why's

(poignant)

guide to Ruby

tenderly written and illustrated by
why the lucky stiff

Q@

Licensed under the Attribution-ShareAlike license.
See http://creativecommons.org/licenses/by-sa/2.0/ for details.

1of114

1.

About this Book

Ehanks to Why's
Foignankt Guide..

y .@1(:[:;5:0?;:

| (‘ﬂna'ﬁ;-fs-

even infants can learn Ruby!
it's just kthat simple!

i am deeply touched

by this strange book,

Why's Poignant
Guide to Ruby.

zeriously.
i feel great
inside.

20f114

like the cavity
of my body is
filled with an
avocada and
mayonnaise whip.

adventyRes!

ok, m

get +o staprt
+he boal!

3o0f114

Kon'nichi wa, Ruby

40f114

1. Opening This Book

Pretend that you've opened this book (although you probably
have opened this book), just to find a huge onion right in the
middle crease of the book. (The manufacturer of the book has
included the onion at my request.)

So you’re like, “Wow, this book comes with an onion!” (Even if
you don’t particularly like onions, I'm sure you can appreciate
the logistics of shipping any sort of produce discreetly inside of
an alleged programming manual.)

Then you ask yourself, “Wait a minute. I thought this was a
book on Ruby, the incredible new programming language from
Japan. And although I can appreciate the logistics of shipping
any sort of produce discreetly inside of an alleged
programming manual: Why an onion? What am I supposed to
do with it?”

No. Please don’t puzzle over it. You don’t need to do anything
with the onion. Set the onion aside and let it do something
with you.

I'll be straight with you. I want you to cry. To weep. To
whimper sweetly. This book is a poignant guide to Ruby. That
means code so beautiful that tears are shed. That means
gallant tales and somber truths that have you waking up the
next morning in the arms of this book. Hugging it tightly to
you all the day long. If necessary, fashion a makeshift hip
holster for Why’s (Poignant) Guide to Ruby, so you can always
have this book’s tender companionship.

You really must sob once. Or at least sniffle. And if not, then
the onion will make it all happen for you.

2, The Dog Story

So try this first bit of poignancy on for size:

One day I was walking down one of those busy roads covered
with car dealerships (this was shortly after my wedding was
called off) and I found an orphaned dog on the road. A wooly,
black dog with greenish red eyes. I was kind of feeling like an
orphan myself, so I took a couple balloons that were tied to a
pole at the dealership and I relocated them to the dog’s collar.
Then, I decided he would be my dog. I named him Bigelow.
We set off to get some Milkbones for Bigelow and, afterwards,
head over to my place, where we could sit in recliners and

50f114

sidebar!

What I'm Going to Do With
the Massive Proceeds from this
Book

Anyone who’s written a book can tell
you how easily an author is distracted
by visions of grandeur. In my
experience, | stop twice for each
paragraph, and four times for each
panel of a comic, just to envision the
wealth and prosperity that this book
will procure for my lifestyle. I fear
that the writing of this book will halt
altogether to make way for the armada
of SUVs and luxury towne cars that
are blazing away in my head.

Rather than stop my production of the
(Poignant) Guide, I’ve reserved this
space as a safety zone for pouring my
empty and vain wishes.

Today I was at this Italian restaraunt,
Granado’s, and I was paying my bill.
Happened to notice (under glass) a
bottle of balsamic vinegar going for
$150. Fairly small. I could conceal it

in my palm. Aged twenty-two years.

I’ve spent a lot of time thinking about
that bottle. It is often an accessory in
some of these obsessive fantasies. In
one fantasy, [walk into the restaraunt,
toss a stack of greenery on the counter
and earnestly say to the cashier,
“Quick! I have an important salad to
make!”

In another, related fantasy, [am
throwing away lettuce. Such roughage
isn’t befitting of my new vinegar. No,
I will have come to a point where the
fame and the aristocracy will have
corrupted me to my core. [will use
cash as my lettuce. Cold, hard cash,
Mrs. Price.

Soon, I will be expending hundreds
for a block of myzithra cheese.

listen to Gorky’s Zygotic Mynci. Oh, and we’d also need to stop
by a thrift store and get Bigelow his own recliner.

But Bigelow hadn’t accepted me as his master. So five minutes
later, the stupid dog took a different crosswalk than I did and I
never caught up. So whereas he had previously only been lost
once, he was now lost twice. I slowed my pace towards the life
of Milkbones and an extra recliner. I had a dog for five
minutes.

