((cpse)
(lambda (x)

(error " terminating with value" x)))]))

Figure 18.1: Implementation ofCPSConverter

Chapter 19

Programming with Continuations

For this material, please switch to thePLAI - Pretty Big language level.

In Section 18 we saw how conversion toCPSrestores the Web programming interface we desire: pro-
grammers can useweb-readand not have to “invert” the structure of the program. While in principle this
accomplishes the task, in practice conversion toCPShas several disadvantages:

1. It requires access to the source of the entire program. If a procedure is defined in a library for which
we don’t have access to the source, or is perhaps written in a different language (asmapoften is), then
the CPS translator will either fail to run or will produce potentially erroneous output (i.e., code that
does not properly restore the state of the computation).

2. By replacing the machine’s stack with an explicit representation in the form of receivers, it inhibits
optimizations built into compilers and microprocessor architectures.

3. As we will see in Section 21.2, executing a program inCPS also assumes that the run-time system
will not needlessly create stack frames (since the stack is entirely represented by the receiver). Since
many languages (such as C and Java) do anyway, the program consumes memory unnecessarily. In
an extreme case, a Java or C program that might have executed without exhausting memory will do
after conversion intoCPS.

The first of these problems is particularly compelling, since it affects not only performance but even cor-
rectness. We would benefit from an operation that automatically constructs the receiver at any point during
the program’s execution, instead of expecting it to have already been created through a static compilation
process.

Some programming languages, notably Scheme, have such an operation. This operation creates a rep-
resentation of the “rest of the computation” (which is what the receiver represented) as a procedure of one
argument. Giving that procedure a value causes the remaining computation to resume with that value. This
procedure is called acontinuation. This explains whereCPSobtains its name, but note that the program does
not need to be transformed a priori; the continuation is createdautomatically.

Adding continuations to a language makes it easy to create a better Web programming protocol, as we
shall see. But just as laziness—which was already present in the shell but was essentially an extra-lingual

173

174 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

feature (since programmers could not explicitly control it)—, once exposed as a feature in a programming
language, gave programmers immense power in numerous contexts, so do continuations. We will explore
this power in greater detail.

19.1 Capturing Continuations

In Scheme, we create a value representing the continuation using one of two related constructs. The tradi-
tional form is calledcall/cc, short for “call with current continuation”.call/cc consumes a procedure as an
argument, and invokes this procedure with a continuation. That is, uses ofcall/cc typically look like

(call/cc
(lambda (k)
· · · k · · ·)) ;; k is the continuation

Because the extralambda is extremely tiresome, however, Scheme provides a nicer interface to capturing
the current continuation: you may insteadequivalentlywrite

(let/cck
· · · k · · ·)) ;; k is bound to the continuation

Note thatlet/cc is abindingconstruct: it introduces a new scope, binding the named identifier (k, above) in
that context. For the rest of this material, we’ll uselet/cc rather thancall/cc.1

19.2 Escapers

Let’s write some programs using continuations. What is the value of this program?

(let/cck
(k 3))

We must first determine the continuation bound tok . This is the same procedure as the value of the receiver
in CPS. Since in this case, there is no computation waiting to be done outside thelet/cc expression, the
receiver would be the initial receiver, namely the identity function. Therefore, this receiver is

(lambda (•)
•)

Applying this to3 produces the answer3.
Consider this program:

(+ 1
(let/cck

(k 3)))

1So why does Scheme offercall/cc, ghastly as it looks? Historically, the original standards writers were loath to add new binding
forms, and the use oflambda meant they didn’t need to create one. Also,call/cc lets us create some incredibly clever programming
puzzles that we can’t write quite as nicely withlet/ccalone! Ask us for some.

19.3. EXCEPTIONS 175

What is the continuation this time? It’s

(lambda (•)
(+ 1 •))

(all the code “outside the parens”). This procedure, when invoked, yields the value4. Because the contin-
uation isthe rest of the computation, we want to halt with the value4. But this looks confusing, because
substitution gives

(+ 1
(k 3)) ;; wherek is bound to (lambda (•) (+ 1 •))

= (+ 1
((lambda (•)

(+ 1 •))
3))

= (+ 1
(+ 1 3))

which performs the addition twice, producing the answer5. The problem is that we’re effectively applying
the continuationtwice, whereas computation should halt after it has been applied once. We will use a special
notation to reflect this:lambda↑ will represent a procedure that, when its body finishes computing, halts
the entire computation. We’ll call theseescaperprocedures, for obvious reasons. That is, the continuation
is really

(lambda↑ (•)
(+ 1 •))

so the expression

(+ 1
((lambda↑ (•)

(+ 1 •))
3))

evaluates to4, with the outermost addition ignored (because we invoked an escaper).

19.3 Exceptions

Let’s consider a similar, but slightly more involved, example. Suppose we are deep in the midst of a com-
putation when we realize we are about to divide by zero. At that point, we realize that we want the value of
the entire expression to be one. We can use continuations to represent this pattern of code:

(define(f n)
(+ 10

(∗ 5
(let/cck

(/ 1 n)))))
(+ 3 (f 0))

176 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

The continuation bound tok is

(lambda↑ (•)
(+ 3

(+ 10
(∗ 5
•))))

but oops, we’re about to divide by zero! Instead, we want the entire division expression to evaluate to one.
Here’s how we can do it:

(define(f n)
(+ 10

(∗ 5
(let/cck

(/ 1 (if (zero? n)
(k 1)
n))))))

so that• in the continuation is substituted with1, we bypass the division entirely, and the program can
continue to evaluate.

Have you seen such a pattern of programming before? But of course:k here is acting as anexception
handler, and theinvocationof k is raising the exception. A better name fork might beesc:

(define(f n)
(+ 10

(∗ 5
(let/ccesc

(/ 1 (if (zero? n)
(esc1)
n))))))

which makes pretty clear what’s happening:when you invoke the continuation, it’s as if the entirelet/cc
expression that bindsescshould be cut out of the program and replaced with the value passed toesc, i.e., its
as if the actual code forf is really this:

(define(f n)
(+ 10

(∗ 5
1)))

In general, this “cut-and-paste” semantics for continuations is the simplest way (in conjunction with escaper
procedures) of understanding a program that uses continuations.

There was, incidentally, something sneaky about the program above: it featured an expression in the
body of alet/cc that didnot invoke the continuation. That is, if you can be sure the user off will never pass
an argument of0, it’s as if the body of the procedure is really

(define(f n)

19.4. WEB PROGRAMMING 177

(+ 10
(∗ 5

(let/ccesc
(/ 1 n)))))

but we haven’t talked about what happens in programs that don’t invoke the continuation. In fact, that’s
quite easy: the value of the entirelet/cc expression is exactly that of the value of its body, just as when you
don’t actually raise an exception.

19.4 Web Programming

Now that we’re getting a handle on continuations, it’s easy to see how they apply to the Web. We no longer
need the procedureweb-read/k; now,web-readcan be implemented directly to do the same thing thatweb-
read/kwas expected to do.web-read captures the current continuation, which corresponds to the second
argument supplied toweb-read/k(except the continuation is now captured automatically, instead of having
to be supplied as an explicit second argument).

The rest of the implementation is just as before: it stores the continuation in a fresh hash table entry,
and generates aURL containing that hash table entry’s key. The launcher extracts the continuation from the
hash table and applies it to the user’s input. As a result, all the programs we have written usingweb-read
are now directly executable, without the need for theCPStransformation.

19.5 Producers and Consumers

A number of programs follow aproducer-consumermetaphor: one process generates (possibly an infinite
number of) values, while another consumes them as it needs new ones. We saw several examples of this
form in Haskell, for instance. Many client-server programs are like this. Web programs have this form (we,
the user, are the supplier of inputs—and on some Web sites, the number really does seem quite close to
infinite . . .). I/O, in general, works this way. So it’s worth understanding these processes at a deeper level.

To avoid wrangling with the complexities of theseAPIs, we’ll reduce this to a simpler problem. We’d
like to define a producer of numbers that takes one argument,send, which masks the details of theAPI, and
sends a sequence of numbers on demand:

(define(number-producer send)
(begin

(send1)
(send2)
(send3)))

That is, when we first invokenumber-producer, it invokessendwith the value1—and halts. When we
invoke it again, it sends2. The third time we invoke it, it sends the value3. (For now, let’s not worry about
what happens if we invoke it additional times.)

What do we supply as a parameter to elicit this behavior? Clearly, we can’t simply supply an argument
such as (lambda (x) x). This would cause all threesendoperations to happen in succession, returning the

178 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

value of the third one, namely3. Not only is this the wrong value on the first invocation, it also produces the
same answer no matter how many times we invokenumber-producer—no good.

In fact, if we want to somehow suspend the computation, it’s clear we need one of these exception-like
operations so that the computation halts prematurely. So a simple thing to try would be this:

(let/cck (number-producer k))

What does this do? The continuation bound tok is

(lambda↑ (•) •)

Substituting it in the body results in the following program:

(begin
((lambda↑ (•) •)
1)

((lambda↑ (•) •)
2)

((lambda↑ (•) •)
3))

(all we’ve done is substitutesendthree times). When we evaluate the first escaper, the entire computation
reduces to1—and computation halts! In other words, we see the following interaction:

> (let/cc k (number-producer k))
1

This is great—we’ve managed to get the program to suspend after the firstsend! So let’s try doing this a
few more times:

> (let/cc k (number-producer k))
1
> (let/cc k (number-producer k))
1
> (let/cc k (number-producer k))
1

Hmm—that should dampen our euphoria a little.
What’s the problem? We really wantnumber-producerto “remember” what value it last sent, so it

can send us the next value when we invoke it again. Well, actually, that’s a slightly lame way of thinking
about it. If producers only generate sequences of natural numbers, this would suffice, but obviously most
interesting computations do a lot more than that: they generate names, addresses, credit card numbers, even
other procedures . . . What wereally mean is that we want to rememberwhat we last did, and then resume
from where we left offin the computation. That’s a much more general way of thinking about this, because
it’s independent of the kind of values we’re generating! (Indeed, the whole point of the producer may not
be to compute values so much as to perform actions—which this reformulation captures just as gracefully.)
But to resume, we must first capture a snapshot of our computation before we sent a value. That sounds
familiar . . .

19.5. PRODUCERS AND CONSUMERS 179

Going back tonumber-producer, let’s think about what the continuation is at the point of invokingsend
the first time. The continuation is

(lambda↑ (•)
(begin
•
(send2)
(send3)))

(with sendsubstituted appropriately). Well, this looks promising! If we could somehow hang on to this
continuation, we could use it to resume the producer by sending2, and so forth.

To hang on to the computation, we need to store it somewhere (say in a box), and invoke it when we run
the procedure the next time. What is the initial value to place in the box? Well, initially we don’t know what
the continuation is going to be, and anyway we don’t need to worry because we know how to get a value out
the first time (we just saw how, above). So we’ll make the box initially contain a flag value, such asfalse.
Examining what’s in the box will let us decide whether we’re coming through the first time or not. If we
are, we proceed as before, otherwise we need to capture continuations and what-not.

Based on this, we can already tell that the procedure is going to look roughly like this:

(definenumber-producer
(local ([defineresume(boxfalse)])

(lambda (send)
(if (unbox resume)

;; then
there’s a continuation present—do something!

;; else
(begin

(send1)
(send2)
(send3)))))))

where the box bound toresumestores the continuation. Note thatresumeis outside thelambda, but in its
scope, so the identifier is defined only once, and all invocations of the procedure can share it.

If (unbox resume) doesn’t evaluate tofalse,2 that means the box contains a continuation. What can we
do with continuations? Well, really only one thing: invoke them. So we must have something like this if the
test succeeds:

((unbox resume) · · ·)

But what is that continuation? It’s one that goes into the midst of thebegin (recall we wrote it down above).
Since we really don’t care about the value, we may as well pass the continuation some kind of dummy
value. Better to pass something like ’dummy, which can’t be confused for any real value produced by this
computation (such as a number). So the procedure now looks like

(definenumber-producer

2In Scheme, onlyfalse fails a conditional test; all other values succeed.

180 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

(local ([defineresume(boxfalse)])
(lambda (send)

(if (unbox resume)
((unbox resume) ’dummy)
(begin

(send1)
(send2)
(send3))))))

Of course, we haven’t actually done any of the hard work yet. Recall that we said we want to capture
the continuation ofsend, but becausesendis given as a parameter by the user, we can’t be sure it’ll do the
right thing. Instead, we’ll locally define a version ofsendthat does the right thing. That is, we’ll rename the
sendgiven by the user toreal-send, and define asendof our own that invokesreal-send.

What does oursendneed to do? Well, obviously it needs to capture its continuation. Thus:

(definenumber-producer
(local ([defineresume(boxfalse)])

(lambda (real-send)
(local ([definesend(lambda (value-to-send)

(let/cck
· · ·))])

(if (unbox resume)
((unbox resume) ’dummy)
(begin

(send1)
(send2)
(send3)))))))

What do we do withk? It’s the continuation that we want to store inresume:

(set-box! resume k)

But we also want to pass a value off toreal-send:

(real-send value-to-send)

So we just want to do this in sequence!

(begin
(set-box! resume k)
(real-send value-to-send))

When the client next invokesnumber-producer, the continuation stored in the box bound toresumeis that
of invoking (our locally defined)sendwithin the body . . . which is exactly where we want to resume com-
putation! Here’s our entire procedure:

(definenumber-producer
(local ([defineresume(boxfalse)])

19.5. PRODUCERS AND CONSUMERS 181

(lambda (real-send)
(local ([definesend(lambda (value-to-send)

(let/cck
(begin

(set-box! resume k)
(real-send value-to-send))))])

(if (unbox resume)
((unbox resume) ’dummy)
(begin

(send1)
(send2)
(send3)))))))

Here’s the interaction we wanted:3

> (let/cc k (number-producer k))
1
> (let/cc k (number-producer k))
2
> (let/cc k (number-producer k))
3

It’s a bit unwieldy to keep writing theselet/ccs, so we can make our lives easier as follows:

(define(get producer)
(let/cck (producer k)))

(we could equivalently just define this as (defineget call/cc)) so that

> (get number-producer)
1
> (get number-producer)
2
> (get number-producer)
3

Exercise 19.5.1How would you define the same operators in Haskell?

Exercise 19.5.2Before you read further: do you see the subtle bug lurking in the definitions above?
Hint : We would expect the three invocations of (get number-producer) above, added together, to yield6.

3It’s critical that you work through the actual continuations by hand.

182 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

Continuations and “Goto” Statements

What we’re doing here has already gone far beyond the simple exception pattern we saw earlier.
There, we used continuations only to ignore partial computations. Now we’re doing something
much richer. We’re first executing part of a computation in a producer. At some point, we’re
binding a continuation and storing it in a persistent data structure. Then we switch to performing
some completely different computation (in this case, the top-level requests for the next number). At
this point, the partial computation of the producer has seemingly gone away, because we invoked
an escaper to return to the top-level. But by accessing the continuation in the data structure, we are
able toresume a prior computation: that is, we can not only jump “out”, as in exceptions, but we
can even jump back “in”! We do “jump back in” in the Web computations, but that’s a much tamer
form of resumption. What we’re doing here is resuming between two separate computations!
All this should raise the worrying specter of “goto” statements. Let’s examine that comparison a
little.
Goto statements can usually jump to an arbitrary line that may not even have its variables initialized,
and have other nonsensical state. In contrast, a continuation only allows you to resume a compu-
tational state you have visited before, so if you leave things in a coherent state, they should be
coherent when you resume. By being more controlled in that sense, continuations avoid the worst
perils of gotos.
On the other hand, continuations are far more powerful than typical goto statements. Usually, a goto
statement can only transfer control to a lexically proximate statement (due to how compilers work).
In contrast, a computation can represent any arbitrary prior computation and, irrespective of lexical
proximity, the programmer can resurrect this computation.
In short, continuations are more structured, yet much more powerful, than goto statements. The
warnings about unfettered use of goto statements apply to continuations also. One redeeming el-
ement is that continuations can be sufficiently tricky for novices that most novices wouldn’t dare
use them (at least not for long). And as are seeing, they do provide incredibly expressive power to
skilled programmers.

19.6 A Better Producer

The producer shown above is pretty neat—indeed, we’d like to be able to use this in more complex compu-
tations. For instance, we’d like to initialize the producer, then write

(+ (get number-producer)
(get number-producer)
(get number-producer))

Evaluating this in DrScheme produces. . .an infinite loop!
What went wrong here? It’s revealing to use this version of the program instead:

(+ (let/cck (number-producer k))
(let/cck (number-producer k))
(let/cck (number-producer k)))

19.6. A BETTER PRODUCER 183

After a while, click on Break in DrScheme. If you try it a few times, sooner or later you’ll find that the break
happens at thesecondlet/cc—but never the third! In fact, if you ran this program instead:

(+ (let/cck (number-producer k))
(begin

(printf " got here!˜n")
(let/cck (number-producer k)))

(begin
(printf " here too!˜n")
(let/cck (number-producer k))))

you’d find severalgot heres in the in the Interactions window, but nohere toos. That’s revealing!
What’s going on? Let’s analyze this carefully. The first continuation bound toreal-sendin number-

produceris

(lambda↑ (•)
(+ •

(let/cck (number-producer k))
(let/cck (number-producer k))))

Since we are invokingnumber-producerfor the first time, in its body we eventually invokesendon 1.
What’s the computation that we capture and store inresume? Let’s compute this step-by-step. The top-level
computation is

(+ (let/cck (number-producer k))
(let/cck (number-producer k))
(let/cck (number-producer k)))

Substituting the body ofnumber-producerin place of the first invocation, and evaluating the conditional, we
get

(+ (begin
(send1)
(send2)
(send3))

(let/cck (number-producer k))
(let/cck (number-producer k)))

We’re playing fast-and-loose with scope—technically, we should write the entirelocal that bindssendbe-
tween the firstlet/cc andbegin, as well as all the values bound in the closure, but let’s be a bit sloppy for
the sake of readability. Just remember whatreal-sendis bound to—it’ll be relevant in a little while!

Whensendnow captures its continuation, what it really captures is

(lambda↑ (•)
(+ (begin

•
(send2)
(send3))

184 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

(let/cck (number-producer k))
(let/cck (number-producer k))))

sendstores this continuation in the box, then supplies1 to the continuation passed asreal-send. This reduces
the entire computation to

(+ 1
(let/cck (number-producer k))
(let/cck (number-producer k)))

The second continuation therefore becomes

(lambda↑ (•)
(+ 1
•
(let/cck (number-producer k))))

which becomes the new value ofreal-send. The second time intonumber-producer, however, we do have a
value in the box bound toresume, so we have to extract and invoke it. We do, resulting in

((lambda↑ (•)
(+ (begin

•
(send2)
(send3))

(let/cck (number-producer k))
(let/cck (number-producer k))))

’dummy)

which makes

(+ (begin
’dummy
(send2)
(send3))

(let/cck (number-producer k))
(let/cck (number-producer k))))

the entire computation (because we invoked alambda↑). This looks like it should work fine! When we
invokesendon2, we capture the second computation, and march down the line.

Unfortunately, a very subtle bug is lurking here. The problem is that thesendcaptured in the continuation
is closed over theold value of real-send, because thesendthat the continuation closes over is from the
previous invocation ofnumber-producer! Executing thebegin insidesendfirst stores the new continuation
in the box bound toresume:

(lambda↑ (•)
(+ (begin

•

19.6. A BETTER PRODUCER 185

(send3))
(let/cck (number-producer k))
(let/cck (number-producer k))))

but then executes the oldreal-send:

((lambda↑ (•)
(+ •

(let/cck (number-producer k))
(let/cck (number-producer k))))

2)

In other words, the entire computation now becomes

(+ 2
(let/cck (number-producer k))
(let/cck (number-producer k)))

which is basically the same thing we had before! (We’ve got2 instead of1, but the important part is what
follows it.) As you can see, we’re now stuck in a vicious cycle. Now we see why it’s thesecondsub-
expression in the sum where the user break occurs—it’s the one that keeps happening over and over (the
first is over quickly, while the computation never gets to the third!).

This analysis gives us a good idea of what’s going wrong. Even though we’re passing in a fresh, correct
value for real-send, the closure still holds the old and, by now, wrong value. We need the new value to
somehow replace the value in the old closure.

This sounds like the task of an assignment statement, and that’s certainly an easy way to accomplish
this. What we want to mutate is the value bound toreal-send. So we’ll first put it in a box and refer to the
value in that box:

(definenumber-producer
(local ([defineresume(boxfalse)])

(lambda (real-send)
(local ([definesend-to(box real-send)]

[definesend(lambda (value-to-send)
(let/cck

(begin
(set-box! resume k)
((unbox send-to) value-to-send))))])

(if (unbox resume)
((unbox resume) ’dummy)
(begin

(send1)
(send2)
(send3)))))))

So far, this hasn’t actually fixed anything. However, we now have a box whose contents we can replace. We
should replace it with the new value forreal-send. Where is that new value available? It’s available at the

186 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

time of invoking the continuation—that is, we could pass that new value along instead of passing ’dummy.
Where does this value go? Using our “replacing text” semantics, it replaces the entire (let/cc · · ·) expression
in the definition ofsend. Therefore, that expression evaluates to the new value to be put into the box. All
we need to do is actually update the box:

(definenumber-producer
(local ([defineresume(boxfalse)])

(lambda (real-send)
(local ([definesend-to(box real-send)]

[definesend(lambda (value-to-send)
(set-box! send-to

(let/cck
(begin

(set-box! resume k)
((unbox send-to) value-to-send)))))])

(if (unbox resume)
((unbox resume) real-send)
(begin

(send1)
(send2)
(send3)))))))

This time, even thoughsendinvokes the old closure, the box in that closure’s environment now has the
continuation for the new resumption point. Therefore,

> (+ (get number-producer)
(get number-producer)
(get number-producer))

6

There’s just one problem left with this code: it deeply intertwines two very separate concerns, one of
which is sending out the actual values (which is specific to whatever domain we are computing in) and the
other of which is erecting and managing the continuation scaffold. It would be nice to separate these two.

This is actually a lot easier than it looks. Simply factor out the body into a separate procedure:

(define(number-producer-body send)
(begin

(send1)
(send2)
(send3)))

(This, you recall, is what we set out to write in the first place!) Everything else remains in a general
procedure that simply consumes (what used to be) “the body”:

(define(general-producer body)
(local ([defineresume(box#f)])

19.6. A BETTER PRODUCER 187

(lambda (real-send)
(local ([definesend-to(box real-send)]

[definesend(lambda (value-to-send)
(set-box! send-to

(let/cck
(begin

(set-box! resume k)
((unbox send-to) value-to-send)))))])

(if (unbox resume)
((unbox resume) real-send)
(body send))))))

And that’s it! Introducing this separation makes it easy to write a host of other value generators. They
can even generate a potentially infinite number of values! For instance, here’s one that generates the odd
positive intgers:

(define(odds-producer-body send)
(local ([define(loop n)

(begin
(send n)
(loop (+ n 2)))])

(loop1)))

We can make an actual generator out of this as follows:

(defineodds-producer(general-producer odds-producer-body))

and then invoke it in a number of different ways:

> (get odds-producer)
1
> (get odds-producer)
3
> (get odds-producer)
5
> (get odds-producer)
7
> (get odds-producer)
9

or (assuming an initialized program)

> (+ (get odds-producer)
(get odds-producer)
(get odds-producer)
(get odds-producer)
(get odds-producer))

25

188 CHAPTER 19. PROGRAMMING WITH CONTINUATIONS

19.7 Why Continuations Matter

Continuations are valuable because they enable programmers to create new control operators. That is, if a
language did not already have (say) a simple producer-consumer construct, continuations make it possible
for the programmer to build them manually and concisely. More importantly, these additions can beencap-
sulatedin a library, so the rest of the program does not need to be aware of them and can use them as if they
were built into the language. If the language did not offer continuations, some of these operations would
require a whole-program conversion intoCPS. This would not only place an onerous burden on the users of
these operations, in some cases this may not even be possible (for instance, when some of the source is not
available). This is, of course, the same argument we made for not wanting to rely onCPSfor the Web, but
the other examples illustrate that this argument applies in several other contexts as well.

Chapter 20

Implementing Continuations

Now that we’ve seen how continuations work, let’s study how to implement them in an interpreter.
The first thing we’ll do is change our representation of closures. Instead of using a structure to hold the

pieces, we’ll use Scheme procedures instead. This will make the rest of this implementation a lot easier.1

First, we modify the datatype of values. Only two rules in the interpreter need to change: that which
creates procedure values and those that consume them. These are thefun andappcases, respectively. Both
rules are very straightforward: one creates a closure and wraps it in an instance ofclosureV, while the other
extracts closure in theclosureVstructure and applies it to the argument. The code is in Figure 7.1. Note that
this change is so easy only because functions in the interpreted language closely match those of Scheme:
both are eager, and both obey static scope. (As we’ve discussed before, this is our the usual benefit of using
meta interpreters that match the interpreted language.)

20.1 Representing Continuations

To implement continuations in the interpreted language, we must first make them explicit in the interpreter.
We do that, as you may have guessed, by converting the interpreter intoCPS. What follows, therefore, is
a blow-by-blow account of converting the interpreter. We suggest that you, dear reader, first conduct this
experiment on your own, then read the discussion to confirm that you converted it properly. Look out: there
is one subtlety!

We will begin by making continuations explicit in the interpreter. This is subtly different from adding
continuations to the language being interpreted—we’ll do that in the next section. For now, we just want to
determine what the continuation is at each point. To do this, we’ll need to transform the interpreter.

We’ll assume that the interpreter takes an extra argumentk, a receiver. The receiver expects the answer
from each expression’s interpretation. Thus, if the interpreter already has a value handy, it supplies that value
to the receiver, otherwise it passes a (possibly augmented) receiver along to eventually receive the value of
that expression. The cardinal rule is this:We never want to use an invocation of interp as a sub-expression
of some bigger expression. Instead, we wantinterp to communicate its answer by passing it to the given

1Yes, we’re switching to a more meta interpreter, but this is acceptable for two reasons: (1) by now, we understand procedures
extremely well, and (2) the purpose of this lecture is to implement continuations, and so long as we accomplish this without using
Scheme continuations, we won’t have cheated.

189

190 CHAPTER 20. IMPLEMENTING CONTINUATIONS

k. (Think of the interpreter as executing remotely over the Web. That is, each time we invokeinterp, the
computation is going to halt entirely; only the receiver gets stored on the server. If we fail to bundle any
pending computation into the receiver, it’ll be lost forever.)

Let’s consider the simplest case, namely numbers. A number needs no further evaluation: it is already a
value. Therefore, we can feed the number to the awaiting receiver.

[num (n) (k (numV n))]

Identifiers and closures, already being values, look equally easy:

[id (v) (k (lookup v sc))]
[fun (param body)

(k (closureV(lambda (arg-val)
(interp body(aSub param arg-val sc)))))]

Now let’s tackle addition. The rule currently looks like this:

[add (l r) (numV+ (interp l sc) (interp r sc))]

The naive solution might be to transform it as follows:

[add (l r) (k (numV+ (interp l sc) (interp r sc)))]

but do we have a value immediately handy to pass off tok? We will after interpreting both sub-expressions
and adding their result, but we don’t just yet. Recall that we can’t invokeinterp in the midst of some
larger computation. Therefore, we need to bundle that remaining computation into a receiver. What is that
remaining computation?

We can calculate the remaining computation as follows. In the naive version, what’s the first thing the
interpreter needs to do? It must evaluate the left sub-expression.2 So we write that first, and move all the
remaining computation into the receiver of that invocation of the interpreter:

[add (l r) (interp l sc
(lambda (lv)

(k (num+ lv (interp r sc)))))]

In other words, in the new receiver, we record the computation waiting to complete after reducing the
left sub-expression to a value. However, this receiver is not quite right either. It has two problems: the
invocation of interp on r has the wrong arity (it supplies only two arguments, while the interpreter now
consumes three), and we still have an invocation of the interpreter in a sub-expression position. We can
eliminate both problems by performing the same transformation again:

[add (l r) (interp l sc
(lambda (lv)

(interp r sc
(lambda (rv)

(k (num+ lv rv))))))]

2Notice that once again, we’ve been forced to choose an order of evaluation, just as we had to do to implement state.

20.1. REPRESENTING CONTINUATIONS 191

That is, the first thing to do in the receiver of the value of the left sub-expression is to interpret the right
sub-expression; the first thing to do with its value is to add them, and so on.

Can we stop transforming now? It is true thatinterp is no longer in a sub-expression—it’s always the
first thing that happens in a receiver. What about the invocation ofnumV+, though? Do we have to transform
it the same way?

It depends. When we perform this transformation, we have to decide which procedures areprimitive
and which ones are not. The interpreter clearly isn’t. Usually, we treat simple, built-in procedures such
as arithmetic operators as primitive, so that’s what we’ll do here (sincenum+ is just a wrapper around
addition).3 Had we chosen to transform its invocation also, we’d have to add another argument to it, and so
on. As an exercise, you should consider how the resulting code would look.

Now let’s tackle the conditional. Clearly the interpretation of the test expression takes place in a sub-
expression position, so we’ll need to lift it out. An initial transformation would yield this:

[if0 (test pass fail)
(interp test sc

(lambda (tv)
(if (num-zero? tv)

(interp pass sc???)

(interp fail sc ???))))]

Do we need to transform the subsequent invocations ofinterp? No we don’t! Once we perform the test, we
interpret one branch or the other, but no code in this rule is awaiting the result of interpretation to perform
any further computation—the result of the rule is the same as the result of interpreting the chosen branch.

Okay, so what receivers do they use? The computation they should invoke is the same computation that
was awaiting the result of evaluating the conditional. The receiverk represents exactly this computation.
Therefore, we can replace both sets of ellipses withk:

[if0 (test pass fail)
(interp test sc

(lambda (tv)
(if (num-zero? tv)

(interp pass sc k)
(interp fail sc k))))]

That leaves only the rule for application. The first few lines of the transformed version will look familiar,
since we applied the same transformation in the case of addition:

[app(fun-expr arg-expr)
(interp fun-expr sc

(lambda (fun-val)
(interp arg-expr sc

(lambda (arg-val)

3Using our Web analogy, the question is which primitives might arguably invoke a Web interaction. Ones that use the Web must
be transformed and be given receivers to stash on the server, while ones that don’t can remain unmolested. Arithmetic, clearly,
computes entirely locally.

192 CHAPTER 20. IMPLEMENTING CONTINUATIONS

???))))]

All we have to determine is what to write in place of the box.
What was in place of the box was ((closureV-p fun-val) arg-val). Is this still valid? Well, the reason we

write interpreters is so that we can experiment! How about we just try it on a few expressions and see what
happens?

> (interp-test ’5 5)
#t
> (interp-test ’{+ 5 5} 10)
#t
> (interp-test ’{with {x {+ 5 5}} {+ x x}} 20)
procedure interp: expects 3 arguments, given 2 ...

Oops! DrScheme highlights the interpretation of the body in the rule forfun.
Well, of course! The interpreter expects three arguments, and we’re supplying it only two. What should

the third argument be? It needs to be a receiver, but which one? In fact, it has to be whatever receiver is
active at the time of the procedure invocation. This is eerily reminiscent of the store: while the environment
stays static, we have to pass this extra value that reflects the current state of the dynamic computation. That
is, we really want the rule for functions to read

[fun (param body)
(k (closureV(lambda (arg-val dyn-k)

(interp body(aSub param arg-val sc) dyn-k))))]

(What happens if we usek instead ofdyn-k in the invocation of the interpreter? Try it and find out!)
Correspondingly, application becomes

[app(fun-expr arg-expr)
(interp fun-expr sc

(lambda (fun-val)
(interp arg-expr sc

(lambda (arg-val)
((closureV-p fun-val)
arg-val k)))))]

The core of the interpreter is in Figure 20.1.
What, incidentally, is the type of the interpreter? Obviously it now has one extra argument. More

interestingly, what is its return type? It used to return values, but now. . . it doesn’t return! That’s right:
whenever the interpreter has a value, it passes the value off to a receiver.

20.2 Adding Continuations to the Language

At this point, we have most of the machinery we need to add continuations explicitly as values in the
language. The receivers we have been implementing are quite similar to the actual continuations we need.
They appear to differ in two ways:

20.2. ADDING CONTINUATIONS TO THE LANGUAGE 193

1. They capture what’s left to be done in the interpreter, not in the user’s program.

2. They are regular Scheme procedures, notlambda↑ procedures.

However,

1. They capture what’s left to be done in the interpreter, not in the user’s program.Because the interpreter
closes over the expressions of the user’s program, invocations of the interpreter simulate the execution
of the user’s program. Therefore, the receivers effectively do capture the continuations of the user’s
program.

2. They are regular Scheme procedures, notlambda↑ procedures.We have taken care of this through the
judicious use of a programming pattern. Recall our discussion of the type of the revised interpreter?
The interpreter never returns—thereby effectively making the receiver behave like an escaper!

In other words, we’ve very carefully set up the interpreter to truly represent the continuations, making a
continuation-capturing primitive very easy to implement.

Adding Continuations to Languages

Different languages take different approaches to adding continuations. Scheme’s is the most spar-
tan. It add just one primitive procedure,call/cc. The resulting continuations can be treated as if
they were procedures, so that procedure application does double duty. DrScheme slightly enriches
the language by also providinglet/cc, which is a binding construct, but it continues to overload
procedure application.
The functional language SML usescallcc (which is not a binding construct) to capture contin-
uations, but adds athrow construct to invoke continuations. Consequently, in SML, procedure
application invokes only procedures, andthrow invokes only continuations, making it possible for
a type-checker to distinguish between the two cases.
It’s possible that a language could have both a binding construct likelet/ccand a separatethrow -like
construct for continuation invocation, but there don’t appear to be any.
In a way, the traditional Scheme approach of providing onlycall/cc is insiduous. Normally, proce-
dural primitives such as+ are extremely simple, often implementable directly in terms of a small
number of standard machine code instructions. In contrast, continuation capture masquerades as
a procedural primitive, but it significantly changes the language semantics. This is arguably a bad
design decision, because it fails to provide the student of the language a signpost of an impending
“dangerous bend”.

To implement continuations, we will take the DrScheme approach of adding a binding construct but
overloading procedural application:

<KCFAE> ::= <num>
| {+ <KCFAE> <KCFAE>}
| {if0 <KCFAE> <KCFAE> <KCFAE>}
| <id>

194 CHAPTER 20. IMPLEMENTING CONTINUATIONS

| {fun {<id>} <KCFAE>}
| {<KCFAE> <KCFAE>}
| {withcc <id> <KCFAE>}

(This is just for purposes of illustration. If you would prefer to have an explicit continuation invocation
construct such asthrow , you could easily add it with a handful of lines of very straightforward code.) The
revised language is thus as follows:

(define-typeKCFAE
[num (n number?)]
[add (lhs KCFAE?) (rhs KCFAE?)]
[if0 (test KCFAE?) (pass KCFAE?) (fail KCFAE?)]
[id (name symbol?)]
[fun (param symbol?) (body KCFAE?)]
[app(fun-expr KCFAE?) (arg-expr KCFAE?)]
[withcc(cont-var symbol?) (body KCFAE?)])

We need to add one new rule to the interpreter, and update the existing rule for application. We’ll also add a
new kind of type, calledcontV.