Stupid Benedict Arnold of a dog. I sat on a city bench and
threw pinecones at a statue of three sheep crossing a bridge.
After that, I wept for hours. The tears just came. Now there’s a
little something poignant to get you started.

I wonder where he went with all those balloons. That crazy dog
must have looked like a party with legs.

It wasn’t much later that I pulled my own Bigelow. I printed
out a bunch of pages on Ruby. Articles found around the Web.
I scanned through them on a train ride home one day. I flipped
through them for five minutes and then gave up. Not
impressed.

I sat, staring out the window at the world, a life-sized blender
mixing graffiti and iron smelts before my eyes. This world’s
too big for such a a little language, I thought. Poor little thing
doesn’t stand a chance. Doesn’t have legs to stand on. Doesn’t
have arms to swim.

And yet, there I was. One little man on a flimsy little train (and
I even still had a baby tooth to lose at the time) out of billions
of people living on a floating blue rock. How can I knock Ruby?
Who’s to say that I'm not going to accidentally choke on my
cell phone and die later that evening. Why’s dead, Ruby lives
on.

The gravestone:
What’s in his trachea?
Oh, look, a Nokia!

Just my luck. Finally get to have a good, long sleep
underground, only to be constantly disturbed by Pachelbel’s
Canon going off in my stomach.

60f114

My imaginations have now gone
beyond posessions, though. Certainly,
I have thought through my acquisition
of grecian urns, motorcades, airlines,
pyramids, dinosaur bones.
Occassionally I’1l see wind-tossed
cities on the news and I’ll jot down on
my shopping list: Hurricane.

But, now I’m seeing a larger goal.
Simply put: what if [amassed such a
fortune that the mints couldn’t print
enough to keep up with my demand?
So, everyone else would be forced to
use Monopoly money as actual
currency. And you would have to win
in Monopoly to keep food on the
table. These would be some seriously
tense games. [mean you go to
mortgage St. James Place and your
kids start crying. In addition, I think
you’ll begin to see the end of those
who chose to use the Free Parking
square as the underground coffers for
city funds.

You’ve got to hand it to fun money,
though. Fake money rules. You can

get your hands on it so quickly. For a
moment, it seems like you’re crazy
rich. When I was a kid, I got with
some of the neighborhood kids and we
built this little Tijuana on our street.
We made our own pesos and wore
sombreros and everything!

One kid was selling hot tamales for
two pesos each. Two pesos! Did this
kid know that the money was fake?
Was he out of his mind? Who invited
this kid? Didn’t he know this wasn’t
really Tijuana? Maybe he was really
from Tijuana! Maybe these were real
pesos! Let’s go make more real pesos!

3. The Red Sun Rises

So, now you're wondering why I changed my mind about
Ruby. The quick answer is: we clicked.

Like when you meet Somebody in college and they look like
somebody who used to hit you in the face with paintbrushes
when you were a kid. And so, impulsively, you conclude that
this new Somebody is likely a non-friend. You wince at their
hair. You hang up phones loudly during crucial moments in
their anecdotes. You use your pogo stick right there where they
are trying to walk!

Six months later, somehow, you and Somebody are sitting at a
fountain having a perfectly good chat. Their face doesn’t look
so much like that childhood nemesis. You've met the Good
Twin. You clicked.

So whereas I should probably be pounding your teeth in with
hype about Ruby and the tightly-knit cadre of pertinent
ancronyms that accompany it everywhere (whetting the
collective whistles of your bosses and their bosses’ bosses),
instead I will just let you coast. I'll let you freefall through
some code, interjecting occassionally with my own heartfelt
experiences. It'll be quite easy, quite natural.

I should offer you some sort of motivation, though. So,
Smotchkkiss, I'm going to give my three best reasons to learn
Ruby and be done with it.

1. Brain health.

I think we even had a tavern where
you could get totally hammered off
Kool-Aid. There’s nothing like a
bunch of kids stumbling around,
mumbling incoherently with punchy
red clown lips.

sidebar!

Vitamin R. Goes straight to the head. Ruby will teach you to express your ideas through a computer. You will be writing
stories for a machine. Creative skills, people. Deduction. Reason. Nodding intelligently. The language will become a tool
for you to better connect your mind to the world. I've noticed that many experienced users of Ruby seem to be clear

thinkers and objective. (In contrast to: heavily biased and coarse.)
2. One man on one island.

Ruby was born in Japan. Which is freaky. Japan is not known for its software. And since programming languages are
largely written in English, who would suspect a language to come from Japan? And yet, here we have Ruby. Against the
odds, Yukihiro Matsumoto created Ruby on February 24, 1993. For the past ten years, he has steadily brought Ruby to a
global audience. It’s triumphant and noble and all that. Support diversity. Help us tilt the earth just a bit.