How doesbindccevaluate? Clearly, we must interpret the body in an extended environment:

[bindcc(cont-var body)
(interp body

(aSub cont-var
(contV ???)
sc)

k)]

The receiver used for the body is the same as the receiver of thebindcc expression. This captures the
intended behavior when the continuation is not used: namely, that evaluation proceeds as if the continuation
were never captured.

What kind of value should represent a continuation? Clearly it needs to be a Scheme procedure, so we
can apply it later. Functions are represented by procedures of two values: the parameter and the continuation
of the application. Clearly a continuation must also take the value of the parameter. However, the whole
point of having continuations in the language is to ignore the continuation at the point of invocation and
instead employ the one stored in the continuation value. Therefore, it would make no sense to accept the
application’s continuation as an argument, since we’re going to ignore it anyway. Instead, the continuation
uses that captured at thecreation, notuse, of the continuation:

[bindcc(cont-var body)
(interp body

(aSub cont-var
(contV (lambda (val)

(k val)))
sc)

k)]

20.3. TESTING 195

(Note again the reliance on Scheme’s static scope to close over the value ofk.) This makes the modification
to the application clause very easy:

[app(fun-expr arg-expr)
(interp fun-expr sc

(lambda (fun-val)
(interp arg-expr sc

(lambda (arg-val)
(type-caseKCFAE-Value fun-val

[closureV(c) (c arg-val k)]
[contV (c) (c arg-val)]

[else(error " not an applicable value")])))))]

Notice the very clear contrast between function and continuation application: function application employs
the receiver at the point ofapplication, whereas continuation application employs the receiver at the point
of creation. This difference is dramatically highlighted by this code.

One last matter: what is the initial value ofk? If we want to be utterly pedantic, it should be all
the computation we want to perform with the result of interpretation—i.e., a representation of “the rest of
DrScheme”. In practice, it’s perfectly okay to use the identity function. Then, when the interpreter finishes
its task, it invokes the identity function, which returns the value to DrScheme.

And that’s it! In these few lines, we have captured the essence of the meaning of continuations. (The
heart of the interpreter is in Figure 20.2.) Note in particular two properties of continuations that are captured
by, but perhaps not obvious from, this implementation:

• To reiterate: we ignore the continuation at the point of application, and instead use the continuation
from the point of creation. This is the semantic representation of the intuition we gave earlier for
understanding continuation programs: “replace the entirelet/cc expression with the value supplied
to the continuation”. Note, however, that the captured continuation is itself a dynamic object—it
depends on the entire history of calls—and thus cannot be computed purely from the program source
without evaluation. In this sense, it is different from the environment in a closure, which can partially
be determined entirely statically (that is, we can determine which identifiers are in the environment,
though it is undecidable what their values will be.)

• The continuation closes over the environment; in particular, its body is scoped statically, not dynami-
cally.

20.3 Testing

You might think, from last time’s extended example of continuation use, that it’s absolutely necessary to
have state to write any interesting continuation programs. While it’s true that mostpracticaluses of the full
power of continuations (as opposed to merely exceptions, say) do use state, it’s possible to write some fairly
complicated continuation programs without state for the purposes of testing our interpreter. Here are some
such programs. You should, of course, first determine their value by hand (by writing the continuations in
the form oflambda↑ procedures, substituting, and evaluating).

196 CHAPTER 20. IMPLEMENTING CONTINUATIONS

First, a few old favorites, just to make sure the easy cases work correctly:

{bindcc k 3}
{bindcc k {k 3}}
{bindcc k {+ 1 {k 3}}}
{+ 1 {bindcc k {+ 1 {k 3}}}}

And now for three classic examples from the continuations lore (the fourth is just an extension of the third):

{{bindcc k
{k {fun {dummy}

3}}}
1729}

{bindcc k
{k

{k
{k 3}}}}

{{{bindcc k k}
{fun {x} x}}

3}

{{{{bindcc k k}
{fun {x} x}}

{fun {x} x}}
3}

The answer in each case is fairly obvious, but you would be cheating yourself if you didn’t hand-evaluate
each of these first. This is painful, but there’s no royal road to understanding!

20.3. TESTING 197

(define-typeCFAE-Value
[numV(n number?)]
[closureV(p procedure?)])

;; interp :CFAE SubCache receiver→ doesn’t return
(define(interp expr sc k)

(type-caseCFAE expr
[num (n) (k (numV n))]
[add (l r) (interp l sc

(lambda (lv)
(interp r sc

(lambda (rv)
(k (num+ lv rv))))))]

[if0 (test pass fail)
(interp test sc

(lambda (tv)
(if (num-zero? tv)

(interp pass sc k)
(interp fail sc k))))]

[id (v) (k (lookup v sc))]
[fun (param body)

(k (closureV(lambda (arg-val dyn-k)
(interp body(aSub param arg-val sc) dyn-k))))]

[app(fun-expr arg-expr)
(interp fun-expr sc

(lambda (fun-val)
(interp arg-expr sc

(lambda (arg-val)
((closureV-p fun-val)
arg-val k)))))]))

Figure 20.1: Making Continuations Explicit

198 CHAPTER 20. IMPLEMENTING CONTINUATIONS

(define-typeKCFAE-Value
[numV(n number?)]
[closureV(p procedure?)]
[contV (c procedure?)])

;; interp :KCFAE Envreceiver→ doesn’t return
(define(interp expr sc k)

(type-caseKCFAE expr
[num (n) (k (numV n))]
[add (l r) (interp l sc

(lambda (lv)
(interp r sc

(lambda (rv)
(k (num+ lv rv))))))]

[if0 (test pass fail)
(interp test sc

(lambda (tv)
(if (num-zero? tv)

(interp pass sc k)
(interp fail sc k))))]

[id (v) (k (lookup v sc))]
[fun (param body)

(k (closureV(lambda (arg-val dyn-k)
(interp body(aSub param arg-val sc) dyn-k))))]

[app(fun-expr arg-expr)
(interp fun-expr sc

(lambda (fun-val)
(interp arg-expr sc

(lambda (arg-val)
(type-caseKCFAE-Value fun-val

[closureV(c) (c arg-val k)]
[contV (c) (c arg-val)]
[else(error " not an applicable value")])))))]

[bindcc(cont-var body)
(interp body

(aSub cont-var
(contV (lambda (val)

(k val)))
sc)

k)]))

Figure 20.2: Adding Continuations as Language Constructs

Chapter 21

Continuations and Compilation:
Explicating the Stack

We have already seen one important application of continuations, namely to the problem of improving the
structure of programs running over stateless protocols. But continuations andCPS long predate the Web;
they have long since been used in the gut of compilers. We now study this use in considerably more detail.
First, we will study how to make the stack, which is currently represented procedurally, more recognizable
as a data structure.

21.1 Examples

The following examples demonstrate how we can employ theCPSrepresentation of a program to make the
stack an explicit data structure.

21.1.1 Factorial

Here’s an implementation of the factorial function:

(definefact
(lambda (n)

(if (= n 0)
1
(∗ n (fact (− n 1))))))

You should be able to convince yourself that the following is the same program inCPS:

(definefact/k
(lambda (n k)

(if (= n 0)
(k 1)
(fact/k(− n 1) (lambda (v) (k (∗ n v)))))))

199

200 CHAPTER 21. CONTINUATIONS AND COMPILATION: EXPLICATING THE STACK

(definefact
(lambda (n)

(fact/k n(lambda (x) x))))

To make the stack more explicit, we’ll give specific names to the stack manipulatives and constant:

(define(fact/stack n stack)
(if (zero? n)

(Pop stack1)
(fact/stack(− n 1)

(Push stack(lambda (val) (Pop stack(∗ n val)))))))

(define(Pop stack value)
(stack value))

(define(Push stack receiver)
(lambda (v) (receiver v)))

(define(fact n) (fact/stack n EmptyStack))

(define(EmptyStack value) value)

Merely by assigning names to the same receivers, we’ve made it possible to change their representations
without affecting the original factorial code: that is, we have gained a degree of representation independence.
Because we know the stack is really a sequence of stack records, which is easy to represent as a list, we’ll
use lists to denote stacks. Notice that we only need to change the receiver abstractions; the two factorial
procedures (fact andfact/k) stay unchanged:

(define(Pop stack value)
((first stack) value))

(define(Push stack receiver)
(cons receiver stack))

(defineEmptyStack(cons(lambda (value) value) empty))

Now we have a version where the stacks themselves are lists, but the elements of the lists are still functions,
which is unsatisfying as an account of the stack’s actual behavior (on hardware). Let’s instead use elements
of a datatype to represent the stack frame types:

(define-typeStackFrame
[stack-rec-mult(n number?)] ;; a multiplication record
[stack-rec-empty]) ;; the bottom of the stack

(define(Pop stack value)
(local ([definetop-rec(first stack)])

(type-caseStackFrame top-rec

21.1. EXAMPLES 201

[stack-rec-mult(n) (Pop(rest stack) (∗ n value))]
[stack-rec-empty() value])))

(define(Push stack new-record)
(cons new-record stack))

(defineEmptyStack(list (stack-rec-empty)))

(define(fact/stack/rec n stack)
(if (zero? n)

(Pop stack1)
(fact/stack/rec(− n 1) (Push stack(stack-rec-mult n)))))

(define(fact n) (fact/stack/rec n EmptyStack))

Notice how converting the program intoCPSand transforming the representation has slowly taken us closer
and closer to the very program a compiler might generate! This is a promising direction to consider.

21.1.2 Tree Sum

Now that we’re done warming up, let’s consider an interesting example: a procedure that consumes a tree
of numbers and sums all the numbers in the tree. The source program is straightforward:

(define-typeTree
[empty-tree]
[node(n number?)

(left Tree?)
(right Tree?)])

(define(tree-sum atree)
(type-CaseTree atree

[empty-tree() 0]
[node(n left right) (+ n

(tree-sum left)
(tree-sum right))]))

Converting it toCPS:

(define(tree-sum/k atree k)
(type-caseTree atree

[empty-tree() (k 0)]
[node(n left right)

(tree-sum/k left(lambda (lv)
(tree-sum/k right(lambda (rv)

(k (+ n lv rv))))))]))

202 CHAPTER 21. CONTINUATIONS AND COMPILATION: EXPLICATING THE STACK

(define(tree-sum atree)
(tree-sum/k atree(lambda (x) x)))

Applying the same transformations as before gives us this:

(define-typeStackFrame
[rec-bottom]
[rec-add-left(node-val number?)

(right-tree Tree?)]
[rec-add-right(node-val number?)

(left-value number?)])

(define(tree-sum/rec atree stack)
(type-caseTree atree

[empty-tree() (Pop stack0)]
[node(n left right)

(tree-sum/rec left(Push stack(rec-add-left n right)))]))

(define(Pop stack value)
(local ([definetop-rec(first stack)])

(type-caseStackFrame top-rec
[rec-bottom() value]
[rec-add-left(node-val right)

(tree-sum/rec right(Push(rest stack)
(rec-add-right node-val value)))]

[rec-add-right(node-val lv) (Pop(rest stack) (+ node-val lv value))])))

(define(Push stack record)
(cons record stack))

(defineEmptyStack(list (rec-bottom)))

(define(tree-sum atree)
(tree-sum/rec atree EmptyStack))

Note in particular that thePopprocedure here executes aPush. This is more typical of the general case—the
pattern of recursion factorial is unusual in being strictly linear.

21.1.3 Filtering Positive Numbers

Let’s begin with the following program: a first-order version offilter that only retains positive numbers.

(define(filter-pos l)
(cond

[(empty? l) empty]
[else

21.1. EXAMPLES 203

(if (> (first l) 0)
(cons(first l) (filter-pos(rest l)))
(filter-pos(rest l)))]))

Its representation inCPSis

(define(filter-pos/k l k)
(cond

[(empty? l) (k empty)]
[else
(if (> (first l) 0)

(filter-pos/k(rest l)
(lambda (v)

(k (cons(first l) v))))
(filter-pos/k(rest l) k))]))

(define(filter-pos l)
(filter-pos/k l(lambda (x) x)))

The next thing to do is change the representation of the stack. We’ll proceed directly to a list of struc-
tures. First the type declaration for the different kinds of stack frames:

(define-typeStackFrame
[terminal-frame]
[filter-frame(n number?)])

And now the code that uses this:

(define(filter-pos/k l stack)
(cond

[(empty? l) (Pop empty stack)]
[else
(if (> (first l) 0)

(filter-pos/k(rest l)
(Push(filter-frame(first l)) stack))

(filter-pos/k(rest l) stack))]))

(define(filter-pos l)
(filter-pos/k l EmptyStack))

(defineEmptyStack(list (terminal-frame)))
(define(Push frame stack) (cons frame stack))
(define(Pop value stack)

(type-caseStackFrame (first stack)
[terminal-frame() value]
[filter-frame(n) (Pop(cons n value) (rest stack))]))

204 CHAPTER 21. CONTINUATIONS AND COMPILATION: EXPLICATING THE STACK

21.2 Tail Calls

Study the code infilter-pos/kcarefully. There are two recursive calls in that body, and they differ slightly.
By reading the original version of the program (filter-pos), it’s easy to tell that the difference is whether or
not we want to retain the first element of the list.

Now let’s look at the corresponding calls in the explicit stack version. The version that retains the first
element becomes

(filter-pos/k(rest l)
(Push(filter-frame(first l))

stack))

while the other version is

(filter-pos/k(rest l) stack))]))

This suggests the following:

• The stack exists solely toevaluate arguments, not for making function calls. It so happens that in this
case, the invocation offilter-posis itself a mere “argument evaluation”—from the perspective of the
pendingcons.

• The actual function call is itself simply a direct jump to the code of the function—that is, it’s a “goto”.

• Converting the program toCPShelps us clearly see which calls are just gotos, and which ones need
stack build-up. The ones that are just gotos are those invocations that use the same receiver argument
as the one they received. Those that build a more complex receiver are relying on the stack.

Procedure calls that do not place any burden on the stack are calledtail calls. Converting a program
to CPShelps us identify tail calls, though it’s possible to identify them from the program source itself. An
invocation ofg in a proceduref is a tail call if, in the control path that leads to the invocation ofg, the
value of f is determined by the invocation ofg. In that case,g can send its value directly to whoever is
expectingf ’s value; this verbal description is captured precisely in theCPSed version (sincef passes along
its receiver tog, which sends its value to that receiver). This insight is employed by compilers to perform
tail call optimization(abbreviatedTCO, and sometimes referred to aslast call optimization), whereby they
ensure that tail calls incur no stack growth.

Here are some consequences ofTCO:

• With TCO, it no longer becomes necessary for a language to provide looping constructs. Whatever
was previously written using a custom-purpose loop can now be written as a recursive procedure. So
long as all recursive calls are tail calls, the compiler will convert the calls into gotos, accomplishing
the same efficiency as the loop version. For instance, here’s a very simple version of afor loop,
written using tail calls:

(define(for init condition change body result)
(if (condition init)

(for (change init)

21.2. TAIL CALLS 205

condition
change
body
(body init result))

result))

By factoring out the invariant arguments, we can write this more readably as

(define(for init condition change body result)
(local [(define(loop init result)

(if (condition init)
(loop (change init)

(body init result))
result))]

(loop init result)))

To use this as a loop, write

(for 10 positive? sub1+ 0)

which evaluates to55. It’s possible to make this look more like a traditionalfor loop using macros,
which we will discuss in Section 35. In either case, notice how similar this is to afold operator!
Indeed,foldl employs a tail call in its recursion, meaning it is just as efficient as looping constructs in
more traditional languages.

• Put differently, thanks toTCO, the set of looping constructs is extensible, not limited by the imagina-
tion of the language designer. In particular, it becomes easy to create loops (oriterators) over new
data structures without suffering an undue performance penalty.

• While TCO is traditionally associated with languages such as Scheme and ML, there’s no reason they
must be. It’s perfectly possible to haveTCO in any language. Indeed, as our analysis above has
demonstrated,TCO is thenatural consequence of understanding the true meaning of function calls.
A languages that deprives you ofTCO is cheating you of what is rightfully yours—stand up for your
rights! Because so many language designers and implementors habitually mistreat their users by
failing to supportTCO, however, programmers have become conditioned to think of all function calls
as inherently expensive, even when they are not.

• A special case of a tail call is known astail recursion, which occurs when the tail call within a
procedure is to the same procedure. This is the behavior we see in the procedurefor above. Keep in
mind, however, that tail recursion optimization is only a special case. While it is animportantspecial
case (since it enables the implementation of linear loops), it is neither the most interesting case nor,
more importantly, the only useful one.

Sometimes, programmers will find it natural to split a computation across two procedures, and use tail

206 CHAPTER 21. CONTINUATIONS AND COMPILATION: EXPLICATING THE STACK

calls to communicate between them.1 This leads to very natural program structures. A programmer
using a language like Java is, however, forced into an unpleasant decision. If they split code across
methods, they pay the penalty of method invocations that use the stack needlessly. But even if they
combine the code into a single procedure, it’s not clear that they can easily turn the two code bodies
into a single loop. Even if they do, the structure of the code has now been altered irrevocably. Consider
the following example:

(define(even? n)
(if (zero? n)

true
(odd?(sub1 n))))

(define(odd? n)
(if (zero? n)

false
(even?(sub1 n))))

Try writing this entirely through loops!

Therefore, even if a language gives you tail recursion optimization, remember that you are getting less
than you deserve. Indeed, it sometimes suggests an implementor who realized that the true nature of
function calls permitted calls that consumed no new stack space but, due to ignorance or a failure of
imagination, restricted this power to tail recursion only. The primitive you really want a language to
support is tailcall optimization. With it, you can express solutions more naturally, and can also build
very interesting abstractions of control flow patterns.

• Note thatCPSconverts every program into a form where every call is a tail call!

Exercise 21.2.1If, in CPS, every call is a tail call, and the underlying language supportsTCO (as Scheme
does), does theCPSversion of a program run in constant stack space even if the original does not? Discuss.

Exercise 21.2.2Java does not supportTCO. Investigate why not.
Hint : Neither ignorance nor malice explains the original decision to not supportTCO in Java.

21.3 On Stacks

As we have seen, the receiver corresponds directly to the stack. In particular, the receiver is a procedure
that may refer to another procedure (that it closes over), which may refer to another procedure (thatit closes
over), and so on. Each of these procedures represents one stack frame (sometimes called anactivation
record, because it records an extant activation of a procedure in the running program). Returning a value

1They may not even communicate mutually. In the second version of the loop above,for invokesloop to initiate the loop. That
call is a tail call, and well it should be, otherwise the entire loop will have consumed stack space. Because Scheme has tail calls,
notice how effortlessly we were able to create this abstraction. If the language supprted only tailrecursionoptimization, the latter
version of the loop, which is more pleasant to read and maintain, would actually consume stack space against our will.

21.4. CONSOLIDATION 207

“pops” the stack; since we have made the stack explicit, the equivalent operation is to pass the value to be
returned to the receiver. A procedure passes on its receiver without further embellishment precisely when it
calls another procedure without pushing anything on to the stack.

We therefore see that the stack is used solely to store intermediate results. It plays no part in the actual
invocation of a function. We can see this in the fact that some procedure invocations have no impact on the
stack at all! This probably sets on its head everything you have been taught about stacks until now. This is
an important and, perhaps, startling point:

Stacks are not necessary for invoking functions.

The stack only plays a role inevaluating the argument to the function; once that argument has been reduced
to a value (in an eager language), the stack has no further role with respect to invoking a function. The actual
invocation itself is merely a jump to an address holding the code of the function: it’s a “goto”.

Converting a program toCPS thus accomplishes two things. First, it exposes something—the stack—
normally hidden during the evaluation process; this is an instance ofreflection. The transformation also
makes this a value that a programmer can manipulate directly (even changing the meaning of the program
as a result); this is known asreification.

Reflection and Reification

Reflection and reification are very powerful programming concepts. Most programmers encounter
them only very informally or in a fairly weak setting. For instance, Java offers a very limited
form of reflection (a programmer can, for instance, query the names of methods of an object),
and some languages reify very low-level implementation details (such as memory addresses in C).
Few languages reify truly powerful computational features; the ones that do enable entirely new
programming patterns that programmers accustomed only to more traditional languages usually
can’t imagine. Truly smart programmers sometimes create their own languages with the express
purpose of reifying some useful hidden element, and implement their solution in the new language,
to create a very powerful kind of reusable abstraction. A classic instance of this is Web programmers
who have reified stacks to enable a more direct programming style.

21.4 Consolidation

We’ve seen a sequence of transformations: conversion toCPS; abstracting the representation of the stack;
and converting the stack into a list of structures representing the activation records. The result of all this
is a program quite different in both style and substance from the original. In style, it has changed its form
considerably, while in substance, its representations are all much lower-level. As a result, we are slowly
converting high-level Scheme into programs that can run in just about any low-level language. Hopefully
you can see where this is going!

Notice what wenot doing: we are not explicitly writing a compiler. Instead, we are showing you how a
compiler would operate: each transformed program is the result of a transformation we would code into the
compiler. Actually writing all those transformations is a little more work, and doing so would distract from
the mission of this course; courses on compiler construction force you to confront the details that arise in
implementing these steps.

208 CHAPTER 21. CONTINUATIONS AND COMPILATION: EXPLICATING THE STACK

Chapter 22

Continuations and Compilation:
Machine Representations

Since we are simulating the process of compilation, we must shed as much dependency on Scheme as
possible. The tranformed version of the procedurefilter-pos/k(Section 21.1.3) uses structure representations
for stack frames and a list for the stack itself. The list that represents the stack is, however, a pretty high-level
data structure. Furthermore, the program itself uses lists, which are definitely exploiting the primitives of
Scheme. Let’s eliminate each of these.

22.1 The Stack in Memory

Let’s choose a more primitive representation for the stack. We’ll use a vector of stack frames. We won’t
bother changing the datatype itself, though it’s easy if we wanted to do so: simply use a number or symbol
to tag each variant, and so on. We will illustrate this principle in the next section. For now, let’s focus on the
mechanics of using a vector instead of a list.

We could pass the stack vector around, but the reason we defined it in the first place is to more accurately
capture the machine, and in the machine procedures do not “pass the stack around”. Therefore, we’ll use a
global stack instead:

(defineSTACK-SIZE1000)
(defineSTACK-POINTER(box0))
(defineStack(make-vector STACK-SIZE))

We’ll find it useful to have the following primitives to modify the stack pointer:

(define(increment-box b)
(set-box! b(add1(unbox b))))

(define(decrement-box b)
(set-box! b(sub1(unbox b))))

We must rewritefilter-pos/kto no longer consume or pass the stack:

(define(filter-pos/k l)

209

210 CHAPTER 22. CONTINUATIONS AND COMPILATION: MACHINE REPRESENTATIONS

(cond
[(empty? l) (Pop empty)]
[else
(if (> (first l) 0)

(begin
(Push(filter-frame(first l)))
(filter-pos/k(rest l)))

(filter-pos/k(rest l)))]))

(Notice how we have undone the effect of transforming toCPS!) We have to now define the stack primitives:

(define(Push frame)
(begin

(increment-box STACK-POINTER)
(vector-set! Stack(unbox STACK-POINTER) frame)))

(define(Pop value)
(type-caseStackFrame (vector-ref Stack(unbox STACK-POINTER))

[terminal-frame() value]
[filter-frame(n)

(begin
(decrement-box STACK-POINTER)
(Pop(cons n value)))]))

Finally, the interface procedure:

(define(filter-pos l)
(begin

(vector-set! Stack0 (terminal-frame))
(filter-pos/k l)))

As this point, we’ve entirely transformed the stack’s representation: the only lists left in the program are
those consumed and produced by thefilter procedure itself, but the stack is now very close to its machine
representation. In particular, notice that the tail call in the body offilter has become

(filter-pos/k(rest l))

while the non-tail invocation is

(begin
(Push(filter-frame(first l)))
(filter-pos/k(rest l)))

which very nicely captures the distinction between the two!

22.2 Lists in Memory

Our last task to finish hand-compiling this program is to eliminate the Scheme lists used in this example.
What is a list, anyway? A list has two references: one to its first value, and one more to the rest of the list.

22.2. LISTS IN MEMORY 211

At the machine level, we need to hold one more item of information, which is a tag to differentiate between
lists and other kinds of values (and, also, between empty and non-empty lists).

We’ve learned from basic computer systems courses that dynamic data structures must be stored on the
heap. It’s very important that we not accidentally allocate them on the stack, because data such as lists have
dynamic extent, whereas the stack only representsstatic scope. We would rather play it safe and allocate
data on the heap, then determine how to eliminate unwanted ones, than to allocate them on the stack and
create dangling references (the stack frame might disappear while there are still references to data in that
frame; eventually the frame gets overwritten by another procedure, at which point the references that persist
are now pointing to nonsense).

Having established that we need a global place for values, known as theheap, we’ll model it the same
way we do the stack: as a vector of values. (All the stack code remains the same; we’ll continue to use the
global vector representation of stacks, sofilter-pos/kwill consume only one argument.)

(defineHEAP-SIZE1000)
(defineHEAP-POINTER(box0))
(defineHeap(make-vector HEAP-SIZE’unused))

The following procedure will come in handy when manipulating either the heap or the stack:entity
refers to a vector, such as one of those two,pointer is an address in that vector, andvalueis the new value
to assign to that location.

(define(set-and-increment entity pointer value)
(begin

(vector-set! entity(unbox pointer) value)
(increment-box pointer)))

Now we’re ready for the heart of the implementation. How shall we represent aconscell? We’ll define
the procedureNumConsof two arguments. Both will be numbers, but we’ll assume that the first represents
a literal number, while the second represents a location.

Clearly, we must allocate new space in the heap. The new value we write into the heap will range over
several locations. We must therefore pick a canonical location to represent the cell. As a convention (which
reflects what many compilers do), we’ll pick the first heap location. Therefore, the code forNumConsis as
follows:

(define(NumCons v1 v2)
(local [(definestarting-at(unbox HEAP-POINTER))]

(begin
(set-and-increment Heap HEAP-POINTER v1)
(set-and-increment Heap HEAP-POINTER v2)
starting-at)))

Having given the ability to create new cons cells, we must also be able to determine when we are looking
at one, so that we can implement a procedure likecons?. Unfortunately, our representation hasn’t given us
the ability to distinguish between different kinds of values. There’s an easy way to solve this: we simply
deem that at the location representing a value, we will always store a tag that tells us what kind of value
we’re looking at. This leads to

212 CHAPTER 22. CONTINUATIONS AND COMPILATION: MACHINE REPRESENTATIONS

(define(NumCons v1 v2)
(local [(definestarting-at(unbox HEAP-POINTER))]

(begin
(set-and-increment Heap HEAP-POINTER’num-cons)
(set-and-increment Heap HEAP-POINTER v1)
(set-and-increment Heap HEAP-POINTER v2)
starting-at)))

so that we can define

(define(NumCons? location)
(eq?(vector-ref Heap location) ’num-cons))

Similarly, we can also define

(define(NumEmpty)
(local [(definestarting-at(unbox HEAP-POINTER))]

(begin
(set-and-increment Heap HEAP-POINTER’num-empty)
starting-at)))

(define(NumEmpty? location)
(eq?(vector-ref Heap location) ’num-empty))

Having defined this representation, we can now easily define the analog offirst andrest:

(define(NumFirst location)
(if (NumCons? location)

(vector-ref Heap(+ location1))
(error ’NumFirst " not a NumCons cell")))

(define(NumRest location)
(if (NumCons? location)

(vector-ref Heap(+ location2))
(error ’NumRest " not a NumCons cell")))

Given these new names for primitives, we rewrite code to use them:

(define(filter-pos/k l)
(cond

[(NumEmpty? l) (Pop(NumEmpty))]
[else
(if (> (NumFirst l) 0)

(begin
(Push(filter-frame(NumFirst l)))
(filter-pos/k(NumRest l)))

(filter-pos/k(NumRest l)))]))

While most of the stack code can stay unchanged, any code that does refer to lists must adapt to the new
primitives, reflecting the new implementation strategy for lists:

22.2. LISTS IN MEMORY 213

(define(Pop value)
(type-caseStackFrame (vector-ref Stack(unbox STACK-POINTER))

[terminal-frame() value]
[filter-frame(n)

(begin
(decrement-box STACK-POINTER)
(Pop(NumCons n value)))]))

Finally, we have to be careful to not use Scheme’s primitive lists inadvertently. For instance, invoking

> (filter-pos ’(0 2 3 -1 -5 1 -1))
vector-ref: expects type <non-negative exact integer> as 2nd argument, ...

results in an error; we must instead write

> (filter-pos
(NumCons 0
(NumCons 2
(NumCons 3
(NumCons -1
(NumCons -5
(NumCons 1
(NumCons -1 (NumEmpty)))))))))

When we run this test case, we get the surprising result. . .29.
29? We were supposed to get a list! How did a series of list operations result in a number, that too one

that wasn’t even on our original list?
The answer is simple: the procedure now returns thelocation of the answer. (Recall from Section 13

that locations are values for mutable data structures.) We would, nevertheless, find useful a procedure that
prints the content of this location in a fashion more suitable for human consumption:

(define(location→list location)
(if (NumEmpty? location)

empty
(cons(NumFirst location)

(location→list (NumRest location)))))

With this, we finally get the desired interaction:

> (location->list
(filter-pos

(NumCons 0
(NumCons 2
(NumCons 3
(NumCons -1
(NumCons -5

214 CHAPTER 22. CONTINUATIONS AND COMPILATION: MACHINE REPRESENTATIONS

(NumCons 1
(NumCons -1 (NumEmpty))))))))))

(list 2 3 1)

Exercise 22.2.1Our implementation of NumEmpty is displeasing, because it allocates a new tag every
single time. In fact, we need only one instance of the empty list, so you would think all these instances
could share their representation and thereby consume less heap space. Convert the procedure NumEmpty
so it allocates space for the empty list only the first time is invoked, and returns the same address on every
subsequent invocation.

Note:

1. If you find it easier, you may allocate space for the empty list before the user’s program even begins
execution.

2. The idea of using a single instance in place of numerous isomorphic instances, to save both construc-
tion time and space, is known as the Singleton Pattern in the bookDesign Patterns.

Part VIII

Memory Management

215

Chapter 23

Automatic Memory Management

23.1 Motivation

In Section 22, at the end of runningfilter-pos, we got the answer29. We had to then write the procedure
location→list to extract the actual list. This printed the resulting list, but what about the entire content of
the heap? Let’s take a look at it:

> HEAP
#1000(num-empty

num-cons
-1
0
num-cons
1
1
num-cons
-5
4
num-cons
-1
7
num-cons
3
10
num-cons
2
13
num-cons
0
16
num-empty ;; location 22

217

218 CHAPTER 23. AUTOMATIC MEMORY MANAGEMENT

num-cons ;; location 23
1
22
num-cons ;; location 26
3
23
num-cons ;; location 29
2
26
unused)

This notation meansHEAP is a vector of 1000 locations; the ’unused at the end is the content of all the
remaining locations.

We can see from this why the response is (list 2 3 1). But what about the rest of the heap? There are 22
locations of data that aren’t part of the value returned byfilter-pos. If we don’t reclaim these locations, they
become unavailable for future use, and will eventually starve the program of memory resources.

Whose responsibility is it to reclaim these locations?It can’t be the responsibility offilter-pos, which
can’t know whether the procedure that called it needs the input list again or not. After all,that procedure
may, in turn, pass the list to some other procedure, and so on.

Even if it the chain of responsibility is clear, memory reclamation is often frustrating because it interferes
with the flow of control in the program, mixing high-level algorithmic description with low-level resource
management. For instance, supposefilter-posknew for sure that the input list would not be used any longer.
It could then attempt to reclaim the list’s elements as follows:

(define(filter-pos l)
(cond

[(empty? l) empty]
[else
(begin

(reclaim-memory!(first l))
(if (> (first l) 0)

(cons(first l) (filter-pos(rest l)))
(filter-pos(rest l))))]))

There is a subtle bug in this program, but let’s focus on a simpler problem with it: while this reclaims each
first element, it doesn’t reclaim theconses that constitute the input list. We might therefore try

(define(filter-pos l)
(cond

[(empty? l) empty]
[else
(begin

(reclaim-memory!(first l))
(reclaim-memory!(rest l))
(if (> (first l) 0)

23.1. MOTIVATION 219

(cons(first l) (filter-pos(rest l)))
(filter-pos(rest l))))]))

Unfortunately, this version duplicates the bug! Once we reclaim thefirst and rest of the list, we can no
longer refer to those elements. In particular, in a concurrent system (and most software todayis concurrent),
the moment we reclaim the memory, another process might write into it, so if we access the memory we
might get nonsensical output. And even otherwise, in general, if we reclaim and then perform a procedure
call (in this case, a recursive one), when we return (as we do in the first branch, to perform thecons) that
heap location may have since been overridden with other values. So this is a problem even in the absence of
concurrency. We must therefore instead write

(define(filter-pos l)
(cond

[(empty? l) empty]
[else
(local ([defineresult

(if (> (first l) 0)
(cons(first l) (filter-pos(rest l)))
(filter-pos(rest l)))])

(begin
(reclaim-memory!(first l))
(reclaim-memory!(rest l))
result))]))

While this version is no longer succeptible to the problems we discussed earlier,1 it has introduced a signif-
icant new problem. Whereas earlierfilter-poswas tail-recursive in cases when the list element not positive,
now filter-posis nevertail recursive. In fact, the problem we see here is a common problem with loop-like
programs: we must hold on to the value being passed in the recursive call so we can reclaim it after the call
completes, which forces us to destroy any potential for tail-call optimizations.

In short, even when we know who is responsible for reclaiming data, we face several problems:

• The program structure may be altered significantly.

• Concurrency, or even just other function calls, can expose very subtle reclamation errors.

• Loops often lose tail-calling behavior.

• It becomes much harder to define simple abstractions. For example, we would need two versions of
a filter-posprocedure, one that does and one that doesn’t reclaim its argument list. In turn, every
procedure that wants to invokefilter-posmust choose which version to invoke. And so on up the
abstraction hierarchy. (Can you see how the number of possible options can grow exponentially in the
number of arguments?)

These problems, furthermore, assume we can even know which procedure is responsible for managing
every datum, which is a very strong assumption. Sometimes, two procedures may share a common resource

1Do compare it against the original version, though, and think about which you’d rather write!

220 CHAPTER 23. AUTOMATIC MEMORY MANAGEMENT

(think of the pasteboard in a typical windowing system, which is shared between multiple applications),
which means it’s no single unit’s responsibility in particular.

At any rate, reasoning about these chains of ownership is hard, and making the wrong decisions leads
to numerous insidious errors. Therefore, it would be better if we could make this the responsibility of
the run-time system: that is, whatever is responsible for allocating memory should also be responsible for
reclaiming memory when it is no longer necessary. That is, we usually prefer to program withautomated
memory management, colloquially referred to by the much more colorful term,garbage collection.

23.2 Truth and Provability

In the previous paragraph, we have given the garbage collector the responsibility of reclaiming memory
“when it is no longer necessary”. This puts a very significant pressure on the garbage collector: the collector
must know whether or not a programmer is going to use a datum again or not. In other words, garbage
collection becomes an artificial intelligence problem.

This highlights a common tension that arises in computer science, and especially in programming lan-
guage design: that betweentruth and provability. This might sound like a very profound philosophical
issue—and it is—but you are already very familiar with it from math courses, where a professor asked you
to prove something she knew to be true, but you were unable to construct an actual line of reasoning for it!
We see this tension in several other places, to: for example, the type checker may not know whether or not
a given operation will succeed, while the programmer has a complex line of reasoning that justifies it; and
the optimizer in a compiler might not be able to prove that an expensive expression is equivalent to a less
expensive one (you might notice that this goes back to our discussion about referential transparency).

Anyway, the garbage collector obviously cannot know a programmer’s intent, so it needs toapproxi-
mateher intent as best as possible. Furthermore, this approximation must meet a few tightly intertwined
properties. To understand these, let us consider a few extreme implementations of collectors.

The first collector reclaims absolutely no garbage. Obviously it runs very quickly, and it never acciden-
tally reclaims something that it should not reclaim. However, this is obviously useless. This suggests that a
collector must demonstrate

utility The collector’s approximation must identify enough garbage to actually help computation continue.

Another collector avoids this problem by reclaimingall data in memory, irrespective of whether or not they
are necessary for future computation. This, too, is obviously not very useful, because the computation would
soon crash. Therefore, a collector must exhibit

soundnessThe collector must never reclaim a datum that is used by a subsequent computation.

A third collector, wanting to avoid both of the above perils, halts at every datum and computes a very
complex simulation of the program’s execution to determine whether or not the program will access this
datum again. It has to consider all execution paths, both branches of each conditional, and so on. This, too,
would be unacceptable: a collector must manifest

efficiency The collector should run sufficiently quickly so that programmer do not get frustrated (and there-
fore turn back to manual memory management).

23.2. TRUTH AND PROVABILITY 221

In practice, garbage collectors reconcile these demands thanks to a very useful approximation of truth:
reachability. That is, a collector begins with a set of memory locations called theroot set; this typically
includes all the heap references on the stack and in the current registers. From the root set, the collector
sweeps the heap to determine which objects are reachable: if objecto is reachable, then all objects thato
refers to in its fields are also reachable—and so on, recursively. All reachable objects are calledlive, and
survive garbage collection; the collector reclaims the storage allocated to all other objects.

With a little reflection, we realize that reachability is an excellent approximation of truth. If an object is
reachable, then there is (in effect) some sequence of field dereferences and function or method invocations
that can use its value. Since the programmer may have written exactly such a sequence of invocations, the
collector should not reclaim the object. If, on the other hand, an object is not reachable,no sequence of
dereferences and invocations can use its value. Therefore, its space can can be reclaimed safely.

Reachability is, of course, not always a strong enough approximation to truth. For instance, consider the
following program fragment:

(definev (make-vector1000))
(definek (vector-length v))
;; rest of program

Suppose the rest of the program never referencesv.2 Then afterk has been given its value the space con-
sumed by the vector bound tov should be reclaimed; but sincev is a global variable, it is always reachable,
so the collector cannot reclaim it. In general, large data structures bound to global variables are invariably
candidates forspace leakage, which is what we call the phenomenon of a collector not reclaiming space that
we know is no longer necessary. (Notice the difference between truth and provability coming into play very
strongly.) Tracing space leaks is sometimes subtle, but it is often as simple as looking at values bound to
global and static variables and, when those values are no longer necessary, mutating the variable to a value
like null (in Java) or (void) (in Scheme).

Notice, by the way, the asymmetry in our justification for why tracing is a reasonable approximation
to truth. Unreachable objectswill not be used so they can always be reclaimed safely,3 whereas reachable
objectsmaybe used again so we must allow them to persist. In fact, a collector can sometimes reason about
these “maybe” cases. For instance, consider the following program:

(local ([definev (make-vector1000)]
[definek (vector-length v)])

· · ·)

Now suppose the body of this expression doesn’t referencev. Becausev is not global, as soon as the value of
k has been computed, the compiler can insert code that effectively sets the value ofv to a null or void value.
This makes the vector formerly bound tov a candidate for reclamation immediately, instead of waiting until
the end of thelocal. Many compilers for languages that employ garbage collection do in fact perform such
“safe for space” optimizations.

2This assumes that the rest of the program text is known. Modern languages support features such asdynamic loading, which is
the ability to extend the program during its execution.

3This claim makes a certain important assumption about the underlying programming language that is not always valid: it
applies to languages like Java and Scheme but not to C and C++. Do you see it?

222 CHAPTER 23. AUTOMATIC MEMORY MANAGEMENT

Part IX

Semantics

223

Chapter 24

Honey, I Shrunk the Language

How small can a programming language be? We’ve already seen that Scheme is sufficient for expressing
a large number of computations quite concisely. The version of Scheme we’ve seen so far is nevertheless
quite small; here are most of the features we’ve used:

x y z· · · ;; variables
’a ’b ’c · · · ;; symbols
0 1 2 · · · ;; numbers
+ − ∗ ·· · ;; arithmetic operators
define-type type-case
cons first rest
cond if
true false zero?and or
() ;; function application
local
let/cccall/cc
define lambda

We have seen in Section 18 that we can express continuations using just procedures and applications, in the
form of CPS. Similarly, it is easy to see that we can express various type constructors with lists by being
disciplined about their use. (To wit, we would put a tag at the beginning of the list indicating what type we
are representing, and check the tag before every access to avoid ill-typed operations.) We have also seen in
Section 6.3 that local definitions can be expressed in terms of function definitions and application.

That still leaves several constructs, which we can organize into groups related by purpose:

• variables, procedure definitions, applications

• numbers and arithmetic

• Boolean constants and operations

• lists and other aggregate data structures

225

226 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

In what follows, we will methodically eliminate most of these features until we are left with a minimal set
that is surprisingly small. In particular, we will demonstrate that the first group—variables, procedures and
application—can encode all the remaining language constructs.

As a motivating example, consider the following definition of the factorial function:

(define(fact n)
(if (zero? n)

1
(∗ n (fact (sub1 n)))))

This contains most of the features under discussion.

24.1 Encoding Lists

Let’s first consider lists. Though we don’t need lists to define factorial, they are a useful indicator of how
we would handle compound data structures.

We will consider a data structure even simpler than lists, namely pairs. Once we have pairs, we can
construct lists quite easily: each pair’s second element is another pair, representing the next “link” in the
list. Therefore, we must demonstrate how to implementpair, left andright without using any Scheme data
structure primitives (such as lists or new types).

How can we do this? The pair constructor must consume two values and returnsomething. What can
we return? Since we are not trying to eliminate procedures, perhaps it can return a procedure of some sort.
That is, every instance of

(pair A B)

in the program becomes

(lambda . . .)

We will write this as

(pair A B) ≡ (lambda . . .)

where≡ represents textual substitution. So what should the argument and body of the procedure be? Should
it returnA? Sometimes, yes, if the program wants the first value in the pair; at other times, it should return
B. In other words, the response needs to parameterized to depend on the selector. We can express this neatly
thus:

(pair A B) ≡ (lambda (selector) (selector A B))

This defers the problem to defining the selectors, but there is hope now. The operator that chooses the left is
simply

left≡ (lambda (A B) A)

and analogously,

right ≡ (lambda (A B) B)

24.2. ENCODING BOOLEAN CONSTANTS AND OPERATIONS 227

Finally, we must rewrite every use of these primitives to be inobject-verbrather than inverb-object
form: that is, because the pair is itself a procedure that consumes the selector as an argument, we must write

(e first)

in place of

(first e)

for everye that will evaluate to a pair, and analogously forrest.1

Exercise 24.1.1Our knowledge of computer science tells us that the left and right fields must consume
spacesomewhere; yet in this encoding, they appear to consume no space at all. Is that true (and, if so, how
is that possible)?

24.2 Encoding Boolean Constants and Operations

What is a conditional? At its simplest, it makes a choice between two computations based on some criterion.
We are used to a construct, such asif , as the operator that makes that choice, based on some Boolean value.
But what if, instead, the choice were made by the Boolean value itself?

Here’s an analogous situation. In apure object-oriented language, every value is an object, including
the Boolean values. That is, we can think of valuestrue and false as subtypes of a Boolean type,
each endowed with achoose method. Thechoose method takes two objects as arguments, each with
a run method that represents the rest of the computation. Atrue object invokes therun method of its
first argument object, while afalse object invokesrun in its second argument. Thus, effectively, the
conditional is implemented by the process of dynamic dispatch (which chooses which object to run when
choose is invoked on a Boolean value).

We can apply this insight into encoding conditionals entirely in terms of procedures. Every instance of

(if C T F)

is rewritten as

(C T F)

which we will henceforth write as

(if C T F) ≡ (C T F)

(read≡ as a textual rewriting operation). where we assume thatC will always evaluate to one of the two
Boolean values. We therefore reduce the problem to one of defining Boolean values that correctly implement
the choice operation.

Defining the Boolean values is quite easy given our preceding discussion of objects. The value repre-
senting truth must consume the two options, ignore (by convention) the second and use only the first:

yes≡ (lambda (T F) T)

1This shift from algebra’s verb-object convention is, of course, familiar to object-oriented programmers.

228 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

Likewise,

no≡ (lambda (T F) F)

Exercise 24.2.1This encoding of Booleans assume the use of lazy evaluation. Provide an example that
illustrates this, and demonstrate how we can remove this dependency.

Exercise 24.2.2Defineand and or in terms of our limited set of primitives. Do your definitions perform
short-circuiting?

Exercise 24.2.3Is it purely coincidental that left and yes have the same definition?

24.3 Encoding Numbers and Arithmetic

Having dispatched of lists and Booleans, we are now ready to tackle numbers. Let’s agree to limit our
attention to the natural numbers (an integer no smaller than zero).

What is the essence of a natural number? It is a counting object: it tells us how many instances there are
of some discrete entity. While it is conventional to use “Arabic” numerals (0, 1, 2, 3, . . .) to represent these
numbers, there are many other representations available (for instance, the whole numbers—natural numbers
strictly bigger than zero—can be represented using Roman numerals: I, II, III, IV, . . .). Even compared with
this dazzling variety of notations, though, the representation we define here is truly striking.

Let’s think about “one-ness”. The number one represents many things. It captures the number objects
in a collection of one book, of one maple leaf, of one walrus, of one cricket ball. It also represents the act of
applying a function to a value.

Which function? Which value? Any function and any value will do just fine; indeed, to avoid having to
decide, we can simply make them parameters. That is, we can represent one as

one≡ (lambda (f) (lambda (x) (f x)))

This is the most abstract way we have of saying “the act of applying some function to some argument once”.
If we supply the concrete argumentsadd1and0 for f andx, respectively, we get the expected numeral1
from Scheme. But we can also supplysquareand5, respectively, to get the numeral25, and so on.

If that’s what represents one-ness, what represents two-ness and three-ness? Why, the same kind of
thing: respectively, two applications and three applications of some function to some argument:

two≡ (lambda (f) (lambda (x) (f (f x))))
three≡ (lambda (f) (lambda (x) (f (f (f x)))))

and so on. Indeed, supplyingadd1and0 to each of these numerals yields expected Scheme numeral. We
should therefore intuitively think off as an “add one” operation andx as the “zero” constant, but in fact
we can supply any operation and base constant we want (and, in what follows, we will in fact exploit this
abstract representation).

Since we want to represent the natural numbers, we must be able to represent zero, too. The pattern
above suggests the following numeral:

zero≡ (lambda (f) (lambda (x) x))

24.3. ENCODING NUMBERS AND ARITHMETIC 229

and indeed, that is a numeral that represents zero applications off to x. (As we said, think ofx as “zero”, so
a procedure that returnsx unmolested is a good representative for0.)

Now that we have numerals to represent the natural numbers, it’s time to define operations on them.
Let’s begin with incrementing a number by one. That is, we expect

(succ one) ≡ (succ(lambda (f) (lambda (x) (f x))))

to yield the equivalent of

(lambda (f) (lambda (x) (f (f x))))

This looks nasty: it appears we must perform “surgery” on the procedure to “insert” another application of
f . This is impossible since the procedures are opaque objects, represented by the compiler as some sequence
of bits we may not even understand.

It’s important to note that what we want is theequivalentof the representation of two: that is, we want
a numeral that represents two-ness. Here is another term that has the same effect:

(lambda (f)
(lambda (x)

(f (one f x))))

That is, it appliesoneto f andx, obtaining the effect of applyingf to x once. It then appliesf again to the
result. This has the samenet effectas the more concise representation oftwo. By the same line of reasoning,
we can see that this pattern always represents the act of incrementing a number: that is,

succ≡
(lambda (n)

(lambda (f)
(lambda (x)

(f ((n f) x)))))

Now we can tackle addition. Observe the following arithmetic result:

m+n =

n times︷ ︸︸ ︷
1+1+ · · ·+1+m

Let’s try putting this in words. To addm andn, we add onen times tom. That is, we apply an operation
that adds one,n times, to a base value ofm. How do we iterate anythingn times? That’s exactly what
the numeral forn represents: the act of performingn applications. The numeral expects two values: the
operation to apply, and the base value. The operation we want is the addition of one, which we’ve just
defined; the base value is the other addend. Therefore:

add≡
(lambda (m)

(lambda (n)
((n succ) m)))

230 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

A similar insight gives us multiplication:

m×n =
n times︷ ︸︸ ︷

m+m+ · · ·+m+0

From this, and employing a similar line of reasoning, we can define

mult≡
(lambda (m)

(lambda (n)
((n (add m)) zero)))

(We can see from this the wisdom of having the binary operators accept one argument at a time.)
It’s easy to see that we can define other additive operators inductively. But how about subtraction?

This seems to create an entirely new level of difficulty. Addition seemed to need the ability to modify the
numeral to apply the first argument one more time, but we found a clever way of applying it “from the
outside”. Subtraction, on the other hand, requires that a procedurenot be applied. . . which is hard enough,
but getting harder still now that we’re shrinking the language.

The solution to this problem is to make the following observation. Consider the pair〈0,0〉. Now apply
the following algorithm. Given such a pair of numbers, create a new pair. The new pair’s left component is
the old pair’s right component; the new pair’s right component is the old pair’s right component incremented
by one. Visually,

initial value : 〈0,0〉
after 1 iteration : 〈0,1〉

after 2 iterations : 〈1,2〉
after 3 iterations : 〈2,3〉
after 4 iterations : 〈3,4〉

and so on.
You might find this procedure rather strange, in that it entirely ignores the left component of each

preceding pair to create the next one in the sequence. Notice, however, that aftern iterations, the left
component holds the valuen−1. Furthermore, observe the operations that we used to obtain these pairs:
creation of an initial pair, pair deconstruction, increment by one, and new pair construction. That is, the
following procedure represents the algorithm applied at each step:

(lambda (p)
(pair (right p)

(succ(right p))))

The following represents the initial value:

(pair zero zero)

If we apply thisn times, then read out the left value of the resulting pair, we get. . .n−1!

pred≡

24.4. ELIMINATING RECURSION 231

(lambda (n)
(left

((n

(lambda (p)
(pair (right p)

(succ(right p)))))

(pair zero zero))))

Once we have subtraction by one, we can implement regular subtraction and other such operations.
That leaves only one arithmetic-related primitive we need to implement factorial, namely Scheme’s

zero?. What does this operator do? Given a representation for zero, it returns true, otherwise false. What
is the one characteristic that distinguishes the numeral for zero from that for all non-zero numbers? The
latter all apply their first argument to their second at least once, while the former does not. Therefore, the
following defineszero?:

iszero≡
(lambda (n)

((n (lambda (ignore) no)) yes))

If the first argument is applied at all, it returns the representation of true; if it never is, then the “zero” value,
the representation of false, results.

Historical aside: These numerals are known as the Church numerals, in honor of their inventor, Alonzo
Church.

Exercise 24.3.1Can you extend this encoding to other kinds of numbers: negative integers, rationals, reals,
complex numbers, . . . ?
Hint : Some of these are easy to encode using pairs of other kinds of numbers.

Exercise 24.3.2Here are two alternate representations of the exponentiation operation. Which one is
faster?

(defineexp1
(lambda (m)

(lambda (n)
((n (mult m)) one))))

(defineexp2
(lambda (m)

(lambda (n)
(n m))))

24.4 Eliminating Recursion

The define construct of Scheme is surprisingly powerful. It not only assigns values to names, it also en-
ables the construction of recursive procedures (otherwise the definition of factorial given above would not

232 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

function). To eliminatedefine, therefore, we must create a way of defining recursive procedures. . . without
recursion! As we do this, we will sometimes encounter expressions that we’re not sure how to write. We
will therefore use the symbol◦ to represent a special value: if the computation ever reaches it, it halts
immediately.

Let’s now try to understand the recursion in factorial in some detail. Suppose, concretely, that we could
not usefact recursively. We would define factorial as:

fact≡
(lambda (n)

(if (zero? n)
1
(∗ n (◦ (sub1 n)))))

This definition is not entirely useless. Indeed, it correctly computes the factorial on the input0. On any
input greater than0, however, the computation terminates uselessly.

We can make a more useful definition by including a copy offact as follows:

fact≡
(lambda (n)

(if (zero? n)
1

(∗ n (

(lambda (n)
(if (zero? n)

1
(∗ n (◦ (sub1 n)))))

(sub1 n)))))

This definition works perfectly well on inputs of0 and 1, but not greater. We can repeat this process
endlessly—a process, not at all coincidentally, reminiscent of creating the proper environment for recursion
in Section 8—but obviously, we will never get thetruedefinition of factorial. So we’ll have to do something
better.

While we’re trying to generate a spark of insight, let’s try to clean up the code above. Instead of relying
on this unspecified◦ operation, we might as well just parameterize over that location in the program:

mk-fact≡
(lambda (f)

(lambda (n)
(if (zero? n)

1
(∗ n (f (sub1 n))))))

The resulting procedure isn’t quite factorial itself, but rather a factorial-maker: given the right value for
the parameter, it will yield the proper factorial procedure. That still begs the question, however, of what to
supply as a parameter.

Let’s go back to our doomed attempt to nest copies of the factorial procedure. This has the advantage
that, until the copies run out, there is alwaysanother copy available. So we have a clearer handle on the
problem now: we need to provide as a parameter something that willcreate another copy upon demand.

24.4. ELIMINATING RECURSION 233

It would seem thatmk-factis just such a creator of copies. So what happens if we feedmk-factas the
argument tomk-fact—

(mk-fact mk-fact)

—to fill the hole where we need a factorial generator? This application results in the procedure

(lambda (f)
(lambda (n)

(if (zero? n)
1
(∗ n (mk-fact(sub1 n))))))

(We’ve just substitutedmk-factfor f in the body ofmk-fact.) We can safely apply this procedure to0 and
obtain1, but if we apply it to any larger input, we get an error:mk-fact is expecting a procedure as its
argument, but here we’re applying it to a number.

Okay, so we cannot applymk-fact to a number. What should we be applying it to? Recall that its
argument,f is supposed to be a generator of copies of factorial. We have also just seen that applyingmk-fact
to itself generates a legal copy of factorial for the base case. This suggests that applyingmk-factto itself
inside the body ofmk-factis likely to be just as useful as applying it to itself outside!

(lambda (n)
(if (zero? n)

1
(∗ n ((mk-fact mk-fact) (sub1 n)))))

That is, we instead need

mk-fact≡
(lambda (f)

(lambda (n)
(if (zero? n)

1
(∗ n ((f f) (sub1 n))))))

such that factorial is ostensibly defined by

(mk-fact mk-fact)

Does that work? Substituting as before, we get

(lambda (n)
(if (zero? n)

1
(∗ n ((mk-fact mk-fact) (sub1 n)))))

This of course means we can substitute the inner application also:

(lambda (n)
(if (zero? n)

234 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

1

(∗ n (

(lambda (n)
(if (zero? n)

1
(∗ n ((mk-fact mk-fact) (sub1 n))))) (sub1 n)))))

and now we can see the recursion unwind: as we need another copy of factorial, the application ofmk-fact
to itself generates a fresh copy. We have now convinced ourselves that this is a satifactory solution to the
problem of defining the “recursive” factorial function without any use of factorial!

To summarize, we have the following definition,

mk-fact≡
(lambda (f)

(lambda (n)
(if (zero? n)

1
(∗ n ((f f) (sub1 n))))))

with factorial defined by

fact≡
(mk-fact mk-fact)

That is, factorial is

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (f)
(lambda (n)

(if (zero? n)
1
(∗ n ((f f) (sub1 n)))))))

(Test this! In a fresh Scheme session, apply this expression directly to numeric values and make sure you
get the factorial of the input as a result. Pretty amazing, huh?)

While this is a correct implementation of factorial, we seem to be writing a lot of code relative to the
recursive version defined usingdefine. Furthermore, we would like to know how much of this solution can
apply to other functions also. With that in mind, let’s try to refactor this code a little. What would welike to
write? As programmers, we would rather not have to keep track of the self-application in the body; that is,
we would rather write

(make-recursive-procedure
(lambda (fact)

(lambda (n)
(if (zero? n)

1
(∗ n (fact (sub1 n)))))))

24.4. ELIMINATING RECURSION 235

which looks almost exactly like the definition created usingdefine. So, how do we get the self-application
out?

Observe that the definition of factorial above is equivalent to this one:

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (f)

(

(lambda (g)
(lambda (n)

(if (zero? n)
1
(∗ n (g (sub1 n))))))

(f f))))

All we have done is introduce a new level of abstraction, bindingg to the self-application off . Note,
however, that the boxed expression is precisely the definition of factorial that we wanted to write, except
that fact is calledg. One more level of abstraction separates the factorial-specific code from the recursive
function generator:

make-recursive-procedure≡
(lambda (p)

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (f)
(p
(f f)))))

In fact, because this code has nothing to do with defining factorial at all, we can renamemk-fact:

make-recursive-procedure≡
(lambda (p)

((lambda (f)
(f f))

(lambda (f)
(p (f f)))))

This is now a generic procedure that creates recursive procedures out of its argument! It is remarkable that
such a procedure even exists; its structure is daunting at first sight, but relatively easy to understand once
you grasp the need for “copies” of a procedure, and that self-application generates as many of these copies
as necessary.

In the literature, the proceduremake-recursive-procedureis known as theY combinator. It is sometimes
also known as a “fixed-point combinator”, because it computes the fixed-point of its argument procedure.

236 CHAPTER 24. HONEY, I SHRUNK THE LANGUAGE

The Lambda Calculus

With the definition of the Y combinator, we have reduced all of Scheme to just three primitives:
procedure definition, procedure application, and variables. With just those three, we have provided
an encoding of all of the rest of the language. This compact little language is the core of what is
known, also for historical reasons, as thelambda calculus. The “calculus” part of the language is
beyond the scope of our study.
In the 1930s, several mathematicians were asking fundamental questions about what could be com-
puted procedurally, and about the relative power of different formalisms. While Alan Turing was
defining his Turing machine formalism, Alonzo Church and several others created an alternate for-
malism: the lambda calculus. These mathematicians were able to demonstrate that several of their
formalisms—particularly these two—were equivalent in expressive power, so theoreticians could
choose one or the other based on convenience and suitability, without worrying about expressive
constraints. (To this day, many choose to use the lambda calculus and its variants since it offers so
much more expressive power than a Turing machine.) Indeed, the fact that so many independently-
derived formalisms had the same expressive power led to the formulation of the Church-Turing
thesis: thatno formal language is more powerful than those defined by Church and Turing (the
lambda calculus and the Turing machine, respectively).

Exercise 24.4.1Type the definition of make-recursive-procedure into Scheme and use it to create a recursive
factorial procedure:

(make-recursive-procedure
(lambda (fact)

(lambda (n)
(if (zero? n)

1
(∗ n (fact (sub1 n)))))))

What do you observe? Explain and correct.

Chapter 25

Semantics

We have been writing interpreters in Scheme in order to understand various features of programming lan-
guages. What if we want to explain our interpreter to someone else? If that person doesn’t know Scheme,
we can’t communicate how our interpreter works. It would be convenient to have some common language
for explaining interpreters. We already have one: math!

Let’s try some simple examples. If our program is a numbern, it just evaluates to some mathematical
representation ofn. We’ll use an̂ to represent thisnumber, whereasn itself will hold the numeral. For
instance, the numeral5 is represented by the number5̂ (note the subtle differences in typesetting!). In other
words, we will write

n⇒ n̂

where we read⇒ as “reduces to”. Numbers are already values, so they don’t need further reduction.
How about addition? We might be tempted to write

{+ l r } ⇒ l̂ + r

In particular, the addition to the left of the⇒ is in the programming language, while the one on the right
happens in mathematics and results in a number. That is, the addition symbol on the left issyntactic. It could
map to any mathematical operation. A particularly perverse language might map it to multiplication, but
more realistically, it is likely to map to addition modulo some some base to reflect fixed-precision arithmetic.
It is the expression on the right that gives it meaning, and in this case it assigns the meaning we would expect
(corresponding, say, to DrScheme’s use of unlimited-precision numbers for integers and rationals).

That said, this definition is unsatisfactory. Mathematical addition only works on numbers, butl andr
might each be complex expressions in need of reduction to a value (in particular, a number) so they can be
added together. We denote this as follows:

l ⇒ l̂v r ⇒ r̂v

{+ l r}⇒ ̂lv + rv

The terms above the bar are called theantecedents, and those below are theconsequents. This rule is just a
convenient way of writing an “if . . . then” expression: it says thatif the conditions in the antecedent hold,
thenthose in the consequent hold. If there are multiple conditions in the antecedent, they must all hold for

237

238 CHAPTER 25. SEMANTICS

the rule to hold. So we read the rule above as:if l reduces tolv, and if r reduces torv, thenadding the
respective expressions results in the sum of their values. (In particular, it makes sense to addlv andrv, since
each is now a number.) A rule of this form is called ajudgment, because based on the truth of the conditions
in the antecedent, it issues a judgment in the consequent (in this case, that the sum will be a particular value).

These rules subtly alsobind names to values. That is, a different way of reading the rule is not as an “if
. . . then” but rather as an imperative: it says “reducel , call the resultlv; reducer, call its resultrv; if these
two succeed, then addlv andrv, and declare the sum the result for the entire expression”. Seen this way,l
andr are bound in the consequent to the sub-expressions of the addition term, whilelv andrv are bound in
the antecedent to the results of evaluation (or reduction). This representation truly is an abstract description
of the interpreter.

Let’s turn our attention to functions. We want them to evaluate to closures, which consist of a name, a
body and an environment. How do we represent a structure in mathematics? A structure is simply a tuple,
in this case a triple. (If we had multiple kinds of tuples, we might use tags to distinguish between them, but
for now that won’t be necessary.) We would like to write

{fun { i} b} ⇒ 〈i,b,???〉

but the problem is we don’t have a value for the environment to store in the closure. So we’ll have to make
the environment explicit. From now on,⇒ will always have a term and an environment on the left, and a
value on the right. We first rewrite our two existing reduction rules:

n,E ⇒ n̂

l ,E ⇒ l̂v r,E ⇒ r̂v

{+ l r},E ⇒ ̂lv + rv

Now we can define a reduction rule for functions:

{fun { i} b} ,E ⇒ 〈i,b,E 〉

Given an environment, we can also look up the value of identifiers:

i,E ⇒ E (i)

All that remains is application. As with addition, application must first evaluate its subexpressions, so
the general form of an application must be as follows:

f ,E ⇒??? a,E ⇒???

{ f a},E ⇒???

What kind of value mustf reduce to? A closure, naturally:

f ,E ⇒ 〈i,b,E ′〉 a,E ⇒???

{ f a},E ⇒???

239

(We’ll useE ′ to represent to closure environment to make clear that it may be different fromE .) We don’t
particularly care what kind of valuea reduces to; we’re just going to substitute it:

f ,E ⇒ 〈i,b,E ′〉 a,E ⇒ av

{ f a},E ⇒???

But what do we write below? We have to evaluate the body,b, in the extended environment; whatever value
it returns is the value of the application. So the evaluation ofb also moves into the antecedent:

f ,E ⇒ 〈i,b,E ′〉 a,E ⇒ av b,???⇒ bv

{ f a},E ⇒ bv

In what environment do we reduce the body? It has to be the environment in the closure; if we useE instead
of E ′, we introduce dynamic rather than static scoping! But additionally, we must extendE ′ with a binding
for the identifier named byi; in particular, it must be bound to the value of the argument. We can write all
this concisely as

f ,E ⇒ 〈i,b,E ′〉 a,E ⇒ av b,E ′[i←av]⇒ bv

{ f a},E ⇒ bv

whereE ′[i←av] means “the environmentE ′ extended with the identifieri bound to the valueav”. If E ′

already has a binding fori, this extension shadows that binding.
The judicious use of names conveys information here. We’re demanding that the value used to extend

the environment must be the same as that resulting from evaluatinga: the use ofav in both places indicates
that. It also places an ordering on operations: clearly the environment can’t be extended untilav is available,
so the argument must evaluate before application can proceed with the function’s body. The choice of two
different names for environments—E andE ′—denotes that the two environments need not be the same.

We call this abig-step operational semantics. It’s asemanticsbecause it ascribes meanings to programs.
(We can see how a small change can result in dynamic instead of static scope and, more mundanely, that the
meaning of+ is given to be addition, not some other binary operation.) It’soperationalbecause evaluation
largely proceeds in a mechanical fashion; we aren’t compiling the entire program into a mathematical object
and using fancy math to reduce it to an answer. Finally, it’sbig-stepbecause⇒ reduces expressions down
to irreducible answers. In contrast, asmall-stepsemantics performs one atomic reduction at a time, rather
like a stepper in a programming environment.

Exercise 25.0.2Extend the semantics to capture conditionals.

Exercise 25.0.3Extend the semantics to capture lists.
Hint : You may want to consider tagging tuples.

Exercise 25.0.4Extend the semantics to capture recursion.

Exercise 25.0.5Alter the semantics to reflect lazy evaluation instead.

240 CHAPTER 25. SEMANTICS

Part X

Types

241

Chapter 26

Introduction

Until now, we’ve largely ignored the problem of program errors. We haven’t done so entirely: if a program-
mer writes

{fun {x}}

we do reject this program, because it isn’t syntactically legal—every function must have a body. But what
if, instead, he were to write

{+ 3
{fun {x} x}}

? Right now, our interpreter might produce an error such as

num-n: not a number

A check deep in the bowels of our interpreter is flagging the use of a non-numeric value in a position
expecting a number.

At this point, we can make the same distinction between the syntactic and meta levels abouterrors as
we did about representations. The error above is an error at thesyntacticlevel,1 because the interpreter
is checking for the correct use of its internal representation. Suppose we had division in the interpreted
language, and the correspondingnum/ procedure failed to check that the denominator was non-zero; then
the interpreter’s behavior would be that of Scheme’s on division-by-zero. If we had expected an error
and Scheme did not flag one (or vice versa), then the interpreter would be unfaithful to the intent of the
interpreted language.

Of course, this discussion about the source of error messages somewhat misses the point: we really
ought to reject this program without ever executing it. But rejecting it is difficult because this program is
legitimate from the perspective of the parser. It’s only illegal from thesemanticviewpoint, it is the meaning,
as opposed to the syntax, of+ that does not accept functions as arguments. Therefore, we clearly need a
more sophisticated layer that checks for the validity of programs.

1Not to be confused with a syntax error!

243

244 CHAPTER 26. INTRODUCTION

How hard is this? Rejecting the example above seems pretty trivial: indeed, it’s so easy, we could almost
build this into the parser (to not accept programs that havesyntacticfunctions as arguments to arithmetic
primitives). But obviously, the problem is more difficult in general. Sometimes it does not seem much
harder: for instance,

{with {f {fun {x} {+ x 1}}}
{+ 3

{f 5}}}

is clearly legal, whereas

{with {f {fun {x}
{fun {y} {+ x y}}}}

{+ 3
{f 5}}}

is not. Here, simply substitutingf in the body seems to be enough. The problem does not quite reduce
to the parsing problem that we had earlier—a function application is necessary to determine the program’s
validity. But consider this program:

{fun {f}
{+ 3

{f 5}}}

Is this program valid? Clearly, it depends on whether or notf , when applied to5, evaluates to a number.
Since this expression may be used in many different contexts, we cannot know whether or not this is legal
without examining each application, which in turn may depend on other substitutions, and so on. In short, it
appears that we will need to run the program just to determine whetherf is always bound to a function, and
one that can accept numbers—but running the program is precisely what we’re trying to avoid!

We now commence the study oftypesandtype systems, which are designed to identify the abuse of types
before executing a program. First, we need to build an intuition for the problems that types can address, and
the obstacles that they face. Consider the following program:

{+ 3
{if0 mystery

5
{fun {x} x}}}

This program executes successfully (and evaluates to8) if mystery is bound to0, otherwise it results in
an error. The value ofmystery might arise from any number of sources. For instance, it may be bound to
0 only if some mathematical statement, such as the Collatz conjecture, is true.2 In fact, we don’t even need
to explore something quite so exotic: our program may simply be

2Consider the functionf (n) defined as follows: Ifn is even, dividen by 2; if odd, compute 3n+1. The Collatz conjecture posits
that, for every positive integern, there exists somek such thatf k(n) = 1. (The sequences demonstrating convergence to 1 are often
quite long, even for small numbers! For instance: 7→ 22→ 11→ 34→ 17→ 52→ 26→ 13→ 40→ 20→ 10→ 5→ 16→ 8
→ 4→ 2→ 1.)

26.1. WHAT ARE TYPES? 245

{+ 3
{if0 {read-number}

5
{fun {x} x}}}

Unless we can read the user’s mind, we have no way of knowing whether this program will execute without
error. In general, even without involving the mystery of mathematical conjectures or the vicissitudes of
users, we cannot statically determine whether a program will halt with an error, because of the Halting
Problem.

This highlights an important moral:

Type systems are always prey to the Halting Problem. Consequently, a type system for a
general-purpose language must always either over- or under-approximate: either it must re-
ject programs that might have run without an error, or it must accept programs that will error
when executed.

While this is a problem in theory, what impact does this have on practice? Quite a bit, it turns out. In
languages like Java, programmersthink they have the benefit of a type system, but in fact many common
programming patterns force programmers to employcastsinstead. Casts intentionally subvert the type
system and leave checking for execution time. This indicates that Java’s evolution is far from complete. In
contrast, most of the type problems of Java are not manifest in a language like ML, but its type systems still
holds a few (subtler) lurking problems. In short, there is still much to do before we can consider type system
design a solved problem.

26.1 What Are Types?

A type is any property of a program that we can establish without executing the program. In particular,
types capture the intuition above that we would like to predict a program’s behavior without executing it.
Of course, given a general-purpose programming language, we cannot predict its behavior entirely without
execution (think of the user input example, for instance). So any static prediction of behavior must neces-
sarily be an approximation of what happens. People conventionally use the termtypeto refer not just to any
approximation, but one that is an abstraction of the set of values.

A type labels every expression in the language, recording what kind of value evaluating that expression
will yield. That is, types describe invariants that hold for all executions of a program. They approximate
this information in that they typically record only whatkind of value the expression yields, not the precise
value itself. For instance, types for the language we have seen so far might includenumber andfunction.
The operator+ consumes only values of typenumber, thereby rejecting a program of the form

{+ 3
{fun {x} x}}

To reject this program, we did not need to know precisely which function was the second argument to+,
be it {fun {x} x} or {fun {x} {fun {y} {+ x y}}} . Since we can easily infer that3 has type

246 CHAPTER 26. INTRODUCTION

number and{fun {x} x} has typefunction, we have all the information we need to reject the program
without executing it.