3. Free.

Using Ruby costs nothing. The code to Ruby itself is open for all of the world to inhale/exhale. Heck, this book is free. It’s
all part of a great, big giveaway that should have some big hitch to it. You’d think we’d make you buy vacuums or
timeshare or fake Monets. You’d think there’d be a 90 minute presentation where the owner of the company comes out at

the end and knuckles you into sealing the deal. Nope, free.

With that, it’s time for the book to begin. You can now get out your highlighter and start dragging it along each captivating

word from this sentence on. I think I have enough hairspray and fun money on my person to keep me sustained until the

final page.

70f114

4. How Books Start

Now, if you ever have read a book, you know that no book can properly start without an exorbitant
amount of synergy. Yes, synergy. Maybe you didn’t know this. Synergy means that you and I are
supposed to cooperate to make this a great reading experience.

We start off the book by getting along well in the Introduction. This togetherness, this synergy,
propels us through the book, with me guiding you on your way. You give me a reassuring nod or
snicker to indicate your progress.

I'm Peter Pan holding your hand. Come on, Wendy! Second star to the right and on till morning.
One problem here. I don’t get along well with people. I don’t hold hands very well.

Any of my staff will tell you. At the Opening Ceremonies of This Book (a catered event with stadium
seating), I discovered that the cucumber sandwiches weren’t served in tea towels. As a result, the butter
hadn’t set with the cucumbers right... Anyways, I made a big scene and set fire to some of the
advertising trucks outside. I smashed this spotlight to pieces and so on. I had this loud maniacal
laughing thing going on deep into that night. It was a real mess.

But, since I don’t get along well with people, I hadn’t invited anyone but myself to the Opening
Ceremonies of This Book. So it wasn’t really that embarassing. I kept it under wraps and no one found
out about the whole ordeal.

So you've got to know that synergy doesn’t actually mean synergy in this book. I can’t do normal
synergy. No, in this book, synergy means cartoon foxes. What I'm saying is: this book will be

starting off with an exorbitant amount of cartoon foxes.

And I will be counting on you to turn them into synergy.

8of114

3.

A Quick (and Hopefully Painless) Ride

Through Ruby (with Cartoon Foxes)

T oant heljeve
e 36'1' up at B oclecks

What's mope-..

I havewt seem a check

donw't et pard
vintil e beol
is doh® .

"j""'- So fk&g‘hsnid ps

What a Racket!!

I-'l'\'! "{'e"':ﬂl_ 4.
Jou totally have
tv hagdline fese
quys.

Yeah, these are the two. My asthma’s kickin in so I've got to go take a puff of medicated air just now. Be

with you in a moment.

What's with these

Kl L:‘!as? What kiad
CF\A? conditiohs

ARe wWe v hey?

cRifes'' Holy!!
Whege/Re m

Ya. They'e
on the
Photeshop

clipbe akd.

a2

Wa?? What if ,
Photoshop cRashet:

I'm told that this chapter is best accompanied by a rag. Something you can mop your face with as the

sweat pours off your face.

Indeed, we’ll be racing through the whole language. Like striking every match in a box as quickly as can

be done.

90f114

1. Language and I MEAN Language

Is thic ke seme k™md
of wfomeRc'al? Like
an M‘F\#anh sR

bookmeRcial oR .
SGMC*H,EN\F."?.

vy
Care€R
arRe g»o

QveR.

e Ruby 15 ea‘gg

to regqd.*

My conscience won’t let me call Ruby a computer
language. That would imply that the language works
primarily on the computer’s terms. That the language is
designed to accomodate the computer, first and foremost.
That therefore, we, the coders, are foreigners, seeking
citizenship in the computer’s locale. It’s the computer’s
language and we are translators for the world.

But what do you call the language when your brain begins
to think in that language? When you start to use the
language’s own words and colloquialisms to express
yourself. Say, the computer can’t do that. How can it be
the computer’s language? It is ours, we speak it natively!
We can no longer truthfully call it a computer language. It
is coderspeak. It is the language of our thoughts.

Read the following aloud to yourself.

5.times { print "Odelay!" }

In English sentences, punctuation (such as periods,
exclamations, parentheses) are silent. Punctuation adds
meaning to words, helps give cues as to what the author
intended by a sentence. So let’s read the above as: Five
times print “Odelay!”.

Which is exactly what this small Ruby program does.
Beck’s mutated Spanish exclamation will print five times
on the computer screen.