Note that we are careful to refer tovalid programs, but nevercorrect ones. Types do not ensure the
correctness of a program. They only guarantee that the program does not make certain kinds of errors.
Many errors lie beyond the ambit of a type system, however, and are therefore not caught by it. Most type
systems will not, for instance, distinguish between a program that sorts values in ascending order from one
that sorts them in descending order, yet the difference between those two is usually critical for a program’s
overall correctness.

26.2 Type System Design Forces

Designing a type system involves finding a careful balance between two competing forces:

1. Having more information makes it possible to draw richer conclusions about a program’s behavior,
thereby rejecting fewer valid programs or permitting fewer buggy ones.

2. Acquiring more information is difficult:

• It may place unacceptable restrictions on the programming language.

• It may incur greater computational expense.

• It may force the user to annotate parts of a program. Many programmers (sometimes unfairly)
balk at writing anything beyond executable code, and may thus view the annotations as onerous.

• It may ultimately hit the limits of computability, an unsurpassable barrier. (Often, designers can
surpass this barrier by changing the problem slightly, though this usually moves the task into
one of the three categories above.)

26.3 Why Types?

Type systems are not easy to design, and are sometimes more trouble than they are worth. This is, however,
only rarely true. In general, types form a very valuable first line of defense against program errors. Of
course, a poorly-designed type system can be quite frustrating: Java programming sometimes has this flavor.
A powerful type system such as that of ML, however, is a pleasure to use. ML programmers, for instance,
claim that programs that type correctly often work correctly within very few development iterations.

Types that have not been subverted (by, for instance, casts in Java) perform several valuable roles:

• When type systems detect legitimate program errors, they help reduce the time spent debugging.

• Type systems catch errors in code that is not executed by the programmer. This matters because if a
programmer constructs a weak test suite, many parts of the system may receive no testing. The system
may thus fail after deployment rather than during the testing stage. (Dually, however, passing a type
checker makes many programmers construct poorer test suites—a most undesirable and unfortunate
consequence!)

26.3. WHY TYPES? 247

• Types help document the program. As we discussed above, a type is an abstraction of the values that
an expression will hold. Explicit type declarations therefore provide an approximate description of
code’s behavior.

• Compilers can exploit types to make programs execute faster, consume less space, spend less time in
garbage collection, and so on.

• While no language can eliminate arbitrarily ugly code, a type system imposes a baseline of order that
prevents at least a few truly impenetrable programs—or, at least, prohibitscertain kindsof terrible
coding styles.

248 CHAPTER 26. INTRODUCTION

Chapter 27

Type Judgments

27.1 What They Are

First, we must agree on a language of types. Recall that types need to abstract over sets of values; earlier,
we suggested two possible types,number andfunction. Since those are the only kinds of values we have
for now, let’s use those as our types.

We present a type system as a collection of rules, known formally astype judgments, which describe
how to determine the type of an expression.1 There must be at least one type rule for every kind of syntactic
construct so that, given a program, at least one type rule applies always to every sub-term. Judgments are
usually recursive, and determine an expression’s type from the types of its parts.

The type of any numeral isnumber:
n : number

(read this as saying “any numeraln has typenumber”) and of any function isfunction:

{ f un{i} b} : f unction

but what is the type of an identifier? Clearly, we need atype environment(a mapping from identifiers to
types). It’s conventional to useΓ (the upper-case Greek “gamma”) for the type environment. As with the
value environment, the type environment must appear on the left of every type judgment. All type judgments
will have the following form:

Γ`e : t

wheree is an expression andt is a type, which we read as “Γ proves thatehas typet”. Thus,

Γ`n : number

Γ`{ f un{i} b} : f unction

Γ`i : Γ(i)

1A type systemfor us is really a collection of types, the corresponding judgments that ascribe types to expressions,and an an
algorithm for perform this ascription. For many languages a simple algorithm suffices, but as languages get more sophisticated,
devising this algorithm can become quite difficult, as we will see in Section 32.

249

250 CHAPTER 27. TYPE JUDGMENTS

The last rule simply says that the type of identifieri is whatever type it is bound to in the environment.
This leaves only addition and application. Addition is quite easy:

Γ`l : number Γ`r : number

Γ`{+ l r} : number

All this leaves is the rule for application. We know it must have roughly the following form:

Γ` f : f unction Γ`a : τa · · ·
Γ`{ f a} :???

whereτa is the type of the expressiona (we will often useτ to name an unknown type).
What’s missing? Compare this against the semantic rule for applications. There, the representation of a

function held an environment to ensure we implemented static scoping. Do we need to do something similar
here?

For now, we’ll take a much simpler route. We’ll demand that the programmerannotateeach function
with the type it consumes and the type it returns. This will become part of a modified function syntax. That
is, a programmer might write

{fun {x : number} : number
{+ x x}}

where the two type annotations are now required: the one immediately after the argument dictates what
type of value the function consumes, while that after the argument but before the body dictates what type it
returns. We must change our type grammar accordingly; to represent such types, we conventionally use an
arrow (→), where the type at the tail of the arrow represents the type of the argument and that at the arrow’s
head represents the type of the function’s return value:

type::= number
| (type→ type)

(notice that we have dropped the overly naı̈ve typefunction from our type language). Thus, the type of the
function above would be(number→number). The type of the outer function below

{fun {x : number} : (number -> number)
{fun {y : number} : number

{+ x y}}}

is (number→(number→number)), while the inner function has typenumber→number.
Equipped with these types, the problem of checking applications becomes easy:

Γ` f : (τ1→τ2) Γ`a : τ1

Γ`{ f a} : τ2

27.2. HOW TYPE JUDGMENTS WORK 251

That is, if you provide an argument of the type the function is expecting, it will provide a value of the type
it promises. Notice how the judicious use of the same type nameτ1 andτ2 accurately captures the sharing
constraints we desire.

There is one final bit to the introductory type puzzle: how can we be sure the programmer will not lie?
That is, a programmer might annotate a function with a type that is completely wrong (or even malicious).
(A different way to look at this is, having rid ourselves of the typefunction, we must revisit the typing rule
for a function declaration.) Fortunately, we can guard against cheating and mistakes quite easily: instead of
blindly accepting the programmer’s type annotation, we check it:

Γ[i←τ1]`b : τ2

Γ`{ f un{i : τ1} : τ2 b} : (τ1→τ2)

This rule says that we will believe the programmer’s annotation if the body has typeτ2 when we extend the
environment withi bound toτ1.

There is an important relationship between the type judgments for function declaration and for applica-
tion:

• When typing the function declaration, weassumethe argument will have the right type andguarantee
that the body, or result, will have the promised type.

• When typing a function application, weguaranteethe argument has the type the function demands,
andassumethe result will have the type the function promises.

This interplay between assumptions and guarantees is quite crucial to typing functions. The two “sides”
are carefully balanced against each other to avoid fallacious reasoning about program behavior. In addition,
just asnumber does not specify which number will be used, a function type does not limit which of many
functions will be used. If, for instance, the type of a function isnumber→number, the function could be
either increment or decrement (or a lot else, besides). The type checker is able to reject misuse ofany
function that has this type without needing to know which actual function the programmer will use.

Exercise 27.1.1It’s possible to elide the return type annotation on a function declaration, leaving only the
argument type annotation. Do you see how?

Exercise 27.1.2Because functions can be nested within each other, a function body may not be closed at
the time of type-checking it. But we don’t seem to capture the definition environment for types the way we
did for procedures. So how does such a function definition type check? For instance, how does the second
example of a typed procedure above pass this type system?

27.2 How Type Judgments Work

Let’s see how the set of type judgments described above accept and reject programs.

1. Let’s take a simple program,

252 CHAPTER 27. TYPE JUDGMENTS

{+ 2
{+ 5 7}}

We stack type judgments for this term as follows:

/0`2 : number
/0`5 : number /0`7 : number

/0`{+ 5 7} : number

/0`{+ 2 {+ 5 7}} : number

This is atype judgment tree.2 Each node in the tree uses one of the type judgments to determine the
type of an expression. At the leaves (the “tops”) are, obviously, the judgments that do not have an
antecedent (technically known as theaxioms); in this program, we only use the axiom that judges
numbers. The other two nodes in the tree both use the judgment on addition. The expression variables
in the judgments (such asl andr for addition) are replaced here by actual expressions (such as2, 5,
7 and{+ 5 7}): we can employ a judgment only when the pattern matches consistently. Just as we
begin evaluation in the empty environment, we begin type checking in the emptytypeenvironment;
hence we have /0 in place of the genericΓ.

Observe that at the end, the result is the typenumber, not the value14.

2. Now let’s examine a program that contains a function:

{{fun {x : number} : number
{+ x 3}}

5}

The type judgment tree looks as follows:

[x←number]`x : number [x←number]`3 : number

[x←number]`{+ x 3 } : number

/0`{fun {x : number } : number {+ x 3 }} : (number→number)
/0`5 : number

/0`{{fun {x : number } : number {+ x 3 }} 5} : number

When matching the sub-tree at the top-left, where we have justΓ in the type judgment, we have the
extended environment in the actual derivation tree. We must use the same (extended) environment
consistently, otherwise the type judgment for addition cannot be applied. The set of judgments used
to assign this type is quite different from the set of judgments we would use to evaluate the program:
in particular, we type “under thefun ”, i.e., we go into the body of thefun even if the function
is never applied. In contrast, we would never evaluate the body of a function unless and until the
function was applied to an actual parameter.

3. Finally, let’s see what the type judgments do with a program that we know to contain a type error:

2If it doesn’t look like a tree to you, it’s because you’ve been in computer science too long and have forgotten that real trees
grow upward, not downward. Botanically, however, most of these “trees” are really shrubs.

27.2. HOW TYPE JUDGMENTS WORK 253

{+ 3
{fun {x : number} : number

x}}

The type judgment tree begins as follows:

???

/0`{+ 3 {fun {x : number } : number x }}} : ???

We don’t yet know what type (if any) we will be able to ascribe to the program, but let’s forge
on: hopefully it’ll become clear soon. Since the expression is an addition, we should discharge the
obligation that each sub-expression must have numeric type. First for the left child:

/0`3 : number ???

/0`{+ 3 {fun {x : number } : number x }}} : ???

Now for the right sub-expression. First let’s write out the sub-expression, then determine its type:

/0`3 : number /0`{fun {x : number } : number x }} :???

/0`{+ 3 {fun {x : number } : number x }}} : ???

As per the judgments we have defined, any function expression must have an arrow type:

/0`3 : number /0`{fun {x : number } : number x }} : (???→???)
/0`{+ 3 {fun {x : number } : number x }}} : ???

This does the type checker no good, however, because arrow types are distinct from numeric types,
so the resulting tree above does not match the form of the addition judgment (no matter what goes in
place of the two ???’s). To match the addition judgment the tree must have the form

/0`3 : number /0`{fun {x : number } : number x }} : number

/0`{+ 3 {fun {x : number } : number x }}} : ???

Unfortunately, we do not have any judgments that let us conclude that a syntactic function term can
have a numeric type. So this doesn’t work either.

In short, we cannot construct a legal type derivation tree for the original term. Notice that this is not
the same as saying that the tree directly identifies an error: it does not. A type error occurs when we
areunable to construct a type judgment tree.

This is quite subtle: To mark a program as erroneous, we mustprove that no type derivation tree can
possibly exist for that term. But perhaps some sequence of judgments that we haven’t thought of exists
that (a) is legal and (b) correctly ascribes a type to the term! To avoid this we may need to employ quite
a sophisticated proof technique, even human knowledge. (In the third example above, for instance, we
say, “we do not have any judgments that let us conclude that a syntactic function term can have a numeric
type”. But how do we know this is true? We can only conclude this by carefully studying the structure

254 CHAPTER 27. TYPE JUDGMENTS

of the judgments. A computer program might not be so lucky, and in fact may get stuck endlessly trying
judgments!)

This is why a set of type judgments alone does not suffice: what we’re really interested in is a type system
that includes an algorithm for type-checking. For the set of judgments we’ve written here, and indeed for the
ones we’ll study initially, a simple top-down, syntax-directed algorithm suffices for (a) determining the type
of each expression, and (b) concluding that some expressions manifest type errors. As our type judgments
get more sophisticated, we will need to develop more complex algorithms to continue producing useful type
systems.

Chapter 28

Typing Control

28.1 Conditionals

Let’s expand our language with a conditional construct. We can useif0 like before, but for generality it’s
going to be more convenient to have a proper conditional and a language of predicates. The type judgment
for the conditional must have the following form:

Γ`c :??? Γ`t :??? Γ`e :???

Γ`{if c t e} :???

wherec is the conditional,t the “then”-expression, ande the “else”-expression.
Let’s begin with the type forc. What should it be? In a language like Scheme we permit any value, but

in a stricter, typed language, we might demand that the expression always evaluate to a boolean. (After all,
if the point is to detect errors sooner, then it does us no good to be overly lax in our type rules.) However,
we don’t yet have such a type in our type language, so we must first extend that language:

type ::=number
| boolean
| (type→ type)

Armed with the new type, we can now ascribe a type to the conditional expression:

Γ`c : boolean Γ`t :??? Γ`e :???

Γ`{if c t e} :???

Now what of the other two, and of the result of the expression? One option is, naturally, to allow both arms
of the conditional to have whatever types the programmer wants:

Γ`c : boolean Γ`t : τ1 Γ`e : τ2

Γ`{if c t e} :???

255

256 CHAPTER 28. TYPING CONTROL

By using two distinct type variables, we do not demand any conformity between the actual types of the
arms. By permitting this flexibility, however, we encounter two problems. The first is that it isn’t clear what
type to ascribe to the expression overall.1 Second, it reduces our ability to trap program errors. Consider a
program like this:

{+ 3
{if {is-zero mystery}

5
{fun {x} x}}}

Because we know nothing aboutmystery , we must conservatively conclude that itmight be non-zero,
which means eventually we are going to see a type error that we only catch at run-time. But why permit the
programmer to write such a program at all? We might as well prevent it from ever executing. Therefore, we
use the following rule to type conditionals:

Γ`c : boolean Γ`t : τ Γ`e : τ

Γ`{if c t e} : τ

Notice that by forcing the two arms to have the same type, we can assign that common type to the entire
expression, so the type system does not need to know which branch was chosen on a given execution: the
type remains the same.

Having added conditionals and the typeboolean isn’t very useful yet, because we haven’t yet introduced
predicates to use in the test position of the conditional. Indeed, we can easily see that this is true becuase
we have not yet written a function type withboolean on the right-hand side of the arrow. You can, however,
easily imagine adding procedures such asis-zero , with typenumber→boolean.

28.2 Recursion

Now that we have conditionals, if we can also implement recursion, we would have a Turing-complete
language that is quite useful for programming (for instance, with a little more arithmetic support, we could
write factorial!). So the next major piece of the puzzle is typing recursion.

Given the languageTFAE (typedFAE), can we write a recursive program? Let’s try to write an infinite
loop. Our first attempt might be thisFAE program

{with {f {fun {i}
{f i}}}

{f 10}}

which, expanded out, becomes

{{fun {f}
{f 10}}

{fun {i}
{f i}}}

1It’s tempting to create a new kind of type, aunion type, so that the type of the expression isτ1∪ τ2. This has far-reaching
consequences, however, including a significant reduction in type-based guarantee of program reliability.

28.2. RECURSION 257

When we place type annotations on this program, we get

{{fun {f : (num -> num)} : num
{f 10}}

{fun {i : num} : num
{f i}}}

These last two steps don’t matter, of course. This program doesn’t result in an infinite loop, because thef
in the body of the function isn’t bound, so after the first iteration, the program halts with an error.

As an aside, this error is easier to see in the typed program: when the type checker tries to check the
type of the annotated program, it finds no type forf on the last line. Therefore, it would halt with a type
error, preventing this erroneous program from ever executing.2

Okay, that didn’t work, but we knew about that problem: we saw it in Section 8 when introducing
recursion. At the time, we asked you to consider whether it was possible to write a recursive function
without an explicit recursion construct, and Section 24 shows that it is indeed possible. The essence of the
solution presented there is to useself-application:

{with {omega {fun {x}
{x x}}}

{omega omega}}

How does this work? Simply substitutingomega with the function, we get

{{fun {x} {x x}}
{fun {x} {x x}}}

Substituting again, we get

{{fun {x} {x x}}
{fun {x} {x x}}}

and so on. In other words, this program executes forever. It is conventional to call the functionω (lower-case
Greek “omega”), and the entire expressionΩ (upper-case Greek “omega”).3

Okay, soΩ seems to be our ticket. This is clearly an infinite loop inFAE. All we need to do is convert
it to TFAE, which is simply a matter of annotating all procedures. Since there’s only one,ω, this should be
especially easy.

To annotateω, we must provide a type for the argument and one for the result. Let’s call the argument
type, namely the type ofx , τa and that of the resultτr , so thatω : τa→τr . The body ofω is {x x} . From
this, we can conclude thatτa must be a function (arrow) type, since we usex in the function position of an
application. That is,τa has the formτ1→τ2, for someτ1 andτ2 yet to be determined.

2In this particular case, of course, a simpler check would prevent the erroneous program from starting to execute, namely
checking to ensure there are no free variables.

3Strictly speaking, it seems anachronistic to refer to the lower and upper “case” for the Greek alphabet, since the language
predates moveable type in the West by two millennia.

258 CHAPTER 28. TYPING CONTROL

What can we say aboutτ1 andτ2? τ1 must be whatever typex ’s argument has. Sincex ’s argument is
itself x , τ1 must be the same as the type ofx . We just said thatx has typeτa. This immediately implies that

τa = τ1→τ2 = τa→τ2

In other words,
τa = τa→τ2

What type can we write that satisfies this equation? In fact, no types in our type language can satisify
it, because this type is recursive without a base case. Any type we try to write will end up being infinitely
long. Since we cannot write an infinitely long type (recall that we’re trying to annotateω, so if the type is
infinitely long, we’d never get around to finishing the text of the program), it follows by contradiction4 that
ω andΩ cannot be typed in our type system, and therefore their corresponding programs are not programs
in TFAE. (We are being rather lax here—what we’ve provided is informal reasoning, not a proof—but such
a proof does exist.)

28.3 Termination

We concluded our exploration of the type ofΩ by saying that the annotation on the argument ofω must be
infinitely long. A curious reader ought to ask, is there any connection between the boundlessness of the type
and the fact that we’re trying to perform a non-terminating computation? Or is it mere coincidence?

TFAE, which is a first cousin of a language you’ll sometimes see referred to as thesimply-typedlambda
calculus,5 enjoys a rather interesting property: it is said to bestrongly normalizing. This intimidating term
says of a programming language that no matter what program you write in the language, it willalways
terminate!

To understand why this property holds, think about our type language. The only way to create compound
types is through the function constructor. But every time we apply a function, we discharge one function
constructor: that is, we “erase an arrow”. Therefore, after a finite number of function invocations, the
computation must “run out of arrows”.6 Because only function applications can keep a computation running,
the computation is forced to terminate.

This is avery informal argument for why this property holds—it is cetainly far from a proof (though,
again, a formal proof of this property do exist). However, it does help us see why we must inevitably have
bumped into an infinitely long type while trying to annotate the infinite loop.

What good is a language without infinite loops? There are in fact lots of programs that we would like to
ensure willnot run forever. These include:

• real-time systems

• program linkers

4We implicitly assumed it would be possible to annotateω and explored what that type annotation would be. The contradiction
is that no such annotation is possible.

5Why “simply”? You’ll see what other options there are next week.
6Oddly, this never happens to mythological heroes.

28.4. TYPED RECURSIVE PROGRAMMING 259

• packet filters in network stacks

• client-side Web scripts

• network routers

• photocopier (and other) device initialization

• configuration files (such as Makefiles)

and so on. That’s what makes the simply-typed lambda calculus so neat: instead of pondering and test-
ing endlessly (so to speak), we get mathematical certitude that, with a correct implementation of the type
checker, no infinite loops can sneak past us. In fact, the module system of the SML programming language
is effectively an implementation of the simply-typed lambda calculus, thereby guaranteeing that no matter
how complex a linking specification we write, the linking phase of the compiler will always terminate.

Exercise 28.3.1We’ve been told that the Halting Problem is undecidable. Yet here we have a language
accompanied by a theorem that proves that all programs will terminate. In particular, then, the Halting
Problem is not only very decidable, it’s actually quite simple: In response to the question “Does this program
halt”, the answer isalways“Yes!” Reconcile.

Exercise 28.3.2While the simply-typed lambda calculus is fun to discuss, it may not be the most pliant
programming language, even as the target of a compiler (much less something programmers write explicitly).
Partly this is because it doesn’t quite focus on the right problem. To a Web browsing user, for instance, what
matters is whether a downloaded program runsimmediately; five minutes isn’t really distinguishable from
non-termination.

Consequently, a better variant of the lambda calculus might be one whose types reflectresources, such
as time and space. The “type” checker would then ask the user running the program for resource bounds,
then determine whether the program can actually execute within the provided resources. Can you design
and implement such a language? Can you write useful programs in it?

28.4 Typed Recursive Programming

Strong normalization says we must provide an explicit recursion construct. To do this, we’ll simply reintro-
duce ourrec construct to define the languageTRFAE. TheBNF for the language is

<TRFAE> ::= <num>
| {+ <TRFAE> <TRFAE>}
| {fun {<id> : <type>} : <type> <TRFAE>}
| {<TRFAE> <TRFAE>}
| {rec {<id> : <type> <TRFAE>} <TRFAE>}

where

<type> ::= number
| (<type> -> <type>)

260 CHAPTER 28. TYPING CONTROL

(We’ll leave the conditionals and booleans out for now, because it’s so easy to add them back in when
necessary.) Note that therec construct now needs an explicit type annotation also.

What is the type judgment forrec ? It must be of the form

???

Γ`{rec {i : τi v} b} : τ

since we want to conclude something about the entire term. What goes in the antecedent? We can determine
this more easily by realizing that arec is a bit like an immediate function application. So just as with
functions, we’re going to haveassumptionsandguarantees—just both in the same rule.

We want to assume thatτi is a legal annotation, and use that to check the body; but we also want to
guarantee thatτi is a legal annotation. Let’s do them in that order. The former is relatively easy:

Γ[i←τi]`b : τ ???

Γ`{rec {i : τi v} b} : τ

Now let’s hazard a guess about the form of the latter:

Γ[i←τi]`b : τ Γ`v : τ

Γ`{rec {i : τi v} b} : τ

But what the structure of the term named byv? Surely it has references to the identifier named byi in it, but
i is almost certainly not bound inΓ (and even if it is, it’s not bound to the value we want fori). Therefore,
we’ll have to extendΓ with a binding for i—not surprising, if you think about the scope ofi in a rec
term—to checkv also:

Γ[i←τi]`b : τ Γ[i←τi]`v : τ

Γ`{rec {i : τi v} b} : τ

Is that right? Do we wantv to have typeτ, the type of the entire expression? Not quite: we want it to have
the type we promised it would have, namelyτi :

Γ[i←τi]`b : τ Γ[i←τi]`v : τi

Γ`{rec {i : τi v} b} : τ

Now we can understand how the typing of recursion works. We extend the environment not once, but
twice. The extension to typeb is the one thatinitiates the recursion; the extension to typev is the one that
sustainsit. Both extensions are therefore necessary. And because a type checker doesn’t actually run the
program, it doesn’t need an infinite number of arrows. When type checking is done and execution begins,
the run-time system does, in some sense, need “an infinite quiver of arrows”, but we’ve already seen how to
implement that in Section 9.

Exercise 28.4.1Define theBNF entry and generate a type judgment forwith in the typed language.

Exercise 28.4.2Typing recursion looks deceptively simple, but it’s actually worth studying in a bit of detail.
Take a simple example such asΩ and work through the rules:

28.4. TYPED RECURSIVE PROGRAMMING 261

• WriteΩ with type annotations so it passes the type checker. Draw the type judgment tree to make sure
you understand why this version ofΩ types.

• Does the expression named by v inrec have to be a procedure? Do the typing rules forrec depend
on this?

262 CHAPTER 28. TYPING CONTROL

Chapter 29

Typing Data

29.1 Recursive Types

29.1.1 Declaring Recursive Types

We saw in the previous lecture howrec was necessary to write recursiveprograms. But what about defining
recursivetypes? Recursive types are fundamental to computer science: even basic data structures like lists
and trees are recursive (since the rest of a list is also a list, and each sub-tree is itself a tree).

Suppose we try to type the program

{rec {length : ???
{fun {l : ???} : number

{if {empty? l}
0
{+ 1 {length {rest l}}}}}}

{length {numCons 1 {numCons 2 {numCons 3 numEmpty}}}}}

What should we write in place of the question marks?
Let’s consider the type ofl . What kind of value can be an argument tol ? Clearly a numeric cons,

because that’s the argument supplied in the first invocation oflength . But eventually, a numeric empty is
passed tol also. This meansl needs to havetwo types: (numeric) cons and empty.

In languages like ML (and Java), procedures do not consume arguments of more than one distinct type.
Instead, they force programmers to define a new type that encompasses all the possible arguments. This is
precisely what a datatype definition, of the kind we have been writing in Scheme, permits us to do. So let’s
try to write down such a datatype in a hypothetical extension to our (typed) implemented language:

{datatype numList
{[numEmpty]

[numCons {fst : number}
{rst : ???}]}

{rec {length : (numList -> number) ...}
{length ...}}}

263

264 CHAPTER 29. TYPING DATA

We assume that a datatype declaration introduces a collection ofvariants, followed by an actual body that
uses the datatype. What type annotation should we place onrst ? This should be precisely the new type we
are introducing, namelynumList .

A datatype declaration therefore enables us to do a few distinct things all in one notation:

1. Give names to new types.

2. Introduce conditionally-defined types (variants).

3. Permit recursive definitions.

If these are truly distinct, we should consider whether there are more primitive operators that we may provide
so a programmer can mix-and-match them as necessary (“Programming languages should be designed not
by piling feature on top of feature, but by removing the weaknesses and restrictions that make additional
features appear necessary”).

But how distinct are these three operations, really? Giving a type a new name would be only so useful
if the type were simple (for instance, creating the namebool as an alias forboolean may be convenient,
but it’s certainly not conceptually significant), so this capability is most useful when the name is assigned to
a complex type. Recursion needs a name to use for declaring self-references, so it depends on the ability to
introduce a new name. Finally, well-founded recursion depends on having both recursive and non-recursive
cases, meaning the recursive type must be defined as a collection of variants (of which at least one is not
self-referential). So the three capabilities coalesce very nicely.

As you may have noticed above, the datatypes we have introduced in our typed language are a bit
different from those we’re using in Scheme. Our Scheme datatypes are defined at the top-level, while those
in the implemented language enclose the expressions that refer to them. This is primarily to make it easier
to deal with the scope of the introduced types. Obviously, a full-fledged language (like ML and Haskell)
permits apparently top-level datatype declarations, but we’ll make this simplifying assumption here.

29.1.2 Judgments for Recursive Types

Let’s consider another example of a recursive type: a family tree.

{datatype FamilyTree
{[unknown]

[person {name : string}
{mother : FamilyTree}
{father : FamilyTree}]}

...}

This data definition allows us to describe as much of the genealogy as we know, and terminate the construc-
tion when we reach an unknown person. What type declarations ensue from this definition?

unknown:→FamilyTree

person: string×FamilyTree×FamilyTree→FamilyTree

29.1. RECURSIVE TYPES 265

This doesn’t yet give us a way of distinguishing between the two variants, and of selecting the fields in each
variant. In Scheme, we usetype-caseto perform both of these operations. A corresponding case dispatcher
for the above datatype might look like

{FamilyTree-cases v
[{unknown} ...]
[{person n m f} ...]}

Its pieces would be typed as follows:

Γ`v : FamilyTree Γ`e1 : τ Γ[n←string,m←FamilyTree, f←FamilyTree]`e2 : τ

Γ`{FamilyTree-cases v{[unknown] e1} {[person n m f] e2}} : τ

In other words, to determine the type of the entireFamilyTree-cases expression,τ, we first ensure that
the value being dispatched is of the right type. Then we must make sure each branch of the switch returns a
τ.1 We can ensure that by checking each of the bodies in the right type environment. Becauseunknown has
no fields, itscases branch binds no variables, so we checke1 in Γ. In the branch forperson , however,
we bind three variables, so we must check the type ofe2 in a suitably extendedΓ.

Though the judgment above is for a very specific type declaration, the general principle should be clear
from what we’ve written. Effectively, the type checker introduces a new type rule for each typedcases
statement based on the type declaration at the time it sees the declaration. Writing the judgment above in
terms of subscripted parameters is tedious but easy.

Given the type rules above, consider the following program:

{datatype FamilyTree
{[unknown]

[person {name : string}
{mother : FamilyTree}
{father : FamilyTree}]}

{person "Mitochondrial Eve" {unknown} {unknown}}}

What is the type of the expression in the body of the datatype declaration? It’sFamilyTree. But when the
value escapes from the body of the declaration, how can we access it any longer? (We assume that the type
checker renames types consistently, soFamilyTreein one scope is different fromFamilyTreein another
scope—just because the names are the same, the types should not conflate.) It basically becomes anopaque
typethat is no longer usable. This does not appear to be very useful at all!2

At any rate, the type checker permitted a program that is quite useless, and we might want to prevent
this. Therefore, we could place the restriction that the type defined in the datatype (in this case,FamilyTree)
should be different from the type of the expression bodyτ. This prevents programmers from inadvertently
returning values that nobody else can use.

1Based on the preceding discussion, if the two cases needed to return different types of values, how would you address this need
in a language that enforced the type judgment above?

2Actually, you could use this to define the essence of a module or object system. These are calledexistential types. But we
won’t study them further in this course.

266 CHAPTER 29. TYPING DATA

Obviously, this restriction doesn’t reach far enough. Returning a vector ofFamilyTreevalues avoids the
restriction above, but the effect is the same: no part of the program outside the scope of the datatype can use
these values. So we may want a more stringent restriction: the type being differentshould not appear free
in τ.

This restriction may be overreaching, however. For instance, a programmer might define a new type,
and return a package (a vector, say) consisting of two values: an instance of the new type, and a procedure
that accesses the instances. For instance,

{datatype FamilyTree
{[unknown]

[person {name : string}
{mother : FamilyTree}
{father : FamilyTree}]}

{with {unknown-person : FamilyTree {unknown}}
{vector

{person "Mitochondrial Eve"
unknown-person
unknown-person}

{fun {v : FamilyTree} : string
{FamilyTree-cases v

[{unknown} {error ...}]
[{person n m f} n]}}}}}}

In this vector, the first value is an instance ofFamilyTree, while the second value is a procedure of type

FamilyTree→string

Other values, such asunknown-person , are safely hidden from access. If we lift the restriction of the
previous paragraph, this becomes a legal pair of values to return from an expression. Notice that the pair in
effect forms anobject: you can’t look into it, so the only way to access it is with the “public” procedure.
Indeed, this kind of type definition sees use in defining object systems.

That said, we still don’t have a clear description of what restriction to affix on the type judgment for
datatypes. Modern programming languages address this quandary by affixing no restriction at all. Instead,
they effectively force all type declarations to be at the “top” level. Consequently, no type name is ever
unbound, so the issues of this section do not arise. When we do need to restrict access, we employ module
systems to delimit the scope of type bindings.

29.1.3 Space for Datatype Variant Tags

One of the benefits programmers incur from using datatypes—beyond the error checking—is slightly better
space consumption. (Note: “better space consumption” = “using less space”.) Whereas previously we
needed tags that indicate both the typeand the variant (as when we wrote ’num-empty and ’num-cons), we
now need to storeonly the variant. Why? Because the type checker statically ensures that we won’t pass the
wrong kind of value to procedures! Therefore, the run-time system needs to use only as many bits as are

29.1. RECURSIVE TYPES 267

necessary to distinguish betweenall the variants of at type, rather than all datatypes. Since the number of
variants is usually quite small, of the order of 3-4, the number of bits necessary for the tags is usually small
also.

We are now taking a big risk, however. In the liberal tagging regime, where we use both type and
variant tags, we can be sure a program will never execute on the wrong kind of data. But if we switch to a
more liberal tagging regime—one that doesn’t store type tags also—we run a huge risk. If we perform an
operation on a value of the wrong type, we may completely destroy our data. For instance, suppose we can
somehow pass aNumListto a procedure expecting aFamilyTree. If the FamilyTree-cases operation
looks only at the variant bits, it could end up accessing anumConsas if it were aperson . But anumCons
has only two fields; when the program accesses the third field of this variant, it is essentially getting junk
values. Therefore, we have to be very careful performing these kinds of optimizations. How can we be sure
they are safe?

268 CHAPTER 29. TYPING DATA

Chapter 30

Type Soundness

We would like a guarantee that a program that passes a type checker will never exhibit certain kinds of errors
when it runs. In particular, we would like to know that the type system did indeed abstract over values: that
running the type checkercorrectly predicted(up to the limits of the abstraction) what the program would
do. We call this property of a type systemsoundness of type systemtype soundnesstype soundness:1

For all programsp, if the type ofp is τ, thenp will evaluate to a value that has typeτ.

Note that the statement of type soundnessconnects types with execution. This tells the user that the type
system is not some airy abstraction: what it predicts has bearing on practice, namely on the program’s
behavior when it eventually executes.

We have to be a bit more careful about how we define type soundness. For instance, we say above
(emphasis added) “p will evaluate to a value such that . . . ”. But what if the program doesn’t terminate? So
we must recast this statement to say

For all programsp, if the type ofp is τ andp evaluates tov, thenv : τ.2

Actually, this isn’t quite true either. What if the program executes an expression like (first empty)? There
are a few options open to the language designer:

• Return a value such as−1. We hope you cringe at this idea! It means a program that fails to check
return values everywhere will produce nonsensical results. (Such errors are common in C programs,
where operators likemalloc and fopen return special values but programmers routinely forget
to check them. Indeed, many of these errors lead to expensive, frustrating and threatening security
violations.)

• Diverge, i.e., go into an infinite loop. This approach is used by theoreticians (study the statement of
type soundness carefully and you can see why), but as software engineers we should soundly (ahem)
reject this.

1The term “soundness” comes from mathematical logic.
2We could write this more explicitly as: ‘For all programsp, if the type checker assignsp the typeτ, and the semantics say that

p evaluates to a valuev, then the type checker will also assignv the typeτ.”

269

270 CHAPTER 30. TYPE SOUNDNESS

• Raise an exception. This is the preferred modern solution.

Raising exceptions means the program does not terminate with a value, nor does it not terminate. We must
therefore refine this statement still further:

For all programsp, if the type ofp is τ, p will, if it terminates, either evaluate to a valuev such
thatv : τ, or raise one of a well-defined set of exceptions.

The exceptions are a bit of a cop-out, because we can move arbitrarily many errors into that space. In
Scheme, for instance, the trivial type checker rejects no programs, and all errors fall under the exceptions.
In contrast, researchers work on very sophisticated languages where some traditional actions that would
raise an exception (such as violating array bounds) instead become type errors. This last phrase of the type
soundness statement therefore leaves lots of room for type system design.

As software engineers, we should care deeply about type soundness. To paraphrase Robin Milner, who
first proved a modern language’s soundness (specifically, for ML),

Well-typed programs do not go wrong.