Read the following aloud to yourself.

exit unless "restaurant".include? "aura"

Here we’re doing a basic reality check. Our program will
exit (the program will end) unless the word restaurant
contains (or includes) the word aura. Again, in English:
Exit unless the word restaurant includes the word aura.

10 0f 114

Concerning Commercial Uses
of the (Poignant) Guide

This book is released under a Creative
Commons license which allows unlimited
commercial use of this text. Basically, this
means you can sell all these bootleg copies
of my book and keep the revenues for
yourself. I trust my readers (and the world
around them) to rip me off. To put out
some crappy Xerox edition with that time-
tested clipart of praying hands on the
cover.

Guys, the lawsuits just ain’t worth the
headache. So I’m just going to straight up
endorse authorized piracy, folks. Anybody
who wants to read the book should be able
to read it. Anybody who wants to market
the book or come up with special editions,
I’m flattered.

Why would I want the $$$? IGNORE ALL
OTHER SIDEBARS: I’ve lost the will to
be a rich slob. Sounds inhuman, but I like
my little black-and-white television. Also
my hanging plastic flower lamp. I don’t
want to be a career writer. Cash isn’t going
inspire me. Pointless.

So, if money means nothing to the
lucky stiff, why rip me off when you
could co-opt shady business practices
to literally crush my psyche and leave
me wheezing in some sooty iron lung?

Ever seen a programming language use question marks so
effectively? Ruby uses some punctuation, such as
exclamations and question marks, to enhance readability
of the code. We're asking a question in the above code, so
why not make that apparent?

Read the following aloud to yourself.

[toast, cheese, wine] .each { |food| eat food }
While this bit of code is less readable and sentence-like
than the previous examples, I’d still encourage you to
read it aloud. While Ruby may sometimes read like
English, it sometimes reads as a shorter English. Fully
translated into English, you might read the above as:
With toast, cheese, and wine, take each type of food and
eat that food.

This program won'’t actually work if you run it. Ruby
doesn’t know how to eat. But the beautiful thing is that
you can add your own words to Ruby. Your own actions.
Your own objects.

At this point, you're probably wondering how these words
actually fit together. Smotchkkiss is wondering what the
dots and brackets mean. I'm going to discuss the various
parts of speech next.

All you need to know thus far is that Ruby is basically
built from sentences. They aren’t exactly English
sentences. They are short collections of words and
punctuation which encompass a single thought. These
sentences can form books. They can form pages. They can
form entire novels, when strung together. Novels that can
be read by humans, but also by computers.

2. The Parts of Speech

Just like the white stripe down a skunk’s back and the
winding, white train of a bride, many of Ruby’s parts of
speech have visual cues to help you identify them.
Punctuation and capitalization will help your brain to see
bits of code and feel intense recognition. Your mind will
frequently yell Hey, I know that guy! You'll also be able
to name-drop in conversations with other Rubyists.

Try to focus on the look of each of these parts of speech.

11 o0f 114

Oh, and the irony of using my own
works against me! Die, Poignant Boy!

To give you an idea of what [mean, here
are a few underhanded concepts that could
seriously kill my willpower and force me
to reconsider things like existence.

IDEA ONE: BIG TOBACCO

Buy a cigarette company. Use my cartoon
foxes to fuel an aggressive ad campaign.
Here’s a billboard for starters:

Addiction is (ke
Pekemen!

let's collect
:veﬂxj cfjaﬂeﬁe
eveR /

Make it obvious that you’re targeting
children and the asthmatic. Then, once
you’ve got everyone going, have the truth
people do an expose on me and my farm of
inky foxes.

Sensible Hipster Standing on Curb in
Urban Wilderness: He calls himself the
lucky stiff.

(Pulls aside curtain to reveal grey corpse on
a gurney.)

Hipster: Some stiffs ain’t so lucky.

(Erratic zoom in. Superimposed cartoon
foxes for subliminal Willy Wonka mind

trip.)

Yo. Why you gotta dis Big Smokies like
dat, Holmes?

IDEA TWO: HEY, FIRING SQUAD

Like I said, start selling copies of my book,
but corrupt the text. These altered copies
would contain numerous blatant (and
libelous) references to government
agencies, such as the U.S. Marshals and the

The rest of the book will detail the specifics. I give short
descriptions for each part of speech, but you don’t have to
understand the explanation. By the end of this chapter,
you should be able to recognize every part of a Ruby
program.

Variables

Any plain, lowercase word is a variable in ruby. Variables
may consist of letters, digits and underscores.

X, ¥, banana2 Or phone_a quail are examples.