That is, a program that passes the type checker (and is thus “well-typed”) absolutely cannot exhibit certain
classes of mistakes.3

Why is type soundness not obvious? Consider the following simple program (the details of the numbers
aren’t relevant):

{if0 {+ 1 2}
{{fun {x : number} : number {+ 1 x}} 7}
{{fun {x : number} : number {+ 1 {+ 2 x}}} 1}}

During execution, the program will explore only one branch of the conditional:

1, /0⇒ 1 2 , /0⇒ 2

{+ 1 2}, /0⇒ 3

...

{{fun ... } 1}}, /0⇒ 4

{if0 {+ 1 2} {{fun ... } 7} {{fun ... } 1}}, /0⇒ 4

but the type checker must explore both:

/0`1 : number /0`2 : number

/0`{+ 1 2} : number

...

/0`{{fun ... } 7} : number

...

/0`{{fun ... } 1} : number

/0`{if0 {+ 1 2} {{fun ... } 7} {{fun ... } 1}} : number

Furthermore, even for each expression, the proof trees in the semantics and the type world will be quite
different (imagine if one of them contains recursion: the evaluator must iterate as many times as necessary
to produce a value, while the type checker examines each expression only once). As a result, it isfar from

3The term “wrong” here is misleading. It refers to a particular kind of value, representing an erroneous configuration, in the
semantics Miler was using; in that context, this slogan is tongue-in-cheek. Taken out of context, it is misleading, because a well-
typed program can still go wrong in the sense of producing erroneous output.

271

obviousthat the two systems will have any relationship in their answers. This is why a theorem is not only
necessary, but sometimes also difficult to prove.

Type soundness is, then, really a claim that the type system and run-time system (as represented by the
semantics) are in sync. The type system erects certain abstractions, and the theorem states that the run-time
system mirrors those abstractions. Most modern languages, like ML and Java, have this flavor.

In contrast, C and C++do not have sound type systems. That is, the type system may define certain
abstractions, but the run-time system does not honor and protect these. (In C++ it largely does for object
types, but not for types inherited from C.) This is a particularly insidious kind of language, because the static
type system lulls the programmer into thinking it will detect certain kinds of errors, but it fails to deliver on
that promise during execution.

Actually, the reality of C is much more complex: C hastwo different type systems. There is one type
system (with types such asint , double and even function types) at the level of the program, and a
different type system, definedsolelyby lengths of bitstrings, at the level of execution. This is a kind of
“bait-and-switch” operation on the part of the language. As a result, it isn’t even meaningful to talk about
soundness for C, because the static types and dynamic type representations simply don’t agree. Instead,
the C run-time system simply interprets bit sequences according to specified static types. (Procedures like
printf are notorious for this: if you ask to print using the specifier%s, printf will simply print a
sequence of characters until it hits a null-teriminator: never mind that the value you were pointing to was
actually a double! This is of course why C is very powerful at low-level programming tasks, but how often
do you actually need such power?)

To summarize all this, we introduce the notion oftype safety:

Type safetyis the property that no primitive operation is ever applied to values of the wrong
type.

By primitive operation we mean not only addition and so forth, but also procedure application. In short,
a safe language honors the abstraction boundaries it erects. Since abstractions are crucial for designing
and maintaining large systems, safety is a key software engineering attribute in a language. (Even most
C++ libraries are safe, but the problem is you have to be sure no legacy C library isn’t performing unsafe
operations, too.) Using this concept, we can construct the following table:

statically checked not statically checked
type safe ML, Java Scheme

type unsafe C, C++ assembly

The important thing to remember is, due to the Halting Problem, some checks simply can never be performed
statically; something must always be deferred to execution time. The trade-off in type design is to minimize
the time and space consumed by these objects during execution (and, for that matter, how many guarantees
a type system can tractably give a user)—in particular, in shuffling where the set of checked operations lies
between static and dynamic checking.

So what is “strong typing”? This appears to be a meaningless phrase, and people often use it in a non-
sensical fashion. To some it seems to mean “The language has a type checker”. To others it means “The
language is sound” (that is, the type checker and run-time system are related). To most, it seems to just

272 CHAPTER 30. TYPE SOUNDNESS

mean, “A language like Pascal, C or Java, related in a way I can’t quite make precise”. If someone uses this
phrase, be sure to ask them to define it for you. (For amusement, watch them squirm.)

Chapter 31

Explicit Polymorphism

31.1 Motivation

Earlier, we looked at examples like the length procedure (from now on, we’ll switch to Scheme with imagi-
nary type annotations):

(define lengthNum
(lambda (l : numlist) : number

(cond
[(numEmpty? l) 0]
[(numCons? l) (add1(lengthNum(numRest l)))])))

If we invoke lengthNumon (list 1 2 3), we would get3 as the response.
Now suppose we applylengthNumto (list ’a ’b ’c). What do we expect as a response? We mightexpect

it to evaluate to3, but that’s not what we’re going to get! Instead, we are going to get a type error (before
invocation can even happen), because we are applying a procedure expecting anumlist to a value of type
symlist (a list of symbols).

We can, of course, define another procedure for computing the length of lists of symbols:

(define lengthSym
(lambda (l : symlist) : number

(cond
[(symEmpty? l) 0]
[(symCons? l) (add1(lengthSym(symRest l)))])))

Invoking lengthSymon (list ’a ’b ’c) will indeed return3. But look closely at the difference between
lengthNumand lengthSym: what changed in the code? Very little. The changes are almost all in thetype
annotations, not in the code that executes. This is not really surprising, because there is only onelength
procedure in Scheme, and it operates on all lists, no matter what values they might hold.

This is an unfortunate consequence of the type system we have studied. We introduced types to reduce
the number of errors in our program (and for other reasons we’ve discussed, such as documentation), but in
the process we’ve actually made it more difficult to write some programs. This is a constant tension in the

273

274 CHAPTER 31. EXPLICIT POLYMORPHISM

design of typed programming languages. Introducing new type mechanisms proscribes certain programs,1

but in return it invalidates some reasonable programs, making them harder to write. Thelengthexample is
a case in point.

Clearly computing the length of a list is very useful, so we might be tempted to somehow addlength
as a primitive in the language, and devise special type rules for it so that the type checker doesn’t mind
what kind of list is in use. This is a bad idea! There’s a principle of language design that says it’s generally
unadvisable for language designers to retain special rights for themselves that they deny programmers who
use their language. It’s unadvisable because its condescending and paternalistic. It suggests the language
designer somehow “knows better” than the programmer: trust us, we’ll build you just the primitives you
need. In fact, programmers tend to always exceed the creative bounds of the language designer. We can
already see this in this simple example: Whylength and notreverse? Why length and reversebut not
append? Why all three and notmap? Orfilter or foldl andfoldr or Nor is this restricted to lists: what
about trees, graphs, and so forth? In short, special cases are a bad idea. Let’s try to do this right.

31.2 Solution

To do this right, we fall back on an old idea: abstraction. The two length functions are nearly the same
except for small differences; that means we should be able to parameterize over the differences, define a
procedure once, and instantiate the abstraction as often as necessary. Let’s do this one step at a time.

Before we can abstract, we should identify the differences clearly. Here they are, boxed:

(define lengthNum
(lambda (l : num list) : number

(cond
[(num Empty? l) 0]
[(num Cons? l) (add1(lengthNum (num Rest l)))])))

(define lengthSym
(lambda (l : sym list) : number

(cond
[(sym Empty? l) 0]

[(sym Cons? l) (add1(lengthSym (sym Rest l)))])))

Because we want only onelength procedure, we’ll drop the suffixes on the two names. We’ll also
abstract over thenum andsym by using the parameterτ, which will stand (of course) for a type:

(define length
(lambda (l : τ list) : number

(cond
[(τ Empty? l) 0]
[(τ Cons? l) (add1(length(τ Rest l)))])))

1It had better: if it didn’t prevent some programs, it wouldn’t catch any errors!

31.2. SOLUTION 275

It’s cleaner to think oflist as atype constructor, analogous to how variants define value constructors:
that is,list is a constructor in the type language whose argument is a type. We’ll use an applicative notation
for constructors in keeping with the convention in type theory. This avoids the odd “concatenation” style of
writing types that our abstraction process has foisted upon us. This change yields

(define length
(lambda (l : list(τ)) : number

(cond
[(τ Empty? l) 0]
[(τ Cons? l) (add1(length(τ Rest l)))])))

At this point, we’re still using concatenation for the list operators; it seems to make more sense to make
those also parameters toEmptyandCons. To keep the syntax less cluttered, we’ll write the type argument
as a subscript:

(define length
(lambda (l : list(τ)) : number

(cond
[(Empty?τ l) 0]
[(Cons?τ l) (add1(length(Restτ l)))])))

The resulting procedure declaration says thatlengthconsumes a list of any type, and returns a single number.
For a given type of list,lengthuses the type-specific empty and non-empty list predicates and rest-of-the-list
selector.

All this syntactic manipulation is hiding a great flaw, which is that we haven’t actually definedτ any-
where! As of now,τ is just a free (type) variable. Without binding it to specific types, we have no way of
actually providing different (type) values forτ and thereby instantiating different typed versions oflength.

Usually, we have a simple procedure for eliminating unbound identifiers, which is to bind them using a
procedure. This would suggest that we definelengthas follows:

(define length
(lambda (τ)

(lambda (l : list(τ)) : number
(cond

[(Empty?τ l) 0]
[(Cons?τ l) (add1(length(Restτ l)))]))))

but this is horribly flawed! To wit:

1. The procedurelengthnow has the wrong form: instead of consuming a list as an argument, it con-
sumes a value that it will bind toτ, returninga procedure that consumes a list as an argument.

2. The program isn’t even syntactically valid: there is no designation of argument and return type for the
procedure that bindsτ!2

2You might wonder why we don’t create a new type, call ittype, and use this as the type of the type arguments. This is trickier
than it seems: istype also a type? What are the consequences of this?

276 CHAPTER 31. EXPLICIT POLYMORPHISM

3. The procedure bound tolengthexpects one argument which is atype. It seems to violate our separation
of the static and dynamic aspects of the program to have types be present (to pass as arguments) during
program evaluation!

So on the one hand, this seems like the right sort of idea—to introduce an abstraction—but on the other
hand, we clearly can’t do it the way we did above. We’ll have to be smarter.

The last complaint above is actually the most significant, both because it is the most insurmountable and
because it points the way to a resolution. There’s a contradiction here: wewant to have a type parameter,
but wecan’t have the type be a value. So how about we create procedures that bindtypes, and execute these
procedures during type checking, not execution time?

As always, name and conquer. We don’t want to uselambda for these type procedures, becauselambda
already has a well-defined meaning: it creates procedures that evaluate during execution. Instead, we’ll
introduce a notion of a type-checking-time procedure, denoted byΛ (capitalλ). A Λ procedure takes only
types as arguments, and its arguments do not have further type annotations. We’ll use angles rather than
parentheses to denote their body. Thus, we might write thelengthfunction as follows:

(define length
<Λ (τ)

(lambda (l : list(τ)) : number
(cond

[(Empty?τ l) 0]
[(Cons?τ l) (add1(length(Restτ l)))]))>)

This is a lot better than the previous code fragment, but it’s still not quite there. The definition oflength
binds it to a type procedure of one argument, which evaluates to a run-time procedure that consumes a list.
Yet lengthis applied in its own body to a list, not to a type.

To remedy this, we’ll need toapplythe type procedure to an argument (type). We’ll again use the angle
notation to denote application:

(define length
<Λ (τ)

(lambda (l : list(τ)) : number
(cond

[(Empty?τ l) 0]
[(Cons?τ l) (add1(length<τ> (Restτ l)))]))>)

If we’re going to applylength to τ, we might as well assumeEmpty?, Cons?and Restare also type-
procedures, and supplyτ explicitly through type application rather than through the clandestine subscript
currently in use:

(define length
<Λ (τ)

(lambda (l : list(τ)) : number
(cond

[(Empty?<τ> l) 0]
[(Cons?<τ> l) (add1(length<τ> (Rest<τ> l)))]))>)

31.3. THE TYPE LANGUAGE 277

Thus, an expression like (Rest<τ> l) first appliesRestto τ, resulting in an actualrestprocedure that applies
to lists of values of typeτ; this procedure consumesl as an argument and proceeds as it would in the type-
system-free case. In other words, every type-parameterized procedure, such asRestor length, is a generator
of infinitely many procedures that each operate on specific types. The use of the procedure becomes

(length<num> (list 1 2 3))
(length<sym> (list ’a ’b ’c))

We call this languageparametrically polymorphic with explicit type parameters. The termpolymor-
phismmeans “having many forms”; in this case, the polymorphism is induced by the type parameters,
where each of our type-parameterized procedures is really a representative of an infinite number of func-
tions that differ only in the type parameter. The “explicitly” comes from the fact that our language forces
the programmer to write theΛ’s and type application.

31.3 The Type Language

As a result of these ideas, our type language has grown considerably richer. In particular, we now permit
type variablesas part of the type language. These type variables are introduced by type procedures (Λ), and
discharged by type applications. How shall we write such types? We may be tempted to write

length: type→ (list(type)→ number)

but this has two problems: first, it doesn’t distinguish between the two kinds of arrows (“type arrows” and
“value arrows”, corresponding toΛ and lambda, respectively), and secondly, it doesn’t really make clear
which type is which. Instead, we adopt the following notation:

length: ∀α. list(α)→ number

where it’s understood that every∀ parameter is introduced by a type procedure (Λ).3 Here are the types for
a few other well-known polymorphic functions:

filter : ∀α. list(α) × (α → boolean)→ list(α)
map: ∀α,β . list(α) × (α → β)→ list(β)

The type ofmap, in particular, makes clear why hacks like our initial proposal for the type oflengthdon’t
scale: when multiple types are involved, we must give each one a name to distinguish between them.

31.4 Evaluation Semantics and Efficiency

While we have introduced a convenientnotation, we haven’t entirely clarified its meaning. In particular,
it appears that every type function application actually happens during program execution. This seems
extremely undesirable for two reasons:

3It’s conventional to useα, β and so on as the canonical names of polymorphic types. This has two reasons. First, we
conventionally useτ as ameta-variable, whereasα andβ are typevariables. Second, not many people know what Greek letter
comes afterτ. . . .

278 CHAPTER 31. EXPLICIT POLYMORPHISM

• it’ll slow down the program, in comparison to both the typed but non-polymorphic programs (that we
wrote at the beginning of the section) and the non-statically-typed version, which Scheme provides;

• it means the types must exist as values at run-time.

Attractive as it may seem to students who see this for the first time, we reallydo notwant to permit types
to be ordinary values. A type is an abstraction of a value; conceptually, therefore, it does not make any sense
for the two to live in the same universe. If the types were not supplied until execution, the type checker not
be able to detect errors until program execution time, thereby defeating the mos important benefit that types
confer.

It is therefore clear that the type procedures must accept arguments and evaluate their bodies before the
type checker even begins execution. By that time, if all the type applications are over, it suffices to use the
type checker built earlier, since what remains is a language with no type variables remaining. We call the
phase that performs these type applications thetype elaborator.

The problem with any static procedure applications is to ensure they will lead to terminating processes!
If they don’t, we can’t even begin the next phase, which is traditional type checking. In the case of using
length, the first application (from the procedure use) is on the typenum. This in turn inspires a recursive
invocation oflengthalso on typenum. Because this latter procedure application is no different from the
initial invocation,the type expander does not need to perform the application. (Remember, if the language
has no side-effects, computations will return the same result every time.)

This informal argument suggests that only one pass over the body is necessary. We can formalize this
with the following type judgments:

Γ`e : ∀α.τ

Γ`e< τ
′ >: τ[α←τ

′]

This judgment says that on encountering a type application, we substitute the quantified type with the type
argument replacing the type variable. The program source contains only a fixed number of type applications
(even if each of these can execute arbitrarily many times), so the type checker performs this application only
once. The corresponding rule for a type abstraction is

Γ[α]`e : τ

Γ`< Λ (α) e>: ∀α.τ

This says that we extendΓ with a binding for the type variableα, but leave the associated type unspecified
so it is chosen nondeterministically. If the choice of type actually matters, then the program must not type-
check.

Observe that the type expander conceptually creates many monomorphically typed procedures, but we
don’t really want most of them during execution. Having checked types, it’s fine if the length function that
actually runs is essentially the same as Scheme’slength. This is in fact what most evaluators do. The static
type system ensures that the program does not violate types, so the program that runs doesn’t need type
checks.

31.5. PERSPECTIVE 279

31.5 Perspective

Explicit polymorphism seems extremely unwieldy: why would anyone want to program with it? There
are two possible reasons. The first is that it’s the only mechanism that the language designer gives for
introducing parameterized types, which aid in code reuse. The second is that the language includes some
additional machinery so you don’t have to write all the types every time. In fact, C++ introduces a little of
both (though much more of the former), so programmers are, in effect, manually programming with explicit
polymorphism virtually every time they use theSTL (Standard Template Library). But as we’ll see soon, we
can do better than deal with all this written overhead.

280 CHAPTER 31. EXPLICIT POLYMORPHISM

Chapter 32

Type Inference

32.1 Inferring Types

We’ve seen the value of having explicit polymorphism in our language—it lets us write programs that work
on may different types of values. Even mainstream languages like C++ and, more recently, Java have recog-
nized the value of this form of parameteric polymorphism, and they have noticed that it complements and is
not subsumed by the polymorphism common to object-oriented languages (calledsubtype polymorphism).

Despite its benefits, it’s very unwieldy to use explicit parametric polymorphism to write programs such
as this:

(define length
<Λ (τ)

(lambda (l : list(τ)) : number
(cond

[(Empty?<τ> l) 0]
[(Cons?<τ> l) (add1(length<τ> (Rest<τ> l)))]))>)

when we could instead write

(define length
(lambda (l)

(cond
[(empty? l) 0]
[(cons? l) (add1(length(rest l)))])))

As computer scientists, we should ask: Is it possible for a programming environment to convert the latter
into the former? That is, can the environmentautomatically fill inthe types necessary for the former? This
would be the best of both worlds, because the programmer would avoid the trouble of the typing while still
getting the benefit of the typing.

While this would be nice, it also seems nearly magical. It seems hard enough for humans to get this
right; can a program (the environment) do better? Still, we should not despair too much. We’ve already seen
several instances such as closure creation, garbage collection, and so on, where the language implementation

281

282 CHAPTER 32. TYPE INFERENCE

was able to do a more accurate job than a human could have done anyway, thereby providing a valuable
feature while reducing the programmer’s burden. Maybe inserting type annotations could be another of
those tasks.

Because this is obviously challenging, let’s try to make the problem easier. Let’s ignore the polymor-
phism, and just focus on generating types formonomorphicprograms (i.e., those that don’t employ poly-
morphism). In fact, just to make life really simple, let’s just consider a program that operates over numbers,
such as factorial.

32.1.1 Example: Factorial

Suppose we’re given the following program:

(definefact
(lambda (n)

(cond
[(zero? n) 1]
[true (∗ n (fact (sub1 n)))])))

We’ve purposely writtentrue instead ofelsefor reasons we’ll soon see. It should be clear that usingtrue
doesn’t affect the meaning of the program (in general,elseis just a more readable way of writingtrue).

If we were asked to determine the type of this function and had never seen it before, our reasoning might
proceed roughly along these lines. First, we would name each expression:

(definefact
1 (lambda (n)

2 (cond

[3 (zero? n) 4 1]

[5 true 6 (∗ n 7 (fact 8 (sub1 n)))])))

We would now reason as follows. We’ll use the notation[[·]] to mean the type of the expression within the
brackets.

• The type of the expression labeled1 1 is clearly a function type (since the expression is alambda).
The function’s argument type is that ofn, and it computes a value with the type of2 . In other words,

[[1]] = [[n]]→[[2]]

• Because2 is a conditional, we want to ensure the following:

– The first and second conditional expressions evaluate to boolean values. That is, we would like
the following to hold:

[[3]] = boolean

[[5]] = boolean

1We’ll need to use this phrase repeatedly, and it’s quite a mouthful. Therefore, we will henceforth say “the type ofn ” when
we mean “the type of the expression labeled byn ”.

32.1. INFERRING TYPES 283

– We would like both branches of the conditional to evaluate to a value of the same type, so we
can assign a meaningful type to the entire conditional expression:

[[2]] = [[4]] = [[6]]

• What is the type of3 ? We have a constraint on what it can be:

[[zero?]] = [[n]]→[[3]]

Because we know the type ofzero?, we know that the right-hand-side of the above equality must be:

[[n]]→[[3]] = number→boolean

which immediately tells us that[[n]] = number.

The first response in thecond tells us that[[4]] = number, which immediately resolves the type of2 and
determines the type of1 in atomic terms. That is, the type offact must benumber→ number. However,
it’s worthwhile to continue with this process as an illustration:

• We have a constraint on the type of6 : it must be the same as the result type of multiplication.
Concretely,

[[n]]× [[7]]→[[6]] = number×number→number

• The type of 7 must be whateverfact returns, while 8 must be the type thatfact consumes:

[[1]] = [[8]]→[[7]]

• Finally, the type of 8 must be the return type ofsub1:

[[sub1]] = [[n]]→[[8]] = number→number

32.1.2 Example: Numeric-List Length

Now let’s look at a second example:

(definenlength
(lambda (l)

(cond
[(nempty? l) 0]
[(ncons? l) (add1(nlength(nrest l)))])))

First, we annotate it:

(definenlength
1 (lambda (l)

2 (cond

[3 (nempty? l) 4 0]

[5 (ncons? l) 6 (add1 7 (nlength 8 (nrest l)))])))

284 CHAPTER 32. TYPE INFERENCE

We can begin by deriving the following constraints:

[[1]] = [[l]]→[[2]]

[[2]] = [[4]] = [[6]]

[[3]] = [[5]] = boolean

Because3 and 5 are each applications, we derive some constraints from them:

[[nempty?]] = [[l]]→[[3]] = numlist→boolean

[[ncons?]] = [[l]]→[[5]] = numlist→boolean

The first conditional’s response is not very interesting:2

[[4]] = [[0]] = number

Finally, we get to the second conditional’s response, which yields several constraints:

[[add1]] = [[7]]→[[6]] = number→number

[[1]] = [[8]]→[[7]]

[[nrest]] = [[l]]→[[8]] = numlist→numlist

Notice that in the first and third set of constraints above, because the program applies a primitive, we can
generate an extra constraint which is the type of the primitive itself. In the second set, because the function
is user-defined, we cannot generate any other meaningful constraint just by looking at that one expression.

Solving all these constraints, it’s easy to see both that the constraints are compatible with one another,
and that each expression receives a monomorphic type. In particular, the type of1 is numlist→ number,
which is therefore the type ofnlengthalso (and proves to be compatible with the use ofnlengthin expression
7).

32.2 Formalizing Constraint Generation

What we’ve done so far is extremely informal. Let’s formalize it.
Constraints relate different portions of the program by determining how they should be compatible

for the program to execute without error. Consequently, a single program point may result in multiple
constraints. Each set of constraints represents a “wish list” about that particular point in the program.
Consequently, a program may lead to contradictory constraints; hopefully we will be able to find these later.
One slightly confusing aspect of constraints is that we write them to look like equations, but they reflect

2Note that the0 inside the[[·]] is an expression itself, not a number labeling an expression.

32.3. ERRORS 285

what wehopewill be true, not what weknow is true. Specifically, they represent what suffices for safe
program execution.3

For each expressionn in the program’s abstract syntax tree, we introduce a variable of the form[[n]].
That is, if the program has the form (foo 1 2), we would want to introduce variables for1, 2 and (foo 1 2).
Because abstract syntax tree nodes are unwieldy to write down explicitly, we will associate the node with
the expression at that node. We use[[·]] to represent the type of a node, so the types of the expressions in
the example above would be[[1]], [[2]] and[[(foo1 2)]].

Each expression type generates different constraints. We present below a table that relates the type of
expression at a node to the (set of) constraints generated for that node. Remember to always read[[·]] as
“the type of the expression” (within the brackets):

Expression at Node Generated Constraints
n, wheren is a numeral [[n]] = number

true [[true]] = boolean
false [[f alse]] = boolean

(add1 e) [[(add1 e)]] = [[e]] = number
(+ e1 e2) [[(+ e1 e2)]]=number [[e1]] = number [[e2]] = number
(zero? e) [[(zero?e)]] = boolean [[e]] = number

(ncons e1 e2) [[(ncons e1 e2)]]=numlist [[e1]] = number [[e2]] = numlist
(nfirst e) [[(nfirst e)]]=number [[e]] = numlist
(nrest e) [[(nrest e)]]=numlist [[e]] = numlist

(nempty? e) [[(nempty? e)]]=boolean [[e]] = numlist
nempty [[nempty]]=numlist

(if c t e) [[(if c t e)]]=[[t]] [[(if c t e)]]=[[e]] [[c]]=boolean
(lambda (x) b) [[(lambda (x) b)]]= [[x]]→[[b]]

(f a) [[f]] = [[a]]→[[(f a)]]

Notice that in the two prior examples, we did not create new node numbers for those expressions that
consisted of just a program identifier; correspondingly, we have not given a rule for identifiers. Wecould
have done this, for consistency, but it would have just created more unnecessary variables.

Exercise 32.2.1Using the expression at the node, rather than the node itself, introduces a subtle ambiguity.
Do you see why?

32.3 Errors

Here’s an erroneous program:

(definenlsum
(lambda (l)

3We use the term “suffices” advisedly: these constraints are sufficient but not necessary. They may reject some programs that
might have run without error had the type system not intervened. This is inherent in the desire to statically approximate dynamic
behavior: the Halting Problem is an insurmountable obstacle. An important constraint on good type system design is to maximize
the set of legal problems while still not permitting errors:balancing programmer liberty with execution safety.

286 CHAPTER 32. TYPE INFERENCE

(cond
[(nempty? l) 0]
[(ncons? l) (+ (nrest l)

(nlsum(nrest l)))])))

Can you spot the problem?
First, we’ll annotate the sub-expressions:

(definenlsum
1 (lambda (l)

2 (cond

[3 (nempty? l) 4 0]

[5 (ncons? l) 6 (+ 7 (nrest l)
8 (nlsum 9 (nrest l)))])))

Generating constraints as usual, we get the following (amongst others):

[[8]] = number

because the function returns a number in both branches of the conditional, and

[[9]] = numlist

from the type ofnrest. Consequently, it appears we can infer that the value bound tonlsumhas the type
numlist→ number. This is indeed the type we expect for this procedure.

We should not, however, annotate any types before we’re generated, examined and resolvedall the
constraints: we must make sure there areno inconsistencies. Completing the generation and solution process
does, in fact, result in an inconsistency for this program. In particular, we have

[[7]] = numlist

from the type ofnrest, while

[[7]] = number

from the type of+. Indeed, the latter is the type we want: thenumlist only materializes because of the faulty
use ofnrest. Had the programmer usednfirst instead ofnrestin the left-hand-side argument to the addition,
the entire program would have checked correctly. Instead, the type checker prints an error indicating that
there is atype conflict: the expression (nrest l) is expected to have both the typenumber and the type
numlist. Because these are not compatible types, the type “checker” halts with an error.4

4We use quotes because the checker has, in some sense, disappeared. Instead of checking types annotated by the programmer,
the type system now tries to fill in the programmer’s annotations. If it succeeds, it can do so only by respecting the types of
operations, so there is no checking left to be done; if it fails, the type inference engine halts with an error.

32.4. EXAMPLE: USING FIRST-CLASS FUNCTIONS 287

32.4 Example: Using First-Class Functions

We will consider one final example of constraint generation, to show that the process scales in the presence
of functions as arguments. Consider the following program:

(definenmap
1 (lambda (f l)

2 (cond

[3 (nempty? l) 4 nempty]

[5 (ncons? l) 6 (ncons 7 (f 8 (nfirst l))
9 (nmap f 10 (nrest l)))])))

This program generates the following constraints:

[[1]] = [[f]]× [[l]]→[[2]]

We get the usual constraints about boolean conditional tests and the type equality of the branches (both must
be of typenumlist due to the first response). From the second response, we derive

[[ncons]] = [[7]]× [[9]]→[[6]] = number×numlist→numlist

The most interesting constraint is this one:

[[f]] = [[8]]→[[7]]

In other words, we don’t need a sophisticated extension to handle first-class functions: the constraint gener-
ation phase we described before suffices.

Continuing, we obtain the following three constraints also:

[[nfirst]] = [[l]]→[[8]] = numlist→number

[[nmap]] = [[f]]× [[10]]→[[9]]

[[nrest]] = [[l]]→[[10]] = numlist→numlist

Sincel is of typenumlist, we can substitute and solve to learn thatf has typenumber→ number. Conse-
qently,nmaphas type

(number→ number) × numlist→ numlist

which is the type we would desire and expect!

288 CHAPTER 32. TYPE INFERENCE

32.5 Solving Type Constraints

32.5.1 The Unification Algorithm

To solve type constraints, we turn to a classic algorithm:unification. Unification consumes a set of con-
straints and either

• identifies inconsistencies amongst the constraints, or

• generates asubstitutionthat represents the solution of the constraints.

A substitution is a mapping from names to constants. In our universe, inconsistencies indicate type errors,
the constants are terms in the type language (such asnumber andnumber → boolean), and the names
are identifiers representing the values of individual boxes (thus4 is a funny notation for an identifier that
represents the type of the expression labeled 4).

The unification algorithm is extremely simple. Begin with an empty substitution. Push all the constraints
onto a stack. If the stack is empty, return the substitution; otherwise, pop the constraintX = Y off the stack:

1. If X andY are identical constants, do nothing.

2. If X andY are identical identifiers, do nothing.

3. If X is an identifier, replace all occurrences ofX by Y both on the stack and in the substitution, and
addX 7→Y to the substitution.

4. If Y is an identifier, replace all occurrences ofY by X both on the stack and in the substitution, and
addY 7→ X to the substitution.

5. If X is of the formC(X1, . . . ,Xn) for some constructorC,5 andY is of the formC(Y1, . . . ,Yn) (i.e., it
has the same constructor), then pushXi = Yi for all 1≤ i ≤ n onto the stack.

6. Otherwise,X andY do not unify. Report an error.

Does this this algorithm terminate? On every iteration of the main loop, it pops a constraint off the stack. In
some cases, however, we push new constraints on. Thesizeof each of these constraints is, however, smaller
than the constraint just popped. Therefore, the total number of iterations cannot be greater than the sum of
the sizes of the initial constraint set. The stack must therefore eventually become empty.

Exercise 32.5.1What are the space and time complexity of this algorithm?

32.5.2 Example of Unification at Work

Let’s consider the following example:

1 (2 (lambda (x) x)
3 7)

5Our type language has one built-in type constructor, namely→. More on this in Section 32.5.3.

32.5. SOLVING TYPE CONSTRAINTS 289

This generates the following constraints:

[[2]] = [[3]]→[[1]]

[[2]] = [[x]]→[[x]]

[[3]] = number

The unification algorithm works as follows:

Action Stack Substitution
Initialize [[2]] = [[3]]→[[1]] empty

[[2]] = [[x]]→[[x]]
[[3]] = number

Step 3 [[3]]→[[1]] = [[x]]→[[x]] [[2]] 7→ [[3]]→[[1]]
[[3]] = number

Step 5 [[3]] = [[x]] [[2]] 7→ [[3]]→[[1]]
[[1]] = [[x]]
[[3]] = number

Step 3 [[1]] = [[x]] [[2]] 7→ [[x]]→[[1]]
[[x]] = number [[3]] 7→ [[x]]

Step 3 [[x]] = number [[2]] 7→ [[x]]→[[x]]
[[3]] 7→ [[x]]
[[1]] 7→ [[x]]

Step 3 empty [[2]] 7→ number→number
[[3]] 7→ number
[[1]] 7→ number
[[x]] 7→ number

At this point, we have solutions for all the sub-expressionsandwe know that the constraint set is consistent.
Writing these in detail in notes format is painstaking, but it’s usually easy to do them on paper by just

crossing out old values when performing a substitution. Be sure to work through our examples for more
practice with unification!

32.5.3 Parameterized Types

In the presentation of unification above, we saw only one kind of type constructor, for functions:→. A reg-
ular programming language will typically have many more constuctors. A common source of parameterized
types iscontainerssuch as lists, trees, queues, and so forth. Thus, for instance, it is common to think of lists
as parameterized over their content, thus yieldinglist(number), list(symbol), list(list(number)), list(number
→ symbol) and so on. Identifyinglist as one of the type constructors for the unification algorithm suffices
for typingunitypedlists.

290 CHAPTER 32. TYPE INFERENCE

32.5.4 The “Occurs” Check

Suppose we generate the following type constraint:

list([[x]]) = list(list([[x]]))

By Step 5, we should push[[x]] = list([[x]]) onto the stack. Eventually, obeying to Step 3, we will add the
mapping[[x]] 7→ list([[x]]) to the substition but, in the process, attempt to replace all instances of[[x]] in the
substitution with the right-hand side, which does not terminate.

This is a familiar problem: we saw it earlier when trying to define substitution in the presence of recur-
sion. Because these are problematic to handle, a traditional unification algorithm checks in Steps 3 and 4
whether the identifier about to be (re)bound in the substitutionoccursin the term that will take its place. If
the identifier does occur, the unifier halts with an error.6 Otherwise, the algorithm proceeds as before.

Exercise 32.5.2Write a program that will generate the above constraint!

32.6 Underconstrained Systems

We have seen earlier that if the system has too many competing constraints—for instance, forcing an iden-
tifier to have both typenumber andboolean—there can be no satisfying type assignment, so the system
should halt with an error. We saw this informally earlier; Step 6 of the unification algorithm confirms that
the implementation matches this informal behavior.

But what if the system isunder-constrained? This is interesting, because some of the program identifiers
never get assigned a type! In a procedure such asmap, for instance:

(define(map f l)
(cond

[(empty? l) empty]
[(cons? l) (cons(f (first l))

(map f (rest l)))]))

Working through the constraint generation and unification algorithm for examples such as this is educational.
Doing so reveals that there is no constraint on the type passed as a parameter to the list type constructor.
Working through the steps, we get a type formapof this form:

(α→β)× list(α)→list(β)

whereα and β are unconstrained type identifiers. This is the same type we obtained through explicit
parametric polymorphism. . . except that the unification algorithm has found it for usautomatically!

6This is not the only reasonable behavior! It is possible to definefixed-point types, which are solutions to the circular constraint
equations above. This topic is, however, beyond the scope of this text.

32.7. PRINCIPAL TYPES 291

32.7 Principal Types

The type generated by this Hindley-Milner7 system has a particularly pleasing property: it is aprincipal
type. A principal type has the following property. For a termt, consider a typeτ. τ is a principal type oft if,
for any other typeτ ′ that typest, there exists a substitution (perhaps empty) that, when applied toτ, yields
τ ′.

There are a few ways of re-phrasing the above:

• The Hindley-Milner type system infers the “most general” type for a term.

• The type generated by the Hindler-Milner type system imposes fewest constraints on the program’s
behavior. In particular, it imposes constraints necessary for type soundness, but no more.

From a software engineering perspective, this is very attractive: it means a programmer could not possi-
bly annotate a procedure with a more general type than the type inference algorithm would derive. Thus,
using the algorithm instead of performing manual annotation will not restrict the reusability of code, and
may even increase it (because the programmer’s annotation may mistakenly overconstrain the type). Of
course, there are other good reasons for manual annotation, such as documentation and readability, so a
good programming style will mix annotation and inference judiciously.

7Named for Roger Hindley and Robin Milner, who independently discovered such a type system in the late 1960s and early
1970s.

292 CHAPTER 32. TYPE INFERENCE

Chapter 33

Implicit Polymorphism

33.1 The Problem

Consider the function

(lambda (x) x)

The type inference engine would infer that this function has type

α→α

(or some other type, modulo renaming the type variable).
Now consider a program of the form (thelet construct is similar to thewith in our interpreted language):

(let ([id (lambda (x) x)])
(+ (id 5)

(id 6)))

First we need a type judgment forlet. Here is a reasonable one: it is exactly what one gets by using the
existing rules for functions and applications, since we have consistently definedwith as an application of
an immediate function:

Γ`v : τ
′ Γ[x←τ

′]`b : τ

Γ`(let([xv])b) : τ

Given this judgment, the type variableα in the type inferred forid would unify with the type of5
(namely,number) at one application and with the type of6 (alsonumber) at the other application. Since
these are consistent, the unification algorithm would conclude thatid is being used as if it had the type

number→number

in this program.
Now suppose we useid in a context where we apply it to values of different types. The following

program is certainly legal in Scheme:

(let ([id (lambda (x) x)])

293

294 CHAPTER 33. IMPLICIT POLYMORPHISM

(if (id true)
(id 5) ;; then
(id 6))) ;; else

This should be legal even in typed Scheme, because we’re returning the same type of value in both branches
of the conditional. But what happens when we supply this program to our type system? It infers thatid
has typeα→α. But it then unifiesα with the type of each of the arguments. Two of these are the same
(number) but the first application is to a value of typeboolean. This forces the type inference algorithm
to try and unifynumber with boolean. Since these are distinct base types, type inference fails with a type
error!

We definitely do not want this program to be declared erroneous. The problem is not with the program
itself, but with the algorithm we employ to infer types. That suggests that we should try to improve the
algorithm.

33.2 A Solution

What’s the underlying problem in the type algorithm? We infer thatid has typeα→α; we are then stuck
with that type for every use ofid. It must therefore beeithernumber→ number orboolean→ boolean—but
it can’t be both. That is, we cannot use it in a truly polymorphic manner!

This analysis makes clear that the problem has something to do with type variables and their unification.
We arrive at a contradiction becauseα must unify with bothnumber andboolean. But what if α didn’t
need to do that? What if we didn’t use the same type variable every time? Then perhaps we could avoid the
problem entirely.

One way to get fresh type variables for each application ofid is to literally substitutethe uses ofid with
their value. That is, instead of type checking the program above, suppose we were to check the following
program:

(let ([id (lambda (x) x)])
(if ((lambda (x) x) true)

((lambda (x) x) 5)
((lambda (x) x) 6)))

We don’t want to have towrite this program, of course, but that’s okay: a simple pre-processor can substitute
every let-bound identifier in the body before type-checking. If we did that, we get a different result from
type-checking:

(let ([id (lambda (x) x)])

(if (1 (lambda (x) x) true)

(2 (lambda (x) x) 5)

(3 (lambda (x) x) 6)))

Each use ofid results in a different type; for instance, theid procedure at1 might have typeα→α, 2

might have typeβ→β and 3 might haveγ→γ. Thenα could unify with typeboolean, β with typenumber
andγ with typenumber. Because these are distinct type variables, they need not unify with one another.

33.3. A BETTER SOLUTION 295

Each application would succeed, and the entire program would successfully pass the type checker. This in
fact corresponds more accurately with what happens during execution, because on the first invocation the
identifierx in id holds a value of boolean type, and on the subsequent invocation (in the first branch of the
conditional, in this case) it holds a number. The separate type variables accurately reflect this behavior.

33.3 A Better Solution

The solution we’ve presented above has two problems:

1. It can lead to considerable code size explosion. For instance, consider this program:

(let ([x
(let ([y

(let ([z3])
(+ z z))])

(+ y y))])
(+ x x))

Expand it in full. In general, how big can a program grow upon expansion?

2. Sincelet does not permit recursion, considerletrecor local, the Scheme analog ofrec . What happens
if we substitute code in a recursive definition?

In short, the code substitution solution is not workable, but it does contain the germ of a good idea. We see
that what it does is generatefresh type variablesat every use: this is the essence of the solution. So perhaps
we can preserve the essence while dispensing with that particular implementation.

Indeed, we can build further on the intuition we have developed. A closure has only one name for an
identifier, but a closure can be used multiple times, even recursively, without confusion. This is because,
in effect, each application consistently renames the bound identifier(s) so they cannot be confused across
instances. Working backwards, since we want fresh identifiers that cannot be confused across instances, we
want to create an analogoustype closurethat we instantiate at every use of a polymorphic function.

We will therefore use a modified rule for typinglet:

Γ`v : τ
′ Γ[x←CLOSE(τ ′)]`b : τ

Γ`(let([xv])b) : τ

That is, we bindx to a “closed” type when we check the body. The idea is, whenever we encounter this
special type in the body, we instantiate its type variables with fresh type variables:

Γ`e : CLOSE(τ ′)
Γ`e : τ

whereτ is the same asτ ′, except all type variables have been renamed consistently to unused type variables.
Returning to the identity procedure, the type inference algorithm bindsid to the typeCLOSE(α→α).

At each use ofid, the type checker renames the type variables, generating types such asα1→α1, α2→α2,
and so on. As we have seen before, these types permit the body to successfully type check. Therefore, we
have successfully captured the intuition behind code-copying without the difficulties associated with it.

296 CHAPTER 33. IMPLICIT POLYMORPHISM

33.4 Recursion

We have provided a rule forlet above, but in fact a similar rule can apply toletrec also. There are some
subtleties that we must defer to a more advanced setting, but safe uses ofletrec (namely, those where the
right-hand side is syntactically a procedure) can safely employ the type closure mechanism described above
to infer polymorphic types.1

33.5 A Significant Subtlety

Alas something is still rotten in the state of inferring polymorphic types. When we rename all type variables
in aCLOSE type, we may rename variables that were not bound in thelet or letrec expression: for instance,

(lambda (y)
(let ([f (lambda (x) y)])

(if (f true)
(+ (f true) 5)
6)))

Our algorithm would infer the typeCLOSE(α→β) (or the equivalent under renaming) forf . (Becausex
andy are not linked in the body, the inference process assigns them potentially different types; hence the
presence of bothα andβ in the type.)

At the first application, in the test of the conditional, we generate fresh type names,α1 andβ1. The
typeα1 unifies withboolean, andβ1 unifies withboolean (since it’s used in a conditional context). At the
second application, the algorithm generates two fresh names,α2 andβ2. α2 will unify with boolean (since
that is the type of the argument tof), while β2 unifies withnumber, because the entire expression is the first
argument to addition. Reasoning thus, we can see that the program successfully passes the type checker.

But this program should fail! Simply looking at it, it’s obvious thatf can returneither a boolean or a
numeric value, but not both. Indeed, if we apply the entire expression totrue, there will be a type error at
the addition; if we apply it to42, the type error will occur at the conditional. Sure enough, in our earlier
type systems, it would have failed with an error while unifying the constraints on the return types off . So
how did it slip through?

The program successfully passed the type checker because of our use of type closures. We did not,
however, correctly apply our intuition about closures. When we apply a closure, we only get new identifiers
for those bound by the closures—not those in its lexical scope. The variables in the closure’s lexical scope
are shared between all applications of the closure. So should it be in the case of type closures. We should
only generate fresh type variables for the types introduced by thelet or letrec.

Concretely, we must modify our rule forlet (and correspondingly that forletrec) so the type closures
track which identifiers must be renamed:

Γ`v : τ
′ Γ[x←CLOSE(τ ′,Γ)]`b : τ

Γ`(let([xv])b) : τ

1In particular, we are no longer using code-copying, which encounters an obvious difficulty in the presence of recursion.

33.6. WHY LET AND NOT LAMBDA? 297

That is, a type closure tracks the environment of closure creation. Correspondingly,

Γ`e : CLOSE(τ ′,Γ′)
Γ`e : τ

whereτ is the same asτ ′, except the renaming applies only to type variables inτ ′ that arenot boundby Γ′.
Applying these rules to the example above, we rename theα ’s but notβ , so the first use off gets type

α1→β and the second useα2→β . This forcesβ = number= boolean, which results in a type error during
unification.

33.6 Why Let and not Lambda?

The kind of polymorphism we have seen above is calledlet-based polymorphism, in honor of the ML
programming language, which introduced this concept. Note thatlet in ML is recursive (so it corresponds
to Scheme’sletrec or local, and therec we have studied in this class). In particular, ML treatslet as a
primitive construct, rather than expanding it into an immediate function application as Scheme does (and as
we did withwith in our interpreters).

The natural question is to wonder why we would have a rule that makeslet-bound identifiers polymor-
phic, but not admit the same polymorphic power forlambda-bound identifiers. The reason goes back to our
initial approach to polymorphism, which was to substitute the body for the identifier. When we have access
to the body, we can successfully perform this substitution, and check for the absence of errors. (Later we
saw how type closures achieve the same effect while offering several advantages, but the principle remains
the same.)

The last example above shows the danger in generalizing the type oflambda-bound identifiers: without
knowing what they will actually receive as a value (which we cannot know until run-time), we cannot be
sure that they are in fact polymorphic. Because we have to decide at type-checking time whether or not to
treat an identifier polymorphically, we are forced to treat them monomorphically, and extend the privilege
of polymorphism only tolet-bound identifiers. Knowing exactly which value will be substituted turns out
to be a gigantic advantage for the type system!

33.7 The Structure of ML Programs

While our type inference algorithm inferred types with type variables, we could not actually exploit this
power directly. We could use such a value several times in the same type contexts, and the same expression
elsewhere several times in a different type context, but not combine the two copies of the code through a
binding. Let-based polymorphism earned us this power of abstraction.

Let-based polymorphism depends fundamentally on having access to the bound value when checking
the scope of the binding. As a result, an ML program is typically written as a series oflet expressions; the
ML evaluator interprets this as a sequence of nestedlets. It treats the initial environment similarly as one
long sequence oflets, so for instance, if a programmer usesmap in a top-level expression, the evaluator
effectively puts the use ofmapin the body of the definition ofmap. Therefore, the uses ofmapbenefit from
the polymorphic nature of that function.

298 CHAPTER 33. IMPLICIT POLYMORPHISM

Exercise 33.7.1What is the time and space complexity of the polymorphic type inference algorithm that
uses type closures?

33.8 Interaction with Effects

Suppose we add polymorphically-typed boxes to the language:

box : α → ref(α)
unbox: ref(α)→ α

set-box!: ref(α) α → ref(α)

(We’re assuming here thatset-box!returns the box as its result.) On their own, they look harmless.
Now consider the following program:

(let ([f (box(lambda (x) x))])
(begin

(set-box! f(lambda (y) (+ y 5)))
((unbox f) true)))

When run, this program will yield a run-time error becausey is bound to the valuetrue, then used in an
addition. A sound type system should, therefore, flag this program as erroneous.

In fact, however, this program type checks without yielding an error. Notice thatf has the closed type
ref (α → α) in the empty type environment. This type is renamed at each use, which means the function
applied totrue has type (say)α2→ α2, even though the value in the box has been re-bound tonumber→
number. In fact, this bug resulting from the unexpected interaction between state and polymorphism lay
dormant in ML for many years, and this brief program could crash the system.

What has happened here is that we’ve destoyed the semantics of boxes. The whole point of introducing
the box is to introduce sharing; the implementation of the type system has, however, lost that very sharing.

One solution to this problem would be to prohibit the use of boxes on the right-hand side oflet (and
letrec) expressions, or at least not polymorphically generalize them. The problem is actually more general,
however: any potentialeffect(such as mutation, continuation capture, and so on) runs into similar prob-
lems. Studies of large bodies of ML code have shown that programmers don’t in fact need the power of
polymorphic generalization for these effects. Therefore, rather than create a vastly more complicated type
system, a simple, practical solution is to simply prohibit such effects in locations that the type system will
automatically treat as polymorphic.

Part XI

Domain-Specific Languages and
Metaprogramming

299

Chapter 34

Domain-Specific Languages

34.1 Language Design Variables

Programming languages differ in numerous ways:

1. Each uses rather different notations for writing down programs. As we’ve observed, however, syntax
is only partially interesting. (This is, however, less true of languages that are trying to mirror the
notation of a particular domain.)

2. Control constructs: for instance, early languages didn’t even support recursion, while most modern
languages still don’t have continuations.

3. The kinds of data they support. Indeed, sophisticated languages like Scheme blur the distinction
between control and data by making fragments of control into data values (such as first-class functions
and continuations).

4. The means of organizing programs: do they have functions, modules, classes, . . . ?

5. Automation such as memory management, run-time safety checks, and so on.

Each of these items suggests natural questions to ask when you design your own languages in particular
domains.

34.2 Languages as Abstractions

Languages areabstractions: ways of seeing or organizing the world according to certain patterns, so that
a task becomes easier to carry out. More concretely, think about a loop in Java. When you write a loop,
you expect the machine to carry out certain tasks for you automatically: testing the termination condition,
running the loop code if the test passes, exiting the loop if it doesn’t, etc. The loop is an abstraction: a
reusable pattern where the language executes part of the pattern automatically, and you supply the parts that
are different. Youcould write down all of those steps manually, but then your program would be longer,
harder to read, and more painful to write, debug and maintain. Scheme’smapandfilter are also abstractions,

301

302 CHAPTER 34. DOMAIN-SPECIFIC LANGUAGES

which differ from Java’s loops in one significant way: you can define Scheme’s loops as abstractions in user
programs.

34.3 Domain-Specific Languages

Based on the above description, it becomes clear that some domains may be served better by programming
in a language specialized to that domain. While we are familiar with such languages (often bundled with
software packages that blur the boundary between the package and the language) such as Mathematica
and Matlab, this principle is not new. Indeed, study the names of four of the oldest popular programming
languages, and you spot a pattern:

Fortran Stands for “formula translator”.

Algol An “algorithmic language”.

COBOL An abbreviation for “COmmon Business-Oriented Language”.

LISP Short for a “list-processing” language.

Notice the heavy emphasis on very concrete domains (or, in the case of LISP, of a language construct)?
Indeed, it was not until the late 1960s and 1970s that programming languages really became liberated from
their domains, and the era of general-purpose languages (GPL) began. Now that we know so much about
the principles of such languages (as we’ve been seeing all semester long), it is not surprising that language
designers are shifting their sights back to particular domains.

Indeed, I maintain that designingGPLs has become such a specialized task—well, at least designing
goodGPLs, without making too many mistakes along the way—that most lay efforts are fraught with peril.
In contrast, most people entering the programming workforce are going to find a need to build languages
specific to the domains they find themselves working in, be they biology, finance or the visual arts. Indeed,
I expect many of you will build one or more “little languages” in your careers.

Before you rush out to design a domain-specific language (DSL), however, you need to understand some
principles that govern their design. Here is my attempt to describe them. These are somewhat abstract; they
will become clearer as we study the example that follows in more detail.

First and foremost—define the domain! If your audience doesn’t understand what the domain is, or (this
is subtly different) why programming for this domain is difficult, they’re not going to pay attention to your
language.

Justify why your language should exist in terms of the current linguistic terrain. In particular, be sure to
explain why your language is better than simply using the most expressiveGPLs around. (Small improve-
ments are insufficient, compared with the odds that the considerably greater resources that are probably
going into language implementation, library support, documentation, tutorials and so on for thatGPL com-
pared with your language.) In short, be very clear on what yourDSL will do that is very difficult inGPLs.
These reasons usually take on one or more of the following forms:

• Notational convenience, usually by providing a syntax that is close to established norms in the domain
but far removed from the syntax ofGPLs. (But before you get too wrapped up in fancy visual notations,

34.3. DOMAIN-SPECIFIC LANGUAGES 303

keep in mind that programs are not only written but also edited; how good is your editor compared
with vi or Emacs?)

• Much better performance because theDSL implementation knows something about the domain. For
instance, some toolkits take limited kinds of programs but will, in return, automatically compute
the derivative or integral of a function—a very useful activity in many kinds of high-performance
scientific computing.

• A non-standard semantics: for instance, when neither eager nor lazy evaluation is appropriate.

There are generally two kinds ofDSLs, which I refer to as “enveloping” and “embedded”. Enveloping
languages are those that try to control other programs, treating them as components. Good examples are
shell languages, and early uses of languages like Perl.

Enveloping languages work very well when used for simple tasks: imagine the complexity of spawning
processes and chaining ports compared with writing a simple shell directive likels -l | sort | uniq .
However, they must provide enough abstraction capabilities to express a wide variety of controls, which in
turn brings data structures through the back door (since a language with just functions but without, say, lists
and queues, requires unreasonable encodings through the lambda calculus). Indeed, invariably program-
mers will want mapping and filtering constructs. The net result is that such languages often begin simple,
but grow in an unwieldy way (responding to localized demands rather than proactively conducting global
analysis).

One way to improve the power of an enveloping language without trying to grow it in an ad hoc way
is to embed another language inside it. That is, the enveloping language provides basic functionality, but
when you want something more powerful, you can escape to a more complete (or another domain-specific)
language. For instance, the language of Makefiles has this property: the Makefile language has very limited
power (mainly, the ability to determine whether files are up-to-date and, if not, run some set of commands),
and purposely does not try to grow much richer (though some variants ofmake do try). Instead, the actual
commands can be written in any language, typically Unix shell, so themake command only needs to know
how to invoke the command language; it does not itself need to implement that language.

The other kinds of languages are embedded in an application, and expose part of the application’s func-
tionality to a programmer who wants to customize it. A canonical example is Emacs Lisp: Emacs functions
as a stand-alone application without it, but it exposes some (most) of its state through Emacs Lisp, so a
programmer can customize the editor in impressive ways. Another example may be the command language
of thesendmail utility, which lets a programmer describe rewriting rules and custom mail handlers.

Any time one language is embedded inside anotherlanguage(as opposed to an application), there are
some problems with this seemingly happy symbiosis:

1. The plainest, but often most vexing, is syntactic. Languages that have different syntaxes often don’t
nest within one another very nicely (imagine embedding an infix language inside Scheme, or XML
within Java). While the enveloping language may have been defined to have a simple syntax, the act
of escaping into another language can significantly complicate parsing.

2. Can the embedded language access values from the language that encloses it? For example, if you
embed an XML path language inside Java, can the embedded language access Java variables? And

304 CHAPTER 34. DOMAIN-SPECIFIC LANGUAGES

even if it could, what would that mean if the languages treat the same kinds of values very differently?
(For instance, if you embed an eager language inside a lazy one, what are the strictness points?)

3. Often, theDSL is able to make guarantees of performance only because it restricts its language in some
significant way. (One interesting example we have seen is the simply-typed lambda calculus which,
by imposing the restriction of annotations in its type language, is able to deliver unto us the promise
of termination.) If theDSL embeds some other language, then the analysis may become impossible,
because the analyzer doesn’t understand the embedded language. In particular, the guarantees may
not longer hold!

In general, as aDSL developer, be sure to map out a growth route. Anticipate growth and have a concrete
plan for how you will handle it. NoDSL designer ever went wrong predicting that her programmers might
someday want (say) closures, and many a designer did go wrong by being sure his programmers wouldn’t.
Don’t fall for this same trap. At the very least, think about all the features you have seen in this course and
have good reasons for rejecting them.

You should, of course, have thought at the very outset about the relationship between yourDSL and
GPLs. It doesn’t hurt for you to think about it again. Will your language grow into aGPL? And if so, would
you be better off leveraging theGPL by just turning your language into a library? Some languages even
come with convenient ways of creating little extension languages (as we will see shortly), which has the
benefit that you can re-use all the effort already being poured into theGPL.

In short, the single most important concept to understand about yourDSL is itsnegative space. Language
designers, not surprisingly, invariably have a tendency to think mostly about whatis there. But when you’re
defining aDSL remember that perhaps the most important part of it is whatisn’t there. Having a clear def-
inition of your language’s negative space will help you with the design; indeed, it is virtually a prerequisite
for the design process. It’s usually a lot easier to argue about what shouldn’t (and should) be in the negative
space than to contemplate what goes in. And to someone studying your language for the first time, a clear
definition of the negative space will greatly help understand your rationale for building it, and perhaps even
how you built it—all of which is very helpful for deciding whether or not one finds this the right language
for the task, both now and in the future.

Chapter 35

Macros as Compilers

For these notes, please use the PRETTY BIG language level.

35.1 Language Reuse

We have so far implemented languages as interpreters. In the real world, however, programming languages
are defined not only by their implementation but also by their toolkit: think of the times you’ve disliked
programming in a language because you didn’t like the default editor or the debugger or the lack of a
debugger or Therefore, when we set out to implement a fresh language implementation, we run the risk
that we’ll upset our users if we don’t provide all the programming tools they’re already accustomed to.

One way around this is to not create an entire implementation from scratch. Instead, we could just
compilethe new language into an existing language. If we do that, we can be fairly sure of reusing most of
the tools built for the existing language. There is one problem, which is that feedback such as error messages
may not make too much sense to the programmer (since she is expecting messages in terms of the constructs
of theDSL, while the messages are in terms of the constructs of the target language). This is a real concern,
but it is ameliorated some by the tools we will use.

Many languages provide a syntactic preprocessor that translates terms before handing them off to the
evaluator. In languages like C and Scheme they’re calledmacros, while in C++ they’re calledtemplates.
We will now study the Scheme macro system in some depth. By default, the Scheme macro system permits
programmers to add constructs to Scheme, thereby effectively providing a compiler from Scheme+ (the
extended Scheme language) to Scheme itself.

35.1.1 Example: Measuring Time

Suppose we want to add a construct to the language that measures the time elapsed while evaluating an
expression. That is, we want (my-time e) which returns the time it took (in milliseconds, say) to evaluate
e. (The actualtimecommand in Scheme also returns the value, but this version suffices for now. We’ll use
my-time for our attempts to avoid clashing with the vesion built-in.)

This is easy; here’s the code:

(define(my-time e)

305

306 CHAPTER 35. MACROS AS COMPILERS

(let ([begin-time(current-milliseconds)])
(begin

e
(− (current-milliseconds) begin-time))))

Let’s test it:

> (my-time (+ 1 2))
0

Good; that’s about what we’d expect. Even for slightly more computationally expensive expressions, we get

> (my-time (expt2 1000))
0

Well, that’s because DrScheme is really fast, see. How about:

> (my-time (expt2 10000))
0

Hmm. Zeromilliseconds? Maybe not. So let’s try

> (my-time (expt2 1000000))
0

This time DrScheme noticeably gives pause—we can tell from a wristwatch—so something is afoot.
The problem is that we definedmy-time to be a procedure, and Scheme is an eager language. Therefore,

the entire expression reduced to a value before the body ofmy-time began to evaluate. As a result, the
difference in time was always going to be a constant. On different machines we might get different values,
but the value isn’t going to change, no matter what the expression!

How do we definemy-time? There are three options.
First would be to introduce lazy evaluation into the language. This may be tempting, but it’s going to

make a mess overall, because it’d be impossible to determine when an expression is going to reduce, and an
expression that has already been reduced to a value may need to have not been reduced later. This is not a
viable solution.

The second is to makemy-time take a thunk (recall: a procedure of no arguments). That is, we would
have

(define(my-time e-thunk)
(let ([begin-time(current-milliseconds)])

(begin
(e-thunk)
(− (current-milliseconds) begin-time))))

so that

> (my-time (lambda () (expt2 10000)))
0
> (my-time (lambda () (expt2 100000)))

35.1. LANGUAGE REUSE 307

60
> (my-time (lambda () (expt2 1000000)))
2023

This may be sufficient, but it’s certainly not satisfactory: we’ve introduced an absolutely unnecessary syntac-
tic pattern into the code for which we have no explanation other than that’s just what the language demands.
This is not an acceptable abstraction.

Finally, another is to accomplish the effect of textual substitution by using. . . textual substitution. In
Scheme, we can instead write

(define-syntax my-time
(syntax-rules()

[(time e)
(let ([begin-time(current-milliseconds)])

(begin
e
(− (current-milliseconds) begin-time)))]))

When we test this, we find

> (my-time (expt2 1000))
0

Hmm! But ever hopeful:

> (my-time (expt2 10000))
10
> (my-time (expt2 100000))
70
> (my-time (expt2 1000000))
2053

which is what we expect.
How does this version ofmy-time work? The Schememacro systemtrawls the program source and

gathers all the syntax definitions. It then substitutes all the uses of these syntax definitions with the bodies,
where each syntax definition is defined by pattern-matching (we’ll see several more examples). Only after
finishing all the substitution does it hand the program to the Scheme evaluator, which therefore doesn’t need
to know anything about the syntax definitions. That is, given the above syntax definition and the program
(my-time (expt2 10000)), the program that the Scheme evaluator actually sees is

(let ([begin-time(current-milliseconds)])
(begin

(expt2 10000)
(− (current-milliseconds) begin-time)))

This is the right-hand-side of the first (and only) clause in the list of rules, exceptehas been substituted with
the exponentiation expression. This is now an ordinary Scheme expression that the evaluator can reduce to a

308 CHAPTER 35. MACROS AS COMPILERS

value. Notice that the current time is now measured before and after the expression evaluates, thus ensuring
that we do in fact clock its evaluation.1

35.1.2 Example: Local Definitions

We saw earlier this semester that

{with {var val} body}

could be rewritten as

{{fun {var} body} val}

by a preprocessor, so our core evaluator did not need to implementwith directly. The same is true of the
let construct in Scheme. Here’s a simple macro forlet (again, we’ll use themy- convention to avoid any
clashes):

(define-syntax my-let-1
(syntax-rules()

[(let (var val) body)
((lambda (var) body) val)]))

Sure enough,

> (my-let-1 (x 3) (+ x 4))
7
> (my-let-1 (x 3) (my-let-1 (y 4) (+ x y)))
7

In full Scheme, however, thelet construct is a bit more complex: it permits binding several identifiers at the
same time (as we saw in a homework assignment regardingwith). Therefore, the true translation should
be regarded as something along these lines:

(let ([var val] . . .) body) =⇒ ((lambda (var . . .) body) val . . .)

That is, we want each of the variables to remain in the same order, and likewise each of the value expressions—
except we don’t know how many we will encounter, so we use. . . to indicate “zero or more”.

How are we going to define this macro? In fact, it couldn’t be easier. A researcher, Eugene Kohlbecker,
observed that numerous extensions to Scheme had this same “zero or more” form, and noticed that people
always wrote them informally using the stylized notation above. He therefore simply defined a macro system
that processed that notation:

(define-syntax my-let
(syntax-rules()

[(my-let ([var val] · · ·) body)
((lambda (var · · ·) body) val · · ·)]))

1Technically, this isn’t exactly the expression that evaluates. We’ll return to this in a bit.

35.1. LANGUAGE REUSE 309

Therefore (my-let ([x 3] [y 4]) (+ x y)) translates into ((lambda (x y) body) 3 4) which, sure enough, reduces
to 7. Notice how the macro system is smart enough to treat the ([var val] · · ·) pattern as being the composite
of thevar · · · andval · · · patterns.2 In particular, if no identifiers are bound, then this turns into an immediate
application of a thunk to no arguments, which just evaluates the body.

35.1.3 Example: Nested Local Definitions

In a let, all the named expressions are bound in the same scope, which doesn’t include any of the bound
names. Sometimes, it’s useful to bind names sequentially so later bindings can refer to earlier ones. Scheme
provides the constructlet∗ for this task:

(let∗ ([a 5]
[b 12]
[aˆ2 (∗ a a)]
[bˆ2 (∗ b b)]
[aˆ2+bˆ2 (+ aˆ2 bˆ2)])

(sqrt aˆ2+bˆ2))

(Think of what this would evaluate to withlet instead oflet∗.)
We can implementlet∗ very easily by unraveling it into a sequence oflets:

(let∗ ([var val] · · ·) body) =⇒ (let ([var0 val0])
(let ([var1 val1])
· · ·

(let ([varn valn])
body)))

There is a stylized way of writing such macros in Scheme, which is to split them into two cases: when the
sequence is empty and when the sequence has one or more elements. When there are no identifiers being
bound, thenlet∗ does the same thing aslet (which is to reduce to the expression itself):

(let∗ () body) =⇒ body

Since each· · ·means “zero or more”, we need to use a more refined pattern to indicate “one or more”:

(let∗ ([var0 val0] [var-rest val-rest] · · ·) body)

The rewrite rule then becomes

(let∗ ([var0 val0] [var-rest val-rest] · · ·) body) =⇒ (let ([var0 val0])
(let∗ ([var-rest val-rest]

...)
body))

That is, we apply the macro forlet∗ recursively. Written in Scheme syntax, this is expressed as (notice the
two cases):

2The use of brackets versus parentheses is purely stylistic.

310 CHAPTER 35. MACROS AS COMPILERS

(define-syntax my-let∗
(syntax-rules()

[(my-let∗ () body)
body]

[(my-let∗ ([var0 val0]
[var-rest val-rest] · · ·)

body)
(let ([var0 val0])

(my-let∗ ([var-rest val-rest] · · ·)
body))]))

There is nothing in Scheme that prevents a runaway expansion. Therefore, it’s possible to write a
misbehaving macro that expands forever, so that evaluation never even begins. However, most macros
follow the simple stylistic pattern above, which guarantees termination (the recursion is over the bound
identifiers, and each time through, one more identifier-value pair is taken off).

35.1.4 Example: Simple Conditional

Let’s say we want a simplified form of conditional that has only two branches and one conditional. This is
effectively the same asif :

(cond2[t e1] [else e2]) =⇒ (if t e1 e2)

We might try the following macro:

(define-syntax cond2
(syntax-rules()

[(cond2(t e1) (else e2))
(if t e1 e2)]))

This correctly evaluates expressions such as

(cond2[(even?(current-seconds)) ’even]
[else ’odd])

Unfortunately, this also permits expressions such as

(cond2[(even?(current-seconds)) ’even]
[(odd?(current-seconds)) ’odd])

This shouldn’t be syntactically legal, becausecond2permits only one conditional; in place of the second,
we require programmers to writeelse. We can see that this second expression doesn’t get evaluated at all by
writing something atrocious:

(cond2[false ’even]
[(/ 1 0) ’odd])

which evaluates to ’odd.

35.1. LANGUAGE REUSE 311

What we want is for thecond2macro to simply reject any uses that don’t haveelsein the second question
position. This is where the mystical () aftersyntax-rulescomes in: it lists thekeywordsin the macro. That
is, we should instead define the macro as

(define-syntax cond2
(syntax-rules(else)

[(cond2(t e1) (elsee2))
(if t e1 e2)]))

Then, we get the following interaction:

> (cond2[false ’even]
[(/ 1 0) ’odd])

cond2: bad syntax in: (cond2(false (quote even)) ((/ 1 0) (quoteodd)))}

Without the keyword designation, Scheme has no way of knowing thatelsehas a special status; naturally,
it makes no sense to build that knowledge into the macro system. Absent such knowledge, it simply treats
elseas a macro variable, and matches it against whatever term is in that position. When we putelsein the
keyword list, however, the expander no longer binds it but rather expects to find it in the right position—or
else rejects the program.

35.1.5 Example: Disjunction

Let’s consider one more example from Scheme lore. In Scheme, conditionals likeor andand short-circuit:
that is, when they reach a term whose value determines the result of the expression, they do not evaluate the
subsequent terms. Let’s try to implementor.

To begin with, let’s define the two-arm version ofor

(define(my-or2-fun e1 e2)
(if e1

e1
e2))

Sure enough, a very simple example appears to work

> (my-or2-funfalse true)
#t

but it fails on a more complex example:

> (let ([x 0])
(my-or2-fun(zero? x)

(zero?(/ 1 x))))
/: division by zero

whereas a short-circuiting evaluator would not have permitted the error to occur. The problem is, once again,
Scheme’s eager evaluation regime, which performs the divison before it ever gets to the body ofmy-or2-fun.
In contrast, a macro does not have this problem:

312 CHAPTER 35. MACROS AS COMPILERS

(define-syntax my-or2
(syntax-rules()

[(my-or2 e1 e2)
(if e1 e1 e2)]))

which yields

> (my-or2 false true)
#t
> (let ([x 0])

(my-or2 (zero? x)
(zero?(/ 1 x))))

#t

In particular, the second expression translates into

(let ([x 0])
(if (zero? x)

(zero? x)
(zero?(/ 1 x))))

(just replacee1ande2consistently).
As this expansion begins to demonstrate, however, this is an unsatisfying macro. We evaluate the first

expression twice, which has the potential to be inefficient but also downright wrong. (Suppose the first
expression were to output something; then we’d see the output twice. If the expression wrote a value into a
database and returned a code, executing it a second time may produce a different result than the first time.)
Therefore, we’d really like to hold on to the value of the first evaluation and return it directly if it’s not false.
That is, we want

(define-syntax my-or2
(syntax-rules()

[(my-or2 e1 e2)
(let ([result e1])

(if result
result
e2))]))

This expands the second expression into

(let ([x 0])
(let ([result (zero? x)])

(if result
result
(zero?(/ 1 x)))))

Since Scheme is eager, the expression in thee1position gets evaluated only once. You should construct test
cases that demonstrate this.

35.1. LANGUAGE REUSE 313

35.1.6 Example: For Loops

Many languages provide a looping construct for iterating through integers sequentially. Scheme doesn’t for
three reasons:

1. Because most such loops are anyway inappropriate: the indices only exist to traverse sequential data
structures. Uses ofmapor filter over a list accomplish the same thing but at a higher level of abstrac-
tion.

2. Because recursion in the presence of tail calls has the same computational effect.

3. Because, if we really crave a more traditional syntax, we can define it using a macro!

We’ll build up a loop macro in three stages.

Loops with Named Iteration Identifiers

Here’s our first attempt at afor loop macro.3 We’ve generously embellished it with keywords to increase
readability:

(define-syntax for0
(syntax-rules(from to in)

[(for0 〈var〉 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(local ([define loop (lambda (〈var〉)

(if (> 〈var〉 〈high〉)
’done
(begin
〈bodies〉 · · ·
(loop (+ 〈var〉 1)))))])

(loop 〈low〉))]))

This lets us write programs such as

(for0 x
from 2
to 5
in (display x))

which prints2, 3, 4 and5. However, when we try this on a program like this

(for0 x
from 2
to (read)
in (display x))

3We’re using the convention of wrapping macro pattern-variables in〈· · ·〉 to emphasize their relationship toBNF.

314 CHAPTER 35. MACROS AS COMPILERS

we notice an unpleasant phenomenon: the program reads the upper-bound of the loopevery time through
the loop. To correct it, we should make sure it evaluates the upper-bound expression only once, which we
can do with a small change to the macro:

(define-syntax for1
(syntax-rules(from to in)

[(for1 〈var〉 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(local ([definehigh-value〈high〉]

[define loop (lambda (〈var〉)
(if (> 〈var〉 high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ 〈var〉 1)))))])

(loop 〈low〉))]))

In general, we must be very careful with macros to ensure expressions are evaluated the right number of
times. In this instance,〈low〉 is going to be evaluated only once and〈var〉 is only an identifier name, but we
have to make sure〈high〉 is evaluated only once.