Variables are like nicknames. Remember when everyone
used to call you Stinky Pete? People would say, “Get over
here, Stinky Pete!” And everyone miraculously knew that
Stinky Pete was you.

With variables, you give a nickname to something you use
frequently. For instance, let’s say you run an orphanage.
It’s a mean orphanage. And whenever Daddy Warbucks
comes to buy more kids, we insist that he pay us one-
hundred twenty-one dollars and eight cents for the
kid’s teddy bear, which the kid has become attached to
over in the darker moments of living in such nightmarish
custody.

teddy bear fee = 121.08

Later, when you ring him up at the cash register (a really
souped-up cash register which runs Ruby!), you'll need to
add together all his charges into a total.

total = orphan fee + teddy bear fee + gratuity
Those variable nicknames sure help. And in the seedy

underground of child sales, any help is appreciated I'm
sure.

Mah, his examples
dRe wieRd.

Sssh.
421,64 ain t

bad fedd
¢ :caﬂ éﬂ

oo

12 0f 114

Pentagon. You could make me look like a
complete traitor. Like I have all these plans
to, you know, kill certain less desirable
members of the U.S. Marshals or the
Pentagon.

Not that there are any less desirable
members of the U.S. Marshals or the
Pentagon. Yeah, I didn’t mean it like that.

Oh, crap.

Oh, crap. Oh, crap. Oh, crap.

Turn off the lights. Get down.

IDEA THREE: BILLBOARDS, PART II

How about making fun of asthmatics
directly?

Ove lvngs are dumb.
'i'f’edq? aiR, please.

Call i+ o “pufier-
Like you'Re A
cenhdescomdin
COCeER caach.

IDEA FOUR: ALEC BALDWIN

Adapt the book into a movie. And since,
you know, I’m a character in this book, you
could get someone like Alec Baldwin to
play me. Someone who’s at a real lowpoint
in his career.

You could make it seem like I did tons of
drugs. Like I was insane to work with. Like
I kept firing people and locking them in the
scooter room and making them wear outfits
made of bread. Yeah, like I could actually
be baking people into the outfits.

You could have this huge mold that I strap
people into. Then, I pour all the dough on
them and actually bake them until the bread
has risen and they’ve almost died. And
when the television crews come and [’'m on
Good Morning America, they’ll ask, “So,

how many people have you employed in

Numbers

The most basic type of number is an integer, a series of
digits which can start with a plus or minus sign.
1, 23, and -10000 are examples.

Commas are not allowed in numbers, but underscores
are. So if you feel the need to mark your thousands so the
numbers are more readable, use an underscore.

population = 12 000_000_000

Decimal numbers are called floats in Ruby. Floats consist
of numbers with a decimal place or scientific
notation.

3.14,-808.08 and 12.043e-04 are examples.

Strings

Strings are any sort of characters (letters, digits,
punctuation) surrounded by quotes. Both single and
double quotes are used to create strings.

"sealab", '2021', Or "These cartoons are hilarious!"
are examples.

When you enclose characters in quotes, they are stored
together as a single string.

Think of a reporter who is jotting down the mouthnoises
of a rambling celebrity. “I'm a lot wiser,” says Avril
Lavigne. “Now I know what the business is like—what you
have to do and how to work it.”

avril quote = "I'm a lot wiser. Now I know
what the business is like -- what you have

to do and how to work it."

So, just as we stored a number in the teddy_bear_fee
variable, now we’re storing a collection of characters (a
string) in the avril_ quote variable. The reporter sends
this quote to the printers, who just happen to use Ruby to
operate their printing press.

Tabloid.print oprah quote

Tabloid.print avril quote
Tabloid.print justin_timberlake pix

13 0f 114

the production of your book?”” And I’d
respond, “A baker’s dozen!” and erupt into
that loud maniacal laughing that would
force audience members to cup their hands
over their ears.

Of course, in the throes of my insanity, I
would declare war on the world. The bread
people would put up quite a fight. Until the
U.S. Marshals (or the Pentagon) engineer a
giant robotic monkey brain (played by Burt
Lancaster) to come after me.

Here’s where you’ll make me look
completely lame. Not only will I sacrifice
all of the bread people (the Starchtroopers)
to save myself, not only will I surrender to
the great monkey brain like a coward, but
when I narrowly escape, I’11 yell at the
audience. Screaming insistently that it’s
MY movie and no one should see it any
more, [’ rip the screen in half and the film
projector will spin with its reel flapping in
defeat. And that will be the end of the
movie. People will be so pissed.