In fact, however, this version isalsobuggy! If there is a (read) in the〈low〉 position, that’s going to get
evaluated second instead of first, which is presumably not what we wanted (though notice that we didn’t
formally specify the behavior offor , either). So to get it right, we really need to evaluate〈low〉 and bind its
value to an identifier first.

In general, it’s safer to bind all expression positions to names. Scheme’s eager evaluation semantics
ensures the expressions will only be evaluted once. We don’talwayswant this, but we want it so often that
we may as well do it by default. (The times we accidentally bind an expression too early—for instance, the
conditional expression of awhile loop—we will usually discover the problem pretty quickly by testing.) In
addition we must be sure to do this binding in the right order, mirroring what the user expects (and what
our documentation for the new language construct specifies). (Notice that the problematic expression in
this example is (read), which has the side-effect of prompting the user. Of course, we may want to limit
evaluation for efficiency reasons also.)

Loops with Implicit Iteration Identifiers

When we define a loop such as the one above, we often have no real use for the loop variable. It might be
convenient to simply introduce an identifier, sayit , that is automatically bound to the current value of the
loop index. Thus, the first loop example above might instead be written as

(for2 from 2
to 5
in (displayit))

Here’s a proposed macro that implements this construct:

(define-syntax for2
(syntax-rules(from to in)

35.1. LANGUAGE REUSE 315

[(for2 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(local ([definehigh-value〈high〉]

[define loop (lambda (it)
(if (> it high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ it 1)))))])

(loop 〈low〉))]))

Notice that in place of〈var〉, we are now usingit. When we run this in DrScheme, we get:

> (for2 from 2 to 5 in (display it))
reference to undefined identifier:it

Oops! What happened here?
Actually, the macro system did exactly what it should. Remember hygiene? This was supposed to

preventinadvertent captureof identifiers across the macro definition/macro use boundary. It just so happens
that in this case, we really do wantit written in the macrouseto be bound byit in the macrodefinition.
Clearly, here’s a good example of where we want to “break” hygiene, intentionally.

Unfortunately, the simplesyntax-rulesmechanism we’ve been using so far isn’t quite up to this task;
we must instead switch to a slightly more complex macro definition mechanism calledsyntax-case. For the
most part, this looks an awful lot likesyntax-rules, with a little more notation. For instance, we can define
for3 to be the same macro asfor1, except written using the new macro definition mechanism instead:

(define-syntax (for3 x)
(syntax-casex (from to in)

[(for3 〈var〉 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(syntax
(local ([definehigh-value〈high〉]

[define loop (lambda (〈var〉)
(if (> 〈var〉 high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ 〈var〉 1)))))])

(loop 〈low〉)))]))

To convert anysyntax-rulesmacro definition into a corresponding one that usessyntax-case, we must make
the three changes boxed above (adding a parameter to the macro name, providing the parameter as an explicit
argument tosyntax-case, and wrapping the entire output expression in (syntax · · ·).

We can similarly definefor4:

(define-syntax(for4 x)
(syntax-casex (from to in)

[(for4 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)

316 CHAPTER 35. MACROS AS COMPILERS

(syntax
(local ([definehigh-value〈high〉]

[define loop (lambda (it)
(if (> it high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ it 1)))))])

(loop 〈low〉)))]))

This does not solve the hygiene problem; it simply enables it by converting the macro to usesyntax-case.
The reason is thatsyntax-caseprovides additional capabilities. In particular, it provides a procedure called
datum→syntax-object, which takes an arbitrary Scheme datum and a term in the macro body, and “paints”
the datum with the same colors as those on the macro body. This has the effect of persuading the hygiene
mechanism to treat the introduced term as if it were written by the programmer. As a result, it gets renamed
consistently. Thus, we must write

(define-syntax(for4 x)
(syntax-casex (from to in)

[(for4 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(with-syntax([it (datum→syntax-object(syntax for4) ’ it)])

(syntax
(local ([definehigh-value〈high〉]

[define loop (lambda (it)
(if (> it high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ it 1)))))])

(loop 〈low〉))))]))

The with-syntaxconstruct introduces new pattern variables for use in the output. The first argument to
datum→syntax-objectidentifies which expression the identifier the expander must pretend “introduced” the
identifier. The second, in this case, is the symbol that will be painted appropriately. Therefore, the result of
expansion on our running example will look something like

(local ([definehigh-value5]
[define loop (lambda (g1729)

(if (> g1729 high-value)
’done
(begin

(display g1729)
(loop (+ g17291)))))])

(loop2))

35.1. LANGUAGE REUSE 317

Notice how the uses ofit are all renamed consistently. (In practice, other bound identifiers such ashigh-value
and evenloop will also acquire fresh names, but we don’t show that here to keep the code more readable.)
Indeed, this mechanism is sufficiently robust that it will even do the right thing with nested loops:

(for4 from 2 to 5 in
(for4 from 1 to it in

(displayit))
(newline))

generates

12
123
1234
12345

In the inner loop, notice that theit in the loop bound (from 1 to it) is the iteration index for theouter loop,
while theit in (displayit) is the index for the inner loop. The macro system associates eachit appropriately
because each use offor4 gets a different coat of colors. Unfortunately, we have lost the ability to refer to
the outer iteration in the inner loop.

Combining the Pieces

A better design for an iteration construct would be to combine these ways of specifying the iteration identifier
(explicitly and implicitly). This is easy to do: we simply have two rules.4 If an identifier is present, use it as
before, otherwise bindit and recur in the macro.

(define-syntax(for5 x)
(syntax-casex (from to in)

[(for5 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(with-syntax([it (datum→syntax-object(syntax for5) ’ it)])

(syntax
(for5 it from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)))]

[(for5 〈var〉 from 〈low〉 to 〈high〉 in 〈bodies〉 · · ·)
(syntax
(local ([definehigh-value〈high〉]

[define loop (lambda (〈var〉)
(if (> 〈var〉 high-value)

’done
(begin
〈bodies〉 · · ·
(loop (+ 〈var〉 1)))))])

(loop 〈low〉)))]))
4When defining such macros, be very sure to test carefully: if an earlier rule subsumes a later rule, the macro system will not

complain, but the code will never get to a later rule! In this case we need not worry since the two rules have truly different structure.

318 CHAPTER 35. MACROS AS COMPILERS

This passes all the expected tests: both the following expressions print the numbers2 through5:

(for5 x from 2 to 5 in (displayx))
(for5 from 2 to 5 in (displayit))

while this

(for5 x from 2 to 5 in
(for5 from 1 to x in

(printf " [˜a, ˜a] " x it))
(newline))

prints

[2, 1] [2, 2]
[3, 1] [3, 2] [3, 3]
[4, 1] [4, 2] [4, 3] [4, 4]
[5, 1] [5, 2] [5, 3] [5, 4] [5, 5]

There are still ways to many ways of improving this macro. First, we might want to make sure〈var〉 is
really a variable. We can useidentifier?for this purpose. Thesyntax-casemechanism also permitsguards,
which are predicates that refine the patterns and don’t allow a rule to fire unless the predicates are met.
Finally, the following program does not work:

(for5 x from 2 to 5 in
(for5 from 1 to it in

(printf " [˜a, ˜a] " x it))
(newline))

It reports that the boxedit is not bound (why?). Try to improve the macro to bindit in this case.

35.2 Hygiene

Now what if the use ofmy-or2 really looked like this?

(let ([resulttrue])
(my-or2 false

result))

which should evaluate totrue. The expansion, however, is

(let ([resulttrue])
(let ([result false])

(if result
result
result)))

35.2. HYGIENE 319

which evaluates tofalse!
What happened here? When we look at just the input expression, we do not see only one binding of

result. Reasoning locally to that expression, we assume thatmy-or2 will evaluate the first expression and,
finding it false, will evaluate the second; since this isresult, which is bound totrue, the overall response
should also betrue. Instead, however, the use ofresultwithin the macro definition interferes withresult in
the context of its use, resulting in the incorrect result.

The problem we see here should seem awfully familiar: this is exactly the same problem we saw under
a different guise when trying to understand scope. Here,result in the second arm of the disjunction is bound
in the let just outside the disjunction. In contrast,result inside the macro is bound inside the macro. We as
programmers should not need to know about all the names used within macros—just as we don’t need to
know the names of identifiers used within functions!Therefore, macros should be forced to obey the scoping
rules of the language.

Just to be sure, let’s try this expression in our evaluator:

> (let ([resulttrue])
(my-or2 false result))

#t

We gettrue! This is because Scheme’s macro system ishygienic. That is, it automatically renames identifiers
to avoid accidental name clashes. The expression that actually evaluates is something like

(let ([resulttrue])
(let ([g1729false])

(if g1729
g1729
result)))

whereg1729is a uniquely-generated identifier name. Notice that only theresults within the macro definition
get renamed. In fact, becauselet is itself a macro, its identifiers also get renamed (as do those introduced by
lambda and other binding forms), so the real program sent to the evaluator might well be

(let ([g4104true])
(let ([g1729false])

(if g1729
g1729
g4104)))

Many macro systems, such as that of C, are not hygienic. Programmers sometimes try to circumvent this by
using hideous identifier names, such as__macro_result_ . This is not a solution!

1. Not only is a it painful to have to program this way, small typos would greatly increase development
time, and the macro would be much harder to decipher when a programmer tries to modify or correct
it later.

2. This solution is only as good as the programmer’s imagination; the problem still persists, lying in wait
for just the right (wrong!) identifier to be bound in the context of use. Indeed, while a programmer
may choose a sufficiently obscure name from the perspective of other programmers, not all source is

320 CHAPTER 35. MACROS AS COMPILERS

written by humans. A tool generating C code (such as a Scheme-to-C compiler) may happen to use
exactly this naming convention.

3. This name is only obscure “upto one level”. If the macro definition is recursive, then recursive in-
stances of the macro may interfere with one another.

4. If you use this macro to debug the source that contains the macro (e.g., compiling the C compiler
using itself), then your carefully-chosen “obscure” name is nowguaranteedto clash!

In short, to return to a theme of this course: we should view these kinds of contortions by programmers as
a symptom of a problem that must be addressed by better language design. Don’t settle for mediocrity! In
this case, hygiene is that solution.5

Notice, by the way, that we needed hygiene for the proper execution of our very first macro, because
my-time introduced the identifierbegin-time. At the time, we never even gave a thought to this identifier,
which means in the absence of hygiene, we had a disaster waiting to happen. With hygiene, we can program
using normal names (likebegin-timeandresult) and not have to worry about the consequencs down the line,
just as with static scope we can use reasonable names for local identifiers.

35.3 Comparison to Macros in C

Macro systems have a bad rap in the minds of many programmers. This is invariably because the only
macro system they have been exposed to is that of C. C’s macros are pretty awful, and indeed used to
be worse: macros could containparts of lexical tokens, and macro application would glue them together
(e.g., the identifierlist-length could be assembled by a macro that generatedlis, another generatingt-le
and yet another generatingngth). C macros are not hygienic. Because C has no notion of local scope, C
macros could not easily introduce local identifiers. Finally, C macros are defined by the C pre-processor
(cpp), which operates on files aline at a time. Therefore, to apply a macro over a multi-line argument, a C
programmer would have to use a\ at the end of each line to fool the pre-processor into concatenating the
adjacent line with the present one. Failing to remember to use the line-continuation character could lead to
interesting errors.

In contrast, Scheme’s macros operate over parenthesized expressions instead of pestering programmers
with lines. They respect lexical boundaries (to create a new identifier, you must do so explicitly—it cannot
happen by accident). Scheme macros are hygienic. They have many more features that we haven’t discussed
here. In short, they correct just about every mistake that C’s macro system made.

35.4 Abuses of Macros

When shouldn’t a programmer use macros?
As you can see, macros provide a programmer-controlled form ofinlining, that is, directly substituting

the body of an abstraction in place of its use. Compilers often inline small procedures to avoid paying
the cost of procedure invocation and return. This permits programmers to define abstractions for simple

5The algorithm, in effect, “paints” each expression on expansion, then consistently renames identifiers that have the same paints.

35.5. USES OF MACROS 321

operations—such as finding the corresponding matrix element in the next row when the matrix is stored
linearly, or performing some bit-twiddling—without worrying about the overhead of function invocation.
Normally, inlining is done automatically by a compiler, after it has examined the size of the procedure body
and determined whether or not it is cost-effective to inline.

Unfortunately, early compilers were not savvy enough to inline automatically. C programmers, looking
to squeeze the last bit of performance out of their programs, therefore began to replace function definitions
with macro definitions, thereby circumventing the compiler. Invariably, compilers got smarter, architectures
changed, the cost of operations altered, and the hard-coded decisions of programmers came to be invalidated.
Nowadays, we shouldregard the use of macros to manually implement inlining as a programming error.
Unfortunately, many C programmers still think this is the primary use of macros (and in C, it’s not useful
for a whole lot else), thereby further despoiling their reputation. (The previous sentence is intentionally
ambiguous.)

Another bad use of macros is to implement laziness.Macros do not correspond to lazy evaluation.Lazi-
ness is a property of when the implementation evaluates arguments to functions. Macros are not functions.
For instance, in Scheme, we cannot pass a macro as an argument: try passingor as an argument tomapand
see what happens. Indeed, macro expansion (like type-checking) happens in a completely different phase
than evaluation, while laziness is very much a part of evaluation. So please don’t confuse the two.

35.5 Uses of Macros

When should a programmer use macros?

providing cosmetics Obviously, macros can be used to reduce the syntactic burden on programmers. These
are perhaps the least interesting use; at least, a macro that does this should also fulfill one of the other
uses.

introducing binding constructs Macros can be used to implement non-standard binding constructs. We
have seen two examples,let and let∗, above. If these were not already in the language, we could
easily build them using macros. They would be impossible to defineas language contructsin most
other languages.

altering the order of evaluation Macros can be used to impose new orders-of-evaluation. For instance, we
sawtimesuspend evaluation until the clock’s value had been captured. Theor construct introduced
short-circuit evaluation. Often, programmers can obtain the same effect by thunking all the sub-
expressions and thawing (the opposite of thunking) them in the desired order, but then the programmer
would be forced to write numerouslambda () · · ·)’s—replacing one intrusive, manual pattern with
another. (In particular, if a programmer fails to obey the pattern faithfully, the behavior may become
quite difficult to predict.)

defining data languagesSometimes the sub-terms of a macro application may not be Scheme expressions
at all. We have seen simple instances of this: for example, in (my-let ([x 3] [y 4]) (+ x y)), neither
the parentheses wrapping the two bindings, nor those surrounding each name-value pair, signify ap-
plications. In general, the terms may have arbitrary structure, even including phrases that would be

322 CHAPTER 35. MACROS AS COMPILERS

meaningless in Scheme, such as (my-macro(lambda (x))) that would be syntactic errors otherwise.
We can get some of the same benefit from using quotations, but those are run-time values, whereas
here the macro can traverse the sub-terms and directly generate code.

In particular, suppose you wish to describe a datum without choosing whether it will be represented
as a structure or as a procedure. In ordinary Scheme, you have to make this decision up front, because
you cannot “introduce alambda” after the fact. Designating the datum using a macro lets you hide
this decision, deferring the actual representation to the macro.

Chapter 36

Macros and their Impact on Language
Design

36.1 Language Design Philosophy

TheRevised5 Report on the Algorithmic Language Schemefamously begins with the following design man-
ifesto:

Programming languages should be designed not by piling feature on top of feature, but by
removing the weaknesses and restrictions that make additional features appear necessary.

Scheme augments a minimal set of features with a powerful macro system, which enable the creation of
higher-level language primitives. This approach can only work, however, with a carefully designed target
language for expansion. Its success in Scheme depends on a potent combination of two forces:

• A set of very powerful core features.

• Very few restrictions on what can appear where (i.e., values in the language are trulyfirst-class, which
in turn means the expressions that generate them can appear nearly anywhere).

The first means many macros can accomplish their tasks with relatively little effort, and the second means
the macros can be written in a fairly natural fashion.

This manner of structuring a language means that even simple programs may, unbenownst to the pro-
grammer, invoke macros, and tools for Scheme must be sensitive to this fact. For instance, DrScheme is
designed to be friendly to beginners. Even simple beginner programs expand into rather complicated and
relatively mangled code, many of whose constructs the beginner will not understand. Therefore, when
reporting errors, DrScheme uses various techniques to make sure this complexity is hidden from the pro-
grammer.

Building a language through macros does more than just complicate error reporting. It also has signifi-
cant impact on the forms of generated code that the target implementation must support. Programmers who
build these implementations make certain assumptions about the kinds of programs they must handle well;
these are invariably based on what “a normal human would write”. Macros, however, breaks these unwritten

323

324 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

rules. They produce unusual and unexpected code, resulting in correctness and, particularly, performance
errors. Sometimes these are easy to fix; in many other cases they are not. We will study examples to illustrate
instances where macros crucially depend on the target language’s handling of certain key code patterns.

36.2 Example: Pattern Matching

We will now examine a rather unusual construct that a programmer would never write, and explain why
an implementation should nevertheless search for instances of it and handle it efficiently. To set the stage,
consider the Scheme constructlet, which binds names to values in a local lexical context. Though this (or
an equivalent way of introducing local scope) would be a language primitive in most languages, in Scheme
this is expressible as a rather simple macro in terms of first-class functions. That is,

(let ((v e) · · ·) b)

can be implemented by expanding into1

((lambda (v · · ·) b) e · · ·)

where (lambda (v · · ·) b) introduces an (anonymous) procedure with argument listv · · · and bodyb, and the
outer parentheses apply this procedure to the argument expressionse · · ·. The application binds the variables
v · · · to the values of the expressionse · · ·, and in that extended environment evaluates the bodyb—exactly
what we would intend as the semantics forlet. For instance, the program

(let ([x 3]
[y 2])

(+ x y))

which evaluates to2 + 3, i.e.,5, is transformed into

((lambda (x y)
(+ x y))

3 2)

This macro is, in fact, quite easy to implement: thanks to hygiene and pattern matching, the implementer of
let merely needs to write

(define-syntax let
(syntax-rules()

[(let ([v e] · · ·) b)
((lambda (v · · ·) b) e · · ·)]))

The Scheme pre-processor finds all bodies of the form (let · · ·), matches them against the input pattern (here,
(let ([v e] · · ·) b)), binds the pattern variables (v, eandb) to the corresponding sub-expressions, and replaces
the body with the output pattern in which the pattern variables have been replaced by the sub-expressions
bound to them.

1For simplicity, we assume the body has only one expression. In reality, Scheme permits multiple expressions in the body,
which is useful in imperative programs.

36.2. EXAMPLE: PATTERN MATCHING 325

There is, however, a significant performance difference between the two forms. A compiler can im-
plementlet by extending the current activation record with one more binding (for which space can be
pre-allocated by the creator of the record). In contrast, the expanded code forces the compiler to both create
a new closure and then apply it—both relatively more expensive operations.

Given this expense, you might think it silly for a Scheme system to implement thelet-to-lambda macro:
why take an efficient source-language instruction, whose intent is apparent, and make it less efficient behind
the programmer’s back? Yet at least one Scheme compiler (Chez Scheme) does precisely this. Furthermore,
in the back end, it finds instances of ((lambda · · ·) · · ·) and effectively handles them as it would havelet.

Why would a compiler behave so perversely? Surely no human would intentionally write ((lambda · · ·)
· · ·), so how else could these arise? The operative phrase is, of course, “no human”. Scheme programs are
full of program-generating programs, and by treating this odd syntactic pattern as a primitive,all macros
that resolve into it benefit from the compiler’s optimizations.

Consider a simple symbol-based conditional matcher: the user writes a series of symbol and action pairs,
such as

(switch [off 0]
[on 1])

The matcher performs the symbol comparison and, when a symbol matches, executes the corresponding
action (in this case, the actions are already numerical values). The entire (switch · · ·) expression becomes a
function of one argument, which is the datum to compare. Thus, a full program might be

(definem
(switch [off 0]

[on 1]))

with the following interactions with the Scheme evaluator:

> (m ’off)
0
> (m ’on)
1

To implementswitch, we need a macro rule when there are one or more cases:

(switch
[sym0 act0]
[pat-rest act-rest]
· · ·)

⇒ (lambda (v)
(if (symbol=? v (quotesym0))

act0
((switch

[pat-rest act-rest]
· · ·)
v)))

This yields a function that consumes the actual value (v) to match against. The matcher comparesv against
the first symbol. If the comparison is successful, it invokes the first action. Otherwise it needs to invoke the

326 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

(define-syntax switch
(syntax-rules()

[(switch) (lambda (v) false)]
[(switch [sym0 act0]

[pat-rest act-rest]
· · ·)

(lambda (v)
(if (symbol=? v (quotesym0))

act0
((switch

[pat-rest act-rest]
· · ·)
v)))]))

Figure 36.1: Simple Pattern Matcher

pattern-matcher on the remaining clauses. Since a matcher is a function, invoking it is a matter of function
application. So applying this function tov will continue the matching process.2

For completeness, we also need a rule when no patterns remain. For simplicity, we define our matcher
to returnfalse3 (a better response might be to raise an exception):

(switch) ⇒ (lambda (v) false)

Combining these two rules gives us the complete macro, shown in Figure 36.1.
Given this macro, the simple use ofswitch given above generates

(lambda (v0)
(if (symbol=? v0(quoteoff))

0
((lambda (v1)

(if (symbol=? v1(quoteon))
1
((lambda (v2)

false)
v1)))

v0)))

(I’ve used different names for eachv, as the hygienic expander might, to make it easy to keep them all apart.
Eachv is introduced by another application of theswitch macro.)

2The · · · denotes “zero or more”, so the pattern of using one rule followed by a· · · is common in Scheme macros to capture the
potential for an unlimited number of body expressions.

3In many Scheme systems,true andfalseare written as#t and#f, respectively.

36.3. EXAMPLE: AUTOMATA 327

While this expanded code is easy to generate, its performance is likely to be terrible: every time one
clause fails to match, the matcher creates and applies another closure. As a result,even if the programmer
wrote a pattern matching sequence that contained no memory-allocating code, the code might yet allocate
memory! That would be most unwelcome behavior.

Fortunately, the compiler comes to the rescue. It immediately notices the ((lambda · · ·) · · ·) pattern and
collapses these, producing effectively the code:

(lambda (v0)
(if (symbol=? v0(quoteoff))

0
(let ([v1 v0])

(if (symbol=? v1(quoteon))
1
(let ([v2 v1])

false)))))

In fact, since the compiler can now see that theselets are now redundant (all they do is rename a variable),
it can remove them, resulting in this code:

(lambda (v0)
(if (symbol=? v0(quoteoff))

0
(if (symbol=? v0(quoteon))

1
false)))

This is pretty much exactly what you would have been tempted to write by hand. In fact, read it and it’s
obvious that it implements a simple conditional matcher over symbols. Furthermore, it has a very convenient
interface: a matcher is a first-class function value suitable for application in several contexts, being passed to
other procedures, etc. The macro produced this by recursively generating lots of functions, but a smart choice
of compiler “primitive”—((lambda · · ·) · · ·), in this case—that was sensitive to the needs of macros reduced
the result to taut code. Indeed, it now leaves the code in a state where the compiler can potentially apply
further optimizations (e.g., for large numbers of comparisons, it can convert the cascade of comparisons into
direct branches driven by hashing on the symbol being compared).

36.3 Example: Automata

Next, we examine another optimization that is crucial for capturing the intended behavior of many programs.
As an example, suppose we want to define automata manually. Ideally, we should be able to specify the
automata once and have different interpretations for the same specification; we also want the automata to
be as easy as possible to write (here, we stick to textual notations). In addition, we want the automata to
execute fairly quickly, and to integrate well with the rest of the code (so they can, for instance, be written
in-line in programs).

Concretely, suppose we want to write a simple automaton that accepts only patterns of the form(01)∗.
We might want to write this textually as

328 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

automaton see0
see0 : 0 -> see1
see1 : 1 -> see0

where the state named after the keywordautomaton identifies the initial state.
Consider a slightly more complex automaton, one that recognizes the Lisp identifier familycar, cdr,

cadr, cddr, cddar and so on. That is, it should recognize the languagec(ad)∗r. Its automaton might look
like

automaton init
init : c -> more
more : a -> more

d -> more
r -> end

end :

We leave defining a more formal semantics for the automaton language as an exercise for the reader.
It is easy to see that some representation of the textual description suffices for treating the automata

statically. How do we implement them as programs with dynamic behavior?We request you, dear reader,
to pause now and sketch the details of an implementation before proceeding further.

A natural implementation of this language is to create a vector or other random-access data structure to
represent the states. Each state has an association indicating the actions—implemented as an association list,
associative hash table, or other appropriate data structure. The association binds inputs to next states, which
are references or indices into the data structure representing states. Given an actual input stream, a program
would walk this structure based on the input. If the stream ends, it would accept the input; if no next state
is found, it would reject the input; otherwise, it would proceed as per the contents of the data structure. (Of
course, other implementations of acceptance and rejection are possible.)

One Scheme implementation of this program would look like this. First we represent the automaton as
a data structure:

(definemachine
’((init (c more))

(more (a more)
(d more)
(r end))

(end)))

The following program is parameterized over machines and inputs:

(define(run machine init-state stream)
(define(walker state stream)

(or (empty? stream) ;; if empty, return true, otherwise . . .
(let ([transitions(cdr (assv state machine))]

[in (first stream)])
(let ([new-state(assvin transitions)])

36.3. EXAMPLE: AUTOMATA 329

(if new-state
(walker (cadr new-state) (rest stream))
false)))))

(walker init-state stream))

Here are two instances of running this:

> (run machine’ init ’(c a d a d d r))
true
> (run machine’ init ’(c a d a d d r r))
false

This is not the most efficient implementation we could construct in Scheme, but it is representative of
the general idea.

While this is a correct implementation of the semantics, it takes quite a lot of effort to get right. It’s easy
to make mistakes while querying the data structure, and we have to make several data structure decisions in
the implementation (which we have done only poorly above). Can we do better?

To answer this question affirmatively, let’s ignore the details of data structures and understand the
essenceof these implementations.

1. Per state, we need fast conditional dispatch to determine the next state.

2. Each state should be quickly accessible.

3. State transition should have low overhead.

Let’s examine these criteria more closely to see whether we can recast them slightly:

fast conditional dispatchThis could just be a conditional statement in a programming language. Compiler
writers have developed numerous techniques for optimizing properly exposed conditionals.

rapid state accessPointers of any sort, including pointers tofunctions, would offer this.

quick state transitionIf only function calls were implemented asgoto s . . .

In other words, theinit state could be represented by

(lambda (stream)
(or (empty? stream)

(case(first stream)
[(c) (more(rest stream))]
[else false])))

That is, if the stream is empty, the procedure halts returning a true value; otherwise it dispatches on the first
stream element. Note that the boxed expression is invoking the code corresponding to themore state. The
code for themore state would similarly be

(lambda (stream)
(or (empty? stream)

330 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

(case(first stream)
[(a) (more(rest stream))]
[(d) (more(rest stream))]
[(r) (end(rest stream))]
[else false])))

Each underlined name is a reference to a state: there are two self-references and one to the code for theend
state. Finally, the code for theend state fails to accept the input if there are any characters in it at all. While
there are many ways of writing this, to remain consistent with the code for the other states, we write it as

(lambda (stream)
(or (empty? stream)

(case(first stream) ;; no matching clauses, so alwaysfalse
[else false])))

The full program is shown in Figure 36.2. This entire definition corresponds to the machine; the definition
of machineis bound toinit, which is the function corresponding to theinit state, so the resulting value
needs only be applied to the input stream. For instance:

> (machine’(c a d a d d r))
true
> (machine’(c a d a d d r r))
false

What we have done is actually somewhat subtle. We can view the first implementation as aninterpreter
for the language of automata. This moniker is justified because that implementation has these properties:

1. Its output is an answer (whether or not the automaton recognizes the input), not another program.

2. It has to traverse the program’s source as a data structure (in this case, the description of the automa-
ton) repeatedly across inputs.

3. It consumes both the program and a specific input.

It is, in fact, a very classical interpreter. Modifying it to convert the automaton data structure into some
intermediate representation would eliminate the second overhead in the second clause, but would still leave
open the other criteria.

In contrast, the second implementation given above is theresult of compilation, i.e., it is what a compiler
from the automaton language to Scheme might produce. Not only is the result a program, rather than an
answer for a certain input, it also completes the process of transforming the original representation into one
that does not need repeated processing.

While this compiled representation certainly satisfies the automaton language’s semantics, it leaves two
major issues unresolved: efficiency and conciseness. The first owes to the overhead of the function appli-
cations. The second is evident because our description has become much longer; the interpreted solution
required the user to provide only a concise description of the automaton, and reused a generic interpreter
to manipulate that description. What is missing here is the actual compiler that can generate the compiled
version.

36.3. EXAMPLE: AUTOMATA 331

(definemachine
(letrec ([init

(lambda (stream)
(or (empty? stream)

(case(first stream)
[(c) (more(rest stream))]
[else false])))]

[more
(lambda (stream)

(or (empty? stream)
(case(first stream)

[(a) (more(rest stream))]
[(d) (more(rest stream))]
[(r) (end(rest stream))]
[else false])))]

[end
(lambda (stream)

(or (empty? stream)
(case(first stream)

[else false])))])
init))

Figure 36.2: Alternate Implementation of an Automaton

36.3.1 Concision

First, let us slightly alter the form of the input. We assume that automata are written using the following
syntax (presented informally):

(automaton init
(init : (c→ more))
(more : (a→ more)

(d→ more)
(r→ end))

(end :))

The general transformation we want to implement is quite clear from the result of compilation, above:

(state: (label→ target) · · ·) ⇒ (lambda (stream)
(or (empty? stream)

(case(first stream)
[(label) (target(rest stream))]
· · ·
[else false])))

332 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

(define-syntax automaton
(syntax-rules(:→) ;; match ‘:’ and ‘→’ literally, not as pattern variables

[(automaton init-state
(state: (label→ target) · · ·)
· · ·)

(letrec ([state
(lambda (stream)

(or (empty? stream)
(case(first stream)

[(label) (target(rest stream))]
· · ·
[else false])))]

· · ·)
init-state)]))

Figure 36.3: A Macro for Executable Automata

Having handled individual rules, we must make the automaton macro wrap all these procedures into a
collection of mutually-recursive procedures. The result is the macro shown in Figure 36.3. To use the
automata that result from instances of this macro, we simply apply them to the input:

> (definem (automaton init
[init : (c→ more)]
[more : (a→ more)

(d→ more)
(r→ end)]

[end :]))
> (m ’(c a d a d d r))
true
> (m ’(c a d a d d r r))
false

By defining this as a macro, we have made it possible to truly embed automata into Scheme programs.
This is true purely at a syntactic level—since the Scheme macro system respects the lexical structure of
Scheme, it does not face problems that an external syntactic preprocessor might face. In addition, an au-
tomaton is just another applicable Scheme value. By virtue of being first-class, it becomes just another
linguistic element in Scheme, and can participate in all sorts of programming patterns.

In other words, the macro system provides a convenient way of writing compilers from “Scheme+” to
Scheme. More powerful Scheme macro systems allow the programmer to embed languages that are truly
different from Scheme, not merely extensions of it, into Scheme. A useful slogan (due to Matthew Flatt and
quite possibly others) for Scheme’s macro system is that it’s alightweight compiler API.

36.3. EXAMPLE: AUTOMATA 333

36.3.2 Efficiency

The remaining complaint against this implementation is that the cost of a function call adds so much over-
head to the implementation that it negates any benefits theautomaton macro might conceivably manifest.
In fact, that’s not what happens here at all, and this section examines why not.

Tony Hoare once famously said, “Pointers are like jumps”4. What we are seeking here is the reverse of
this phenomenon: what is thegoto -like construct that corresponds to a dereference in a data structure? The
answer was given by Guy Steele: thetail call.

Armed with this insight, we can now reexamine the code. Studying the output of compilation, or the
macro, we notice that the conditional dispatcher invokes the function corresponding to the next state on the
rest of the stream—but does not touch the return value. This is no accident: the macro has been carefully
written to only make tail calls.5

In other words, the state transition is hardly more complicated than finding the next state (which is
statically determinate, since the compiler knows the location of all the local functions) and executing the
code that resides there. Indeed, the code generated from this Scheme source looks an awful lot like the
automaton representation we discussed at the beginning of section 36.3: random access for the procedures,
references for state transformation, and some appropriately efficient implementation of the conditional.

The moral of this story is that we get the same representation we would have had to carefully craft by
hand virtually for free from the compiler. In other words,languages represent the ultimate form of reuse,
because we get to reuse everything from the mathematical (semantics) to the practical (libraries), as well as
decades of research and toil in compiler construction.

Tail Calls versus Tail Recursion

This example should help demonstrate the often-confused difference between tailcalls and tailrecursion.
Many books discuss tail recursion, which is a special case where a function makes tail calls toitself. They
point out that, because implementations must optimize these calls, using recursion to encode a loop results
in an implementation that is really no less efficient than using a looping construct. They use this to justify,
in terms of efficiency, the use of recursion for looping.

These descriptions unfortunately tell only half the story. While their comments on using recursion for
looping are true, they obscure the subtlety and importance of optimizing all tailcalls, which permit a family
of functions to invoke one another without experiencing penalty. This leaves programmers free to write read-
able programs without paying a performance penalty—a rare “sweet spot” in the readability-performance
trade-off. Traditional languages that offer only looping constructs and no tail calls force programmers to
artificially combine procedures, or pay via performance.

The functions generated by theautomaton macro are a good illustration of this. If the implementation
did not perform tail-call optimization but the programmer needed that level of performance, the macro would
be forced to somehow combine all the three functions into a single one that could then employ a looping

4The context for the quote is pejorative: “Pointers are like jumps, leading wildly from one part of the data structure to another.
Their introduction into high-level languages has been a step backwards from which we may never recover.”

5Even if the code did need to perform some operation with the result, it is often easy in practice to convert the calls to tail-calls
using accumulators. In general, as we have seen, the conversion to continuation-passing style converts all calls to tail calls.

334 CHAPTER 36. MACROS AND THEIR IMPACT ON LANGUAGE DESIGN

construct. This leads to an unnatural mangling of code, making the macro much harder to develop and
maintain.

36.4 Other Uses

Scheme macros can do many more things.datum→syntax-objectcan be used to manufacture identifiers
from syntax supplied to the macro. Macros can also define other macros! You might find such examples
as you bgin to employ macros in your work. You might find Kent Dybvig’sThe Scheme Programming
Languageand Paul Graham’sOn Lispuseful books to understand these paradigms better.

36.5 Perspective

We have now seen several examples of Scheme’s macro system at work. In the process, we have seen how
features that would otherwise seem orthogonal, such as macros, first-class procedures and tail-calls, are in
fact intimately wedded together; in particular, the absence of the latter two would greatly complicate use of
the former. In this sense, the language’s design represents a particularly subtle, maximal point in the design
space of languages: removing any feature would greatly compromise what’s left, while what is present is an
especially good notation for describing algorithms.

Part XII

Logic Programming

335

Chapter 37

Programming in Prolog

37.1 Example: Academic Family Trees

A Prolog program consists of a set offactsand a collection ofrules. Given a program, a user can ask the
Prolog evaluator whether a particular fact is true or not. The query may be true atomically (because it’s in
the set of facts); if it’s not, the evaluator needs to apply the rules to determine truth (and, if no collection of
rules does the trick, then the query is judged false). With this little, Prolog accomplishes a lot!

Let’s plunge into a Prolog program. It’s inevitable, in the course of studying Prolog, to encounter a ge-
nealogy example. We’ll look at the genealogy of a particular, remarkable mathematician, where parenthood
is determined by PhD advisors. We’ll first list a few facts:

advisor(barwise,feferman).
advisor(feferman,tarski).
advisor(tarski,lesniewski).
advisor(lesniewski,twardowski).
advisor(twardowski,brentano).
advisor(brentano,clemens).

All facts are described by name of a relation (here,advisor) followed by a tuple of values in the relation.
In this case, we will assume that the person in the first position was advised by the person in the second posi-
tion. Prolog does not ask us to declare relations formally before providing their contents; nor does it provide
a means (beyond comments) of formally describing the relationship. Therefore, Prolog programmers must
be careful to keep track of how to interpret each relation.

Facts relateconstants. In the example above,barwise andfeferman are both constants. A constant
is, in fact, just a relation of arity zero, but understanding this isn’t necessary for the rest of this material.

In this example, all relations (including constants) are named by lower-case initial letters. This is not a
coincidence; Prolog requires this. Accidentally writingBarwise instead ofbarwise would change the
meaning of code quite a bit, because an initial capital denotes avariable, which we will study soon. Just
keep in mind that the case of the initial letter matters.

Given this input, we can ask Prolog to confirm a few basic facts:

337

338 CHAPTER 37. PROGRAMMING IN PROLOG

:- advisor(barwise,feferman).
yes

This asks Prolog at its prompt whether the constantsbarwise andfeferman are in theadvisor rela-
tionship. Prolog responds affirmatively. In contrast,

:- advisor(feferman,barwise).
no

Prolog responds negatively because it has no such fact in the database specified by the program.
So far, Prolog has done nothing interesting at all. But with rules, we can begin to explore this universe.
A standard genealogical question is whether one person is another’sancestor. Let’s build up this rule

one step at a time:

ancestor(x,y):-advisor(x,y).

This says thaty is x ’s (academic) ancestor ify is x ’s advisor. But this isn’t very interesting either: it just
sets upancestor to be an alias foradvisor . Just to be sure, however, let’s make sure Prolog recognizes
it as such:

:- ancestor(barwise,feferman).
no

What?!? Oh, that’s right:x andy are constants, not variables. This means Prolog currently knows how
to relateonly the constantsx and y , not the constantsbarwise and feferman , or indeed any other
constants. This isn’t what we mean at all! What we should have written is

ancestor(X,Y):-advisor(X,Y).

Now, sure enough,

:- ancestor(barwise,feferman).
yes

So far, so good. There is another way for one person to be another’s academic ancestor: by transitivity.
We can describe this verbally, but it’s at least as concise, and just as readable, to do so in Prolog:1

ancestor(X,Y):-
advisor(X,Z),
ancestor(Z,Y).

Read the, as “and”, while the multiple definitions forancestor combine with “or” (i.e., each represents
a valid way to be an ancestor, so to be in theancestor relation it’s enough to satisfy one rule or the other).
All Prolog rules are written in this “and of or’s” form (Conjunctive Normal Form). Notice the use ofZ twice
on the right-hand side. This is intentional: this is what captures the fact that thesameperson must be both
the immediate advisor and herself a descendant.

Armed with this extended rule, we can ask more interesting queries of Prolog:

1(Careful with those capital letters!)

37.1. EXAMPLE: ACADEMIC FAMILY TREES 339

:- advisor(barwise,tarski).
yes

so we can confirm that Barwise was advised by a legend. But it’s always a good idea to write tests that
ensure we didn’t write a faulty rule that made the relationtoo large:

:- advisor(tarski,barwise).
no

By the way, here’s an easy kind of mistake to make in Prolog: suppose you write

advisor(tawrdowski,brentano).

instead of

advisor(twardowski,brentano).

Then you get

:- advisor(barwise,clemens).
no

Prolog doesn’t have any way of knowing about slight misspellings of Polish names. It accepts your facts
as truth; garbage in, garbage out. This is another important pitfall (along with capitalization and making a
relation too large) to keep in mind.

Now let’s expand the relation with a few more facts. Franz Brentano actually had two advisors, of whom
we’ve given credit to only one above. So we should add the fact

advisor(brentano,trendelenburg).

We can now ask Prolog

:- advisor(barwise,clemens).
yes
:- ancestor(barwise,trendelenburg).
yes

and it shows that the relationships Prolog tracks really arerelations, not functions: the mapping truly can
be one-to-many. (We already saw this in the rule forancestor , where we provided multiple ways of
determining whether or not a pair of constants was in that relation.)

Now let’s add some more rules. The simplest is to ask questions in the other direction:

descendant(X,Y):-ancestor(Y,X).

As of now, each person has only one immediate descendant. But most of these people produced many
students. Tarski, one of the great logicians and mathematicians, not only generated a rich corpus of material,
but also trained a string of remarkable students. We already know of one, Feferman. Let’s add a few more:

340 CHAPTER 37. PROGRAMMING IN PROLOG

advisee(tarski,montague).
advisee(tarski,mostowski).
advisee(tarski,robinson).

Now, clearly, there are more ways of being one’s descendant. There are two ways of fixing thedescendant
relation. One is to do so directly, but this could get quite complex. A much easier fix is to note that every
advisee relationship gives rise to the reverse advisor relationship:

advisor(X,Y):-advisee(Y,X).

And sure enough,

:- descendant(clemens,montague).
yes
:- descendant(trendelenburg,montague).
yes
:- descendant(feferman,montague).
no
:- descendant(barwise,montague).
no

We haven’t at all explained how Prolog evaluates, and that’s largely because it seems very intuitive so
far (though once we start adding multiple clauses to a relation likedescendant , it may be a little less than
obvious). We also haven’t seen Prolog do something truly superlative. Let’s start exploring what this might
be.

Let’s first assume we’ve removed Trendelenburg from the database, so Brentano has only one advisor.
(We can do this in a source file by using C-style comments, delimiting text in/ * and* / .) Then let’s ask
Prolog the following query:

:- ancestor(barwise,X).

What does this mean? We know all the parts:advisor is a relation we’ve defined (both by facts and by
rules);barwise is a constant; andX is a variable. We should interpret this query as asking Prolog whether
there is a value forX that wouldsatisfy(make true) this query. In fact, we know there is (clemens). But
Prolog’s response is worth studying. This particular Prolog system2 prints

SOLUTION:
X=feferman

So not only did Prolog establish that the query was valid, it also found a solution forX! Now this isn’t the
solution we expected above, but if you think about it for a moment, it’s clear that the query has multiple
solutions, and Prolog has picked one of them. In fact, at the bottom of the window (in this interface), Prolog
saysPress cancel to stop, or continue for more solutions. Clicking on theContinue button provides one
more solution, then another, then another, and so on until there are no more, so the final output is

2Trinc-Prolog R3. In many textual Prolog systems, it’s conventional to print a caret to indicate that another solution is available.
The user types a semi-colon to ask Prolog to present it.

37.1. EXAMPLE: ACADEMIC FAMILY TREES 341

SOLUTION:
X=feferman

SOLUTION:
X=tarski

SOLUTION:
X=lesniewski

SOLUTION:
X=twardowski

SOLUTION:
X=brentano

SOLUTION:
X=clemens

no

Wow! Prolog actually “filled in the blank”. In fact, if we put Trendelenburg back into the picture, Prolog
prints one more solution:

SOLUTION:
X=trendelenburg

We can ask a similar query with the variable in the first position instead:

:- ancestor(X,clemens).
SOLUTION:

X=brentano
SOLUTION:

X=barwise
SOLUTION:

X=feferman
SOLUTION:

X=tarski
SOLUTION:

X=lesniewski
SOLUTION:

X=twardowski

This just shows that Prolog isn’t working as a functional program might, where the last position in the
relation is treated like the “return” location. Prolog really doesn’t discriminate between different positions
where you might put variables.

Maybe this isn’t so surprising. After all, Prolog is merely listing the same chain of relationship that we
entered as facts at the top of the program. Actually, this isn’tquitetrue: it had to apply the transitive rule of
ancestor to find all the solutions (and these are indeed all of them). But perhaps a more impressive test
would be to ask a query that runs counter to the facts we entered. For this, we should employ theadvisee
relation.

342 CHAPTER 37. PROGRAMMING IN PROLOG

:- descendant(tarski,X).
SOLUTION:

X=feferman
SOLUTION:

X=montague
SOLUTION:

X=mostowski
SOLUTION:

X=robinson
SOLUTION:

X=barwise

Sure enough, Prolog produces the entire part of Alfred Tarski’s family tree that we’ve taught it. Notice that
to get to Barwise it had to recur through Feferman usingadvisor , and to get to Robinson it had to employ
advisee .

This is pretty impressive already. But we can take this a step further. Why stop with only one variable?
We could in fact ask

:- ancestor(X,Y).

In response, Prolog will actually compute all pairs in theancestor relation and present them sequentially:

SOLUTION:
X=barwise
Y=feferman

SOLUTION:
X=feferman
Y=tarski

SOLUTION:
X=tarski
Y=lesniewski

SOLUTION:
X=lesniewski
Y=twardowski

and so on and on.
Now let’s explore another relation: academic siblings. We can define a sibling pretty easily: they must

have a common advisor.

sibling(X,Y):-
advisor(X,Z),
advisor(Y,Z).

We can either ask Prolog to confirm relationships (and just to be sure, try them both ways):

37.2. INTERMISSION 343

:- sibling(robinson,montague).
yes
:- sibling(montague,robinson).
yes

or to generate their instances:

:- sibling(robinson,X).
SOLUTION:

X=feferman
SOLUTION:

X=montague
SOLUTION:

X=mostowski
SOLUTION:

X=robinson

How’s that? When Robinson comes along to find out who her academic siblings are, she finds. . . herself!
It’s not very surprising that we got this output. What we meant to say was thatdifferentpeople,X andY,

are academic siblings if. . . and so on. While we may have mentally made a note that we expectX andY to be
different people, we didn’t tell Prolog that. And indeed, because Prolog programs can be “run backwards”,
it’s dangerous to embed such unencoded assumptions. Making this assumption explicit is quite easy:3

sibling(X,Y):-
advisor(X,Z),
advisor(Y,Z),
X \== Y.

Now, sure enough, we get the right number of siblings.

37.2 Intermission

At this point, we have seen most of the elements of (the core of) Prolog. We’ve seen fact declarations
and the expression of rules over them to create extended relations. We’ve also seen that Prolog evaluates
programs as simple rule-lookups or as queries (where the former are a special case of the latter). We’ve seen
Prolog’s variables, known aslogic variables, which can take on multiple values over time as Prolog boldly
and tirelessly seeks out new solutions until it has exhausted the space of possibilities. And finally, related to
this last step, Prologbacktracksas necessary to find solutions, in accordance with thenon-determinismof
the rules.4

3For a very subtle reason, we cannot move the last line earlier. We’ll try to understand why when we see how Prolog is actually
implemented.

4Obviously, there’s a lot more we can say about each of these issues. We will explore some of these issues just a little more
when we implement the essence of Prolog.

344 CHAPTER 37. PROGRAMMING IN PROLOG

37.3 Example: Encoding Type Judgments

Let’s look at a fun use of Prolog: to implement the type judgments we have studied all semester. Recall that
we had rules of the form

Γ`e : τ

where some wereaxiomsand the others were conditionally-defined judgments. The former we will turn into
facts, the latter into rules.

First, we must determine a representation for abstract syntax in Prolog. We don’t want to deal with
parsing, so we’ll assume constants have been turned into an abstract node that hides the actual value. Thus,
we use the constantnumConst to represent all syntactically numeric expression (i.e., those abstract syntax
terms of typenumE), boolConst to representtrueandfalse, and so on.

Given this, we will define a three-place relation,type . The first place will be the type environment,
represented as a list; the second will be the expression; and the third the resulting type (though as we’ve
seen in Prolog, talking about the “result” can be a bit less clear than in ordinary procedural programming).
Our axioms therefore become:

type(_,numConst,num).
type(_,boolConst,bool).

The_ represents that we don’t care what goes in that position. (We could as well have used a fresh logic
variable, but the underscore makes our intent clearer.) That is, no matter what the type environment, numeric
constants will always have typenum.

The easiest judgment to tackle is probably that for conditional. It translates very naturally into:

type(TEnv,if(Test,Then,Else),Tau) :-
type(TEnv,Test,bool),
type(TEnv,Then,Tau),
type(TEnv,Else,Tau).

Pay close attention to lower- and upper-case initials! Bothtype and if are in lower-case: the former
represents the type relation, the latter the term constructor (the choice of name is arbitrary). Everything else
is a type variable. (Notice, by the way, that Prolog performs pattern-matching on its input, just as we saw
for Haskell.)

Given this definition (two facts and one rule) oftype , we can ask Prolog to type-check programs:

:- type([],boolConst,bool).
yes
:- type([],if(boolConst,numConst,numConst),num).
yes
:- type([],if(boolConst,numConst,boolConst),num).
no

The implementation of this rule in your type checkers reflected exactly the semantics we gave:if the three
conditions in the antecedent were met,thenthe consequent holds. In contrast, because Prolog lets us query
relations in any way we please, we can insteaduse the same implementationto ask what the type of an
expression is (i.e., make Prolog perform type inference):

37.3. EXAMPLE: ENCODING TYPE JUDGMENTS 345

:- type([],boolConst,T).
T=bool
no

:- type([],if(boolConst,numConst,numConst),T).
T=num
no

:- type([],if(boolConst,numConst,boolConst),T).
no

It should be no surprise that Prolog “inferred” a type in the first case, since the use precisely matches the
axiom/fact. In the second case, however, Prolog used the rule for conditionals to determine solutions to the
type of the first expression and matched these against those for the second, finding the only result. In the
third case, since the program does not have a type, Prolog fails to find any solutions.

In fact, we can ask Prolog even stranger questions, such as “What expression have typenum?”

:- type([],T,num).

Amazingly enough, Prolog responds with:5

SOLUTION:
T=numConst

SOLUTION:
T=if(boolConst, numConst, numConst)

SOLUTION:
T=if(boolConst, numConst, if(boolConst, numConst, numConst))

SOLUTION:
T=if(boolConst, numConst,

if(boolConst, numConst,
if(boolConst, numConst, numConst)))

The output here actually gives us a glimpse into the search order being employed by this implementation
(notice that it depth-first expands the else-clause of the conditional).

Next let’s deal with identifiers. We’ve said that the type environment is a list; we’ll use a two-place
bind relation to track what type each identifier is bound to.6 To look up the type of an identifier in the type
environment, therefore:

type([bind(V,T)|_],var(V),T).
type([bind(_,_)|TEnvRest],var(V),T):-

type(TEnvRest,var(V),T).

Testing this:

5The indentation is mine.
6We’ll make the simplifying assumption that all bound identifiers in the program are consistently renamed to be distinct.

346 CHAPTER 37. PROGRAMMING IN PROLOG

:- type([bind(w,bool),bind(v,num)],var(v),T).
T=num

Next we’ll specify the rule for functions:

type(TEnv,fun(Var,Body),arrow(T1,T2)) :-
type([bind(Var,T1)|TEnv],Body,T2).

Testing this:

:- type([],fun(x,if(var(x),numConst,boolConst)),T).
no

:- type([],fun(x,if(var(x),numConst,numConst)),T).
T=arrow(bool,num)

Notice that in the second example, Prolog has determined that the bound identifier must be a boolean, since
it’s used in the test expression of a conditional.

Finally, the rule for functions holds no surprises:

type(TEnv,app(Fun,Arg),T2) :-
type(TEnv,Fun,arrow(T1,T2)),
type(TEnv,Arg,T1).

Running it:

:- type([],
app(fun(x,if(var(x),

numConst,
numConst)),

boolConst),
T).

T=num

Now let’s try some more interesting functions:

:- type([],fun(x,var(x)),T).
T=arrow(__2823020, __2823020)

This is Prolog’s way of saying that parts of the answer are indeterminate, i.e., there are no constraints on it.
In short, Prolog is inferring parameterized types!

:- type([],
app(fun(id,

if(app(var(id),boolConst),
app(var(id),boolConst),
app(var(id),boolConst))),

37.4. FINAL CREDITS 347

fun(x,var(x))),
T).

T=bool

:- type([],
app(fun(id,

if(app(var(id),boolConst),
app(var(id),numConst),
app(var(id),numConst))),

fun(x,var(x))),
T).

no

Finally, we have to try:

:- type([], fun(x, app(var(x), var(x))), num).
no

:- type([], fun(x, app(var(x), var(x))), T).
T=arrow(arrow(arrow...

37.4 Final Credits

We’ve now seen even more of Prolog. We’ve encountered the “don’t care” notation. Prolog computes
the most general response it can, so if there are no constraints on some part of the answer, it leaves them
undefined (though it does use the same symbol to show sharing constraints, as in the type of the identity
function). Prolog will match patterns as deep as they are nested, and programmers can use the same variable
twice in a rule to indicate that they intend for the values of both to be the same. (We had already seen this
with genealogical trees, but made much more extensive use of it here to directly encode similar uses of type
variables in the judgments.)

Putting together the pieces, we found that Prolog was a very convenient encoding of the rules of a type
checker. Indeed, for free, we were able to turn our typecheckerinto a typeinferenceengine. Thinking about
how we implemented type inference manually may give us some clues as to how to implement Prolog!

348 CHAPTER 37. PROGRAMMING IN PROLOG

Part XIII

What’s Next?

349

Chapter 38

Programming Interactive Systems

Consider writing a program that solves a graph algorithm such as finding a minimum spanning tree. Your
implementation of the algorithm may suffer from several problems: even if the program runs to completion,
the output it produces may not be minimal, it may not span, and it may not even be a tree! While debugging
such a program by manual inspection of intermediate data structures can be onerous, often (especially if
the bug is in one of the latter two cases) it is easy to spot the problem visually. Suppose, however, you
were writing a library that was meant to be used in textual applications. It would not make sense to add
graph-drawing code to your library program. But how can you instrument your program from the “outside”
to add this functionality?

In principle, adding this graph-drawing instrumentation is something a debugger should support well. It
is, however, a very domain-specific instrumentation; it doesn’t make sense for a general-purpose debugger
to offer the ability to add graph-drawing code, because this is a property many applications don’t require. In
general, a debugger offers only a general, domain-independent view of a program’s data, while we would
often like to specialize this view to a domain-specific one. Ideally, that is, we would like to make the
debuggerscriptable, so each application can install its own programs that run atop a library of debugging
primitives.

In most programming languages, programs expect to be in control of their execution. That is, the
beginning of the program initiates a process of execution, and the end of the program terminates it. The
program may invoke external agents (such as functions in libraries, procedures written in other languages
through a foreign-function interface, or even a method residing on a remote host through a remote procedure
call mechanism), but expect at some point (either synchronously or asynchronously) to get a response that
resumes the computation.

In a debugger scripting language, in contrast, the script is most certainly not in control of the computa-
tion. Two other programs—the target program being debugged, and the debugger itself—control the flow
of computation. The script should have the ability to install an event generator that triggers whenever some
event of interest—such as a method invocation, a variable mutation, a thread spawn, and so forth—happens
in the target program. The script only runs in response to these events. Furthermore, the script does not
return any answers to the target program (which is essentially unaware of the script’s existence) or to the
debugger (which, being general-purpose, may not know what to do with it), but rather preserves information
for its own (possible) subsequent execution.

351

352 CHAPTER 38. PROGRAMMING INTERACTIVE SYSTEMS

In fact, most modern applications share this characteristic: the application must lay dormant waiting for
some behavior from an external source of events. We have already seen this property in the case of Web
applications; programmers needed to invert the structure of their source to expose the points of resumption,
and manually represent the rest of the computation at each point. To remedy this problem, we devised
thesend/suspendprimitive, and showed that better language support makes Web applications far easier to
construct and maintain.

The Web is a simple interactive medium in the sense that there is only one kind of behavior available
to a user, namely clicking on a link or on a button. Other user actions are masked by the browser and not
conveyed to the Web application. In contrast, a modernGUI application—such as that Web browser itself—
must respond to multiple kinds of behavior, including keystrokes, mouse button pushes and mouse clicks.
Applications may also need to be sensitive to the receipt of network packets or the ticking of the system
clock.

Confronted with the challenge of building complex interactive systems, most programming languages
have taken a rather weak route. Traditional programming languages offer thecallbackas the primary method
of registering code that will respond to events. A callback is essentially a procedure that consumes arguments
corresponding to the event information—such as which key was pressed—and returns. . . nothing.

Why does a callback not return anything? A callback is a piece of application code that is “installed”
in the underlying system layer, to be invoked when that layer receives an event that the application must
process. That is, the system code invokes the callback. But it is the application that must process the event,
so there is no meaningful information that the callback can return to the system. This explains the return
type.

What do we know about procedures that do not return a value? To be of any use at all, they must
accomplish their action by using side-effects (such as mutation). This explains why side-effects, especially
mutation, are so prevalent inGUI applications. But side-effects, and procedures that don’t return any value,
are difficult to compose, and make it harder to reason about a program’s behavior. Is it surprising thatGUIs
are difficult to develop correctly and to test for the absence of errors?

Many programmers see the current design ofGUI libraries, with their plethora of callbacks, as a fixture
in the design space. We should know better. The callback-based solution should be especially familiar to us
from our Web programming experience: the continuation generated byCPSa procedure that does not return
any meaningful value (in fact, it doesn’t return at all), and represents the rest of the computation. As such,
it is a special kind of callback. If through better language design we were able to improve the state of Web
programming, perhaps better language design can improveGUI programming (and debugger scripting, and
. . .) also?

This is precisely the kind of challenge that leads to research in programming languages. For instance,
the FrTime1 language in DrScheme is designed to make developing interactive applications, from debugging
scripts toGUIs, more direct. Though FrTime programs superficially look like Scheme programs, they eval-
uate under a very different semantics: certain expressions are known to yield sequences of events, and any
computation that depends on it in turn getsrecomputedevery time a new event occurs. Thus, for instance,
the expression

(make-circle mouse-pos10 " blue")

1Pronounced “father time”.

353

automatically draws a blue circle of radius ten pixels wherever the mouse is currently centered, because
mouse-posis a value in the language that updates whenever the mouse moves. Because it updates, every
expression that depends on it must also update to remain fresh. There is, therefore, no need for a loop to
ensure the circle is re-drawn: the “loop” is built into the language semantics! Note, of course, that there is
no need for a callback either.

This is just a miniscule example of how a deeper analysis of a problem can lead to better linguistic tools,
which can in turn make a problem much simpler than it was initially. Look up FrTime in DrScheme for
more on this fascinating language.

354 CHAPTER 38. PROGRAMMING INTERACTIVE SYSTEMS

Chapter 39

What Else is Next

At this point, it may be humbling to consider all the topics in programming languages that wehaven’tcov-
ered: object-oriented programming, class-oriented programming and type systems for the same; threads;
module systems; middleware; and so on. And that’s just looking at what programmers routinely use in
practice. A bit further afield we find techniques such as mixins (parameterized classes), contracts and
aspect-oriented programming, which are rapidly gaining a foothold in industry as well. And then we get to
topics that are still very much in the realm of research, such as dependent types, type classes, delimited con-
trol, resource accounting or logic metaprogramming. We’ve applied programming language theory to one
important practical problem (Web programming), but numerous ones abound (such as the static validation
of spreadsheets).

The particular set of topics we’ve chosen to study in this book meet one of these critiera: they’re essential
knowledge before we can examine these other topics above, or they’rejust plain fun. Fortunately, most topics
are both.

Go forth and populate the world with beautiful designs.

355

Index

BNF, 7
CPS, 165, 352
GUI applications, interactive, 352

abstract syntax, 6
activation record, 206
actual parameter, 28
address (see “location”), 116
AE, 6
Algol 60, 8, 101
alias, 132
aliasing, 132
antecedent, 237
application, function, 39
assume-guarantee, 251
automated memory management, 220
axiom, 252
axiomatic semantics, 4

Backus-Naur Form, 7
Barwise, Jon, 337
bash, 92
big-step operational semantics, 239
binding form, judgment as, 238
binding instance, 17
Bool, Haskell type, 82
bound instance, 17
Bourne Again Shell, 92

C, 30, 269, 271
C++, 271, 279
cache, 33, 100
cache, invalidation of, 102
cache, substitution, 33
caching computation in lazy evaluation, 100

call-by-reference, 130
call-by-value, 130
callback, 352
cast, type, 245, 246
Char, Haskell type, 82
Church numerals, 231
Church, Alonzo, 231
closure, 44
closure, expression, 96
Common Lisp, 30
compiler, 168
compiler optimization, 102, 104
compiler, for the Web, 165
concrete syntax, 6
consequent, 237
container type, 127
continuation, 173
continuation-passing style, 165
control stack, 165
Curry, Haskell, 81
cycle, 87
cyclicity, 66

database, 146
de Bruijn index, 24
de Bruijn, Nicolaas, 24
declaration, function, 39
definition, function, 39
denotational semantics, 4
DrScheme, 8
dyanmic, 23
dynamic, 167
dynamic extent, 123, 211
dynamic loading, 221
dynamic scope, 36, 104

356

INDEX 357

eager, 23
eager evaluation, 104
eager evaluation, testing for, 86
elaboration, type, 278
encapsulation, 188
environment, 61
environment, type, 249
equational reasoning, 102, 103
escaper, 175
evaluation regime, 104
exception, 270
exceptions, 175
existential type, 265
explicit polymorphism, 277
expression closure, 96
extent, 123

F1WAE, 27
fact, 337
Feferman, Solomon, 337
filter, 83
fixed-point, 66, 235
fixed-point type, 290
formal parameter, 28
France, Tour de, 87
free instance, 18
FrTime programming language, 352
function, 27
function application, 39
function declaration, 39
function definition, 39
function invocation, 39

garbage collection, 220
genealogy, academic, 337
goto statement, 182

Halting Problem, 245, 259
Haskell, 81
Haskell Prelude, 81, 83
heap, 211
hidden field,HTML , 146, 151
Hindley, J. Roger, 291

Hindley-Milner, 291
homogenous lists, 83
hunky-dory, 161

identifier, 15
index, de Bruijn, 24
infix notation, 5
instance, binding, 17
instance, bound, 17
instance, free, 18
Int, Haskell type, 82
interaction, Web browser, 142
interpreter, 4
interpreter semantics, 4
interpreter, meta, 55
interpreter, meta-circular, 56
interpreter, syntactic, 55
invalidating cached values, 102
invocation, function, 39
iterator, 205

Java, 271, 281
Java Servlet, 146
judgment, 238
judgment, type, 249

l-value, 129, 132, 134
lambda calculus, 225, 236
lambda lifting, 150
language level, 8
last call optimization, 204
lazy, 23
lazy evaluation, 104
lazy evaluation, testing for, 86
leakage, 221
length, 84
let-based polymorphism, 297
lexical scope, 123
lifting procedures, 150
liveness of objects, 221
location, 116

macro, 168
map, 84

358 INDEX

memoization, 104
memory address (see “memory location”), 116
memory location, 116
meta interpreter, 55
meta-circular interpreter, 56
meta-representation, 243
Milner, Robin, 270, 291
ML, 270, 297
module system, 265
mutation, 111
mutation, absence in Haskell, 102

namespace, 30
non-terminal, 7
numeral, 228, 237

object system, 265, 266
object-verb, 227
objects, 127
occurs check in unification, 290
omega, 257
operational semantics, 4, 239
optimization by compiler, 102, 104

parameter, actual, 28
parameter, formal, 28
parser, 6
Perlis, Alan, 94
polymorphic types, 85
polymorphism, 85
polymorphism, explicit, 277
polymorphism, let-based, 297
polymorphism, subtype, 281
postfix notation, 5
prefix notation, 5
Prelude, Haskell, 81, 83
principal type, 291
product, 83
production, 7
Prolog, 337
provability, 220

quote notation, 8

reachability, 221
read, 6
reading, 7
reasoning, equational, 102
receiver, 147, 154
recursive types, 263
reduction regime, 23
reference parameters, 132
referential transparency, 103, 220
reflection, 207
reification, 207
resources as types, 259
root set, 221
rule, 337

safety, 271
scanning, 7
scope, 17, 104
scope, dynamic, 36
scope, static, 36
scripting language, 56
scripting languages, 48
scripting, debugger, 351
self-application, 233, 257
semantics, 4, 239
semantics, axiomatic, 4
semantics, denotational, 4
semantics, interpreter, 4
semantics, operational, 4
send/suspend, 352
shadowed binding, 18
shipping and handling, 155
short-circuited evaluation, 86
short-circuiting, 228
simply-typed lambda calculus, 258
Singleton Pattern, 214
SML, 259
SML module language, 259
space safety, 221
stack frame, 206
stack, control, 165
state, 111
stateful protocol, 143

INDEX 359

stateless protocol, 143
stateless protocol for the Web, 142
static, 23
static distance coordinates, 25
static scope, 36, 104
STL (Standard Template Library), 279
store, 116
store-passing style, 117, 120, 129
strictness, 99
strong normalization, 258
style, continuation-passing, 165
substitution, 16, 33, 288
substitution cache, 33
subtype polymorphism, 281
sum, 83
swap, 132
syntactic interpreter, 55
syntactic representation, 243
syntax, abstract, 6
syntax, concrete, 6

tail call, 203, 204
tail call optimization, 204
tail recursion, 205
take, 87
Tarski, Alfred, 337
terminal, 7
threaded store, 123
threading, 123
thunk, 101
tokenizing, 7
Tour de France, 87
transitive closure, 151
truth, 220
truth and provability, 220
type, 244, 245
type closure, 295
type elaboration, 278
type environment, 249
type error, 253
type inference, 85
type judgment, 249
type judgment tree, 252

type safety, 271
type soundness, 269
type system, 244
type variable, 85, 277
types and correctness, 246

undecidability, 195
union type, 256

variable, 15, 127
verb-object, 227
Viet Nam, 3

WAE, 16
Web applications, interactive, 352
Web compiler, 165
Web programs, 141
Whitehead, Alfred North, 4
with, 15

XML, 94

Y combinator, 235

zip, 89
zipWith, 89

	Preface
	Acknowledgments
	I Prelude
	Modeling Languages
	Modeling Meaning
	Modeling Syntax
	A Primer on Parsers
	Primus Inter Parsers

	II Rudimentary Interpreters
	Interpreting Arithmetic
	Substitution
	Defining Substitution
	Interpreting with
	The Scope of with Expressions
	What Kind of Redundancy do Identifiers Eliminate?
	Are Names Necessary?

	An Introduction to Functions
	Enriching the Language with Functions
	The Scope of Substitution
	The Scope of Function Definitions
	Helper Functions

	Caching Substitution
	The Substitution Cache
	Fixing the Interpreter

	First-Class Functions
	A Taxonomy of Functions
	Enriching the Language with Functions
	Making with Redundant
	Implementing Functions using a Substitution Cache
	Some Perspective on Scope
	Differentiation
	Callbacks

	Eagerness and Laziness
	Helper Functions

	III Intermezzo
	Representations and Meta-Interpreters
	Re-Implementing Substitution Caches
	A New Representation for FAE Functions
	Types of Interpreters

	IV Recursion
	Understanding Recursion
	A Recursion Construct
	Environments for Recursion
	A Hazard

	Implementing Recursion
	Procedural Representation of Recursive Environments
	Datatype Representation of Recursive Environments

	V Laziness
	Programming with Laziness
	Haskell
	Expressions and Definitions
	Lists
	Polymorphic Type Inference
	Laziness
	An Interpreter

	Shell Scripting

	Implementing Laziness
	Implementing Laziness
	Caching Computation
	Caching Computations Safely
	Scope and Evaluation Regimes

	VI State
	Church and State
	Mutable Data Structures
	Implementation Constraints
	Store-Passing Style
	An Example of Evaluation using Store-Passing Style
	Implementing the Interpreter

	Scope versus Extent

	Variables
	Implementing Variables
	Interaction Between Variables and Function Application
	Perspective

	VII Continuations
	Some Problems with Web Programs
	The Structure of Web Programs
	Explicating the Pending Computation
	A Better Server Primitive
	Testing Web Transformations
	Executing Programs on a Traditional Server

	More Web Transformation
	Transforming Recursive Code
	Transforming Multiple Functions
	Transforming State
	Transforming Higher-Order Functions
	Perspective on the Web Transformation

	Conversion into Continuation-Passing Style
	The Transformation, Informally
	The Transformation, Formally

	Programming with Continuations
	Capturing Continuations
	Escapers
	Exceptions
	Web Programming
	Producers and Consumers
	A Better Producer
	Why Continuations Matter

	Implementing Continuations
	Representing Continuations
	Adding Continuations to the Language
	Testing

	Continuations and Compilation: Explicating the Stack
	Examples
	Factorial
	Tree Sum
	Filtering Positive Numbers

	Tail Calls
	On Stacks
	Consolidation

	Continuations and Compilation: Machine Representations
	The Stack in Memory
	Lists in Memory

	VIII Memory Management
	Automatic Memory Management
	Motivation
	Truth and Provability

	IX Semantics
	Honey, I Shrunk the Language
	Encoding Lists
	Encoding Boolean Constants and Operations
	Encoding Numbers and Arithmetic
	Eliminating Recursion

	Semantics

	X Types
	Introduction
	What Are Types?
	Type System Design Forces
	Why Types?

	Type Judgments
	What They Are
	How Type Judgments Work

	Typing Control
	Conditionals
	Recursion
	Termination
	Typed Recursive Programming

	Typing Data
	Recursive Types
	Declaring Recursive Types
	Judgments for Recursive Types
	Space for Datatype Variant Tags

	Type Soundness
	Explicit Polymorphism
	Motivation
	Solution
	The Type Language
	Evaluation Semantics and Efficiency
	Perspective

	Type Inference
	Inferring Types
	Example: Factorial
	Example: Numeric-List Length

	Formalizing Constraint Generation
	Errors
	Example: Using First-Class Functions
	Solving Type Constraints
	The Unification Algorithm
	Example of Unification at Work
	Parameterized Types
	The ``Occurs'' Check

	Underconstrained Systems
	Principal Types

	Implicit Polymorphism
	The Problem
	A Solution
	A Better Solution
	Recursion
	A Significant Subtlety
	Why Let and not Lambda?
	The Structure of ML Programs
	Interaction with Effects

	XI Domain-Specific Languages and Metaprogramming
	Domain-Specific Languages
	Language Design Variables
	Languages as Abstractions
	Domain-Specific Languages

	Macros as Compilers
	Language Reuse
	Example: Measuring Time
	Example: Local Definitions
	Example: Nested Local Definitions
	Example: Simple Conditional
	Example: Disjunction
	Example: For Loops

	Hygiene
	Comparison to Macros in C
	Abuses of Macros
	Uses of Macros

	Macros and their Impact on Language Design
	Language Design Philosophy
	Example: Pattern Matching
	Example: Automata
	Concision
	Efficiency

	Other Uses
	Perspective

	XII Logic Programming
	Programming in Prolog
	Example: Academic Family Trees
	Intermission
	Example: Encoding Type Judgments
	Final Credits

	XIII What's Next?
	Programming Interactive Systems
	What Else is Next