Now, I’ve got to thinking. See, and
actually, Alec Baldwin did a decent
voiceover in The Royal Tenenbaums. His
career might be okay. You might not want
to use him. He might not do it.

Tell ya what. I’ll play the part. I’ve made a
career out of lowpoints.

Smj semething louvd!

Mayhe he'll gse
tn his examlotﬂs!'

v

s

Symbols

Symbols are words that look just like variables. Again, they may contain letters, digits, or underscores.
But they start with a colon.

:a,:b,Or:ponce_de_leonareexanqﬂe&

Symbols are lightweight strings. Usually, symbols are used in situations where you need a string but
you won’t be printing it to the screen.

You could say a symbol is a bit easier on the computer. It’s like an antacid. The colon indicates the
bubbles trickling up from your computer’s stomach as it digests the symbol. Ah. Sweet, sweet relief.

Constants

Constants are words like variables, but constants are capitalized. If variables are the nouns of Ruby,
then think of constants as the proper nouns.

Time,ArrayorShake_It_Like_A_Polaroid_Pictureareexanqﬂe&

In English, proper nouns are capitalized. The Empire State Building. You can’t just move The Empire
State Building. You can’t just decide that the Empire State Building is something else. Proper nouns are
like that. They refer to something very specific and usually don’t change over time.

In the same way, constants can’t be changed after they are set.

EmpireStateBuilding = "350 5th Avenue, NYC, NY"

If we try to change the constant, Ruby will complain to us. Such things are frowned upon.

14 of 114

Come OM, 5eRI|uj'lx‘f.
C'nunkj b acon .

Methods

If variables and constants are the nouns, then methods are the verbs. Methods are usually attached to
the end of variables and constants by a dot. You've already seen methods at work.

front_door.open

In the above, open is the method. It is the action, the verb. In some cases, you'll see actions chained
together.

front_door.open.close
We've instructed the computer to open the front door and then immediately close it.
front_door.is_open?

The above is an action as well. We’re instructing the computer to test the door to see if it’s open. The
method could be called Door.test to see if its open, but the is open? name is succinct and just as
correct. Both exclamation marks and question marks may be used in method names.

Method arguments

A method may require more information in order to perform its action. If we want the computer to
paint the door, we should provide a color as well.

Method arguments are attached to the end of a method. The arguments are usually surrounded by
parentheses and separated by commas.

front_door.paint(3, :red)

The above paints the front door 3 coats of red.

Think of it as an inner tube the method is pulling along, containing its extra instructions. The
parentheses form the wet, round edges of the inner tube. The commas are the feet of each argument,
sticking over the edge. The last argument has its feet tucked under so they don’t show.

Like a boat pulling many inner tubes, methods with arguments can be chained.

front_door.paint(3, :red).dry(30).close()

The above paints the front door 3 coats of red, dries for 30 minutes, and closes the door. Even though
the last method has no arguments, you can still put parentheses if you like. There is no use dragging an
empty inner tube, so the parentheses are normally dropped.

Some methods (such as print) are kernel methods. These methods are used throughout Ruby. Since
they are so common, you won’t use the dot.

print "See, no dot."

150f 114

Class methods

Like the methods described above (also called instance methods), class methods are usually attached
after variables and constants. Rather than a dot, a double colon is used.

Door: :new(:o0ak)

As seen above, the new class method is most often used to create things. In the above example, we're
asking Ruby to make a new oak door for us. Of course, Ruby has to have an understanding of how to
make a door—as well as a wealth of timber, lumberjacks, and those long, wiggily, two-man saws.

16 of 114

Global variables
Variables which begin with a dollar sign are global.
$x, $1, $chunky and $CHunKY bACOn are examples.

Most variables are rather temporary in nature. Some parts of your program are like little houses. You
walk in and they have their own variables. In one house, you may have a dad that represents Archie, a
travelling salesman and skeleton collector. In another house, dad could represent Peter, a lion tamer
with a great love for flannel. Each house has its own meaning for dad.

With global variables, you can be guaranteed that the variable is the same in every little house. The
dollar sign is very appropriate. Every American home respects the value of the dollar. We’re crazy for
the stuff. Try knocking on any door in America and hand them cash. I can guarantee you won’t get the
same reaction if you knock on a door and offer Peter, a lion tamer with a great love for flannel.

Global variables can be used anywhere in your program. They never go out of sight.

Instance variables
Variables which begin with an at symbol are instance variables.
@x, Qy, and @only the chunkiest cut of bacon_I have ever_ seen are examples.

These variables are often used to define the attributes of something. For example, you might provide
Ruby with the width of the front door by setting the @width variable inside that £ront door. Instance
variables are used to define characteristics of a single object in Ruby.

Think of the at symbol as meaning attribute.

Class variables
Variables which begin with double at symbols are class variables.
eex, eey, and @@i_will take_your chunky bacon_and raise_ you_two are examples.

Class variables, too, are used to define attributes. But rather than defining an attribute for a single
object in Ruby, class variables give an attribute to many related objects in Ruby. If instance variables
set attributes for a single front door, then class variables set attributes for everything that is a boor.
Think of the double at prefix as meaning attribute all. Additionally, you can think of a swarm of
AT-ATs from Star Wars, which are all commanded by Ruby. You change a class variable and not just
one changes, they all change.

Woohoo! T dow+t fnew
what ;L..w.k? bacen is,
bt we 494 it/

17 of 114

Blocks
Any code surrounded by curly braces is a block.

{ print "Yes, I've used chunky bacon in my examples, but never again!" } is an
example.

With blocks, you can group a set of instructions together so that they can be passed around your
program. The curly braces give the appearance of crab pincers that have snatched the code and are
holding it together. When you see these two pincers, remember that the code inside has been pressed
into a single unit.

It’s like one of those little Hello Kitty boxes they sell at the mall that’s stuffed with tiny pencils and
microscopic paper, all crammed into a glittery transparent case that can be concealed in your palm for
covert stationary operations. Except that blocks don’t require so much squinting.

The curly braces can also be traded for the words do and end, which is nice if your block is longer than
one line.

do
print "Much better."
print "Ah. More space!"
print "My back was killin' me in those crab pincers."

end

Block arguments
Block arguments are a set of variables surrounded by pipe characters and separated by commas.
Ix], |x,yl,and |up, down, all around| are examples.
Block arguments are used at the beginning of a block.
{ Ix,yl x+y}

In the above example, |x,y| are the arguments. After the arguments, we have a bit of code. The
expression x + y adds the two arguments together.

I like to think of the pipe characters as representing a tunnel. They give the appearance of a chute that
the variables are sliding down. (An x goes down spread eagle, while the y neatly crosses her legs.) This
chute acts as a passageway between blocks and the world around them.

Variables are passed through this chute (or tunnel) into the block.

18 of 114

1 hoave no wife.
No childRen.
1 wow have a |eqacy.
The only +hm|jl

o o \.The WiRld
z = Knew Mg Pold

Ranges

A range is two values surrounded by parentheses and separated by an ellipsis (in the form of two or
three dots).

(1..3) is a range, representing the numbers 1 through 3.
('a'..'z') is arange, representing a lowercase alphabet.

Think of it as an accordion which has been squeezed down for carrying. (Sure, you can build a great
sense of self-worth by carrying around an unfolded accordion, but sometimes a person needs to wallow
in self-doubt, carefully concealing the squeeze-box.) The parentheses are the handles on the sides of a
smaller, handheld accordion. The dots are the chain, keeping the folds tightly closed.

Normally, only two dots are used. If a third dot is used, the last value in the range is excluded.

(0...5) represents the numbers o0 through 4.

When you see that third dot, imagine opening the accordion slightly. Just enough to let one note from
its chamber. The note is that end value. We’ll let the sky eat it.

Arrays

An array is a list surrounded by square brackets and separated by commas.

[1, 2, 3] isan array of numbers.

['coat', 'mittens', 'snowboard'] iSan array of strings.

Think of it as a caterpillar which has been stapled into your code. The two square brackets are staples
which keep the caterpillar from moving, so you can keep track of which end is the head and which is
the tail. The commas are the caterpillar’s legs, wiggling between each section of its body.

Once there was a caterpillar who had commas for legs. Which meant he had to allow a literary pause
after each step. The other caterpillars really respected him for it and he came to have quite a
commanding presence. Oh, and talk about a philanthropist! He was notorious for giving fresh leaves to
those less-fortunate.

Yes, an array is a collection of things, but it also keeps those things in a specific order.

190f 114

Hashes

A hash is a dictionary surrounded by curly braces. Dictionaries match words with their definitions.
Ruby does so with arrows made from an equals sign, followed by a greater-than sign.

{'a' => 'aardvark', 'b' => 'badger'}isallexanlpki

This time, the curly braces represent little book symbols. See how they look like little, open books with
creases down the middle? They represent opening and closing our dictionary.

Imagine our dictionary has a definition on each of its pages. The commas represent the corner of each
page, which we turn to see the next definition. And on each page: a word followed by an arrow pointing
to the definition.

{
'name' => 'Peter',
'profession' => 'lion tamer’,
'great love' => 'flannel'

}

I’'m not comparing hashes to dictionaries because you can only store definitions in a hash. In the
example above, I stored personal information for Peter, the lion tamer with a great love for flannel.
Hashes are like dictionaries because they can be very easy to search through.

Unlike arrays, the items in a hash are not kept in a specific order.

I'm staktmg 1o fe<|
stuck v 1S e C .- -

'ET'RIF‘P‘ I":‘ 'H’w.ﬁﬂ fmqjhl oo
a Pﬂﬁ_mﬂﬂeﬂ'{-

3137

! we're ﬁfkaﬂ.}
LI
\I+“. 90 away-

— -

(|

0o

\ z

Regular Expressions
A regular expression (or regexp) is a set of characters surrounded by slashes.
/ruby/, /10-91+/ and /~\d{3}-\d{3}-\d{4}/ are examples.

Regular expressions are used to find words or patterns in text. The slashes on each side of the
expression are pins.

Imagine if you had a little word with pins on both side and you held it over a book. You pass the word
over the book and when it gets near a matching word, it starts blinking. You pin the regular expression
onto the book, right over the match and it glows with the letters of the matching word.

Oh, and when you poke the pins into the book, the paper sneezes, reg-exp!

Regular expressions are much faster than passing your hand over pages of a book. Ruby can use a
regular expression to search volumes of books very quickly.

200f 114

Operators

You’ll use the following list of operators to do math in Ruby or to compare things. Scan over the list,
recognize a few. You know, addition + and subtraction - and so on.

x% 1 ~ * / % + - &
< >> | AD> > LK <= <=>
| | I= =~ ln §& 4= = =

. not and or

Keywords

Ruby has a number of built-in words, imbued with meaning. These words cannot be used as variables
or changed to suit your purposes. Some of these we’ve already discussed. They are in the safe house,
my friend. You touch these and you’ll be served an official syntax error.

alias and BEGIN begin break case class def defined
do else elsif END end ensure false for if

in module next nil not or redo rescue retry
return self super then true undef unless until when
while yield

Good enough. These are the illustrious members of the Ruby language. We'll be having quite the junket
for the next three chapters, gluing these parts together into sly bits of (poignant) code.

I'd recommend skimming all of the parts of speech once again. Give yourself a broad view of them. I'll
be testing your metal in the next section.

Have you neticed seriously, he's way Burw out?
that .{Hqis boek 15 foo hyperactive. ITf he He's genna shoot
basically wRitten keeps vp this himgelf in the

frantic pace, he's
3ohm bvirn out
real qurck!

a [unatic? head by the
bﬂ iﬁvnéiﬁve

s 3@!

t)

21 0f 114

3. If I Haven't Treated You Like a
Child Enough Already

I'm proud of you. Anyone will tell you how much I brag
about you. How I go on and on about this great
anonymous person out there who scrolls and reads and
scrolls and reads. “These kids,” I tell them.

“Man, these kids got heart. I never...” And I can’t even
finish a sentence because I'm absolutely blubbering.

And my heart glows bright red under my filmy,
translucent skin and they have to administer 10cc of
JavaScript to get me to come back. (I respond well to
toxins in the blood.) Man, that stuff will kick the peaches
right out your gills!

So, yes. You've kept up nicely. But now I must begin to be
a brutal schoolmaster. I need to start seeing good marks
from you. So far, you've done nothing but move your eyes
around a lot. Okay, sure, you did some exceptional
reading aloud earlier. Now we need some comprehension
skills here, Smotchkkiss.

Say aloud each of the parts of speech used below.
5.times { print "Odelay!" }

You might want to even cover this paragraph up while
you read, because your eyes might want to sneak to the
answer. We have a number s, followed by a method
.times. Then, the first crab pincers of a block. The kernel
method print has no dot and is followed by a string
"odelay!". The final crab pincers close our block.

Say aloud each of the parts of speech used below.
exit unless "restaurant".include? "aura"

Like the print method, exit is a kernel method. If you
were paying attention during the big list of keywords,
you’ll know that unless is just such a keyword. The string

"restaurant" is clung to by the method inciude?. And
finally, the string "aura".

22 0f 114

sidebar!

Seven Moments of Zen from My
Life

8 years old. Just laying in bed, thinking. And I
realize. There’s nothing stopping me from
becoming a child dentist.

21. Found a pencil on the beach. Embossed on

it: I cherish serenity. Tucked it away into the
inside breast pocket of my suit jacket. Watched
the waves come and recede.

22. Found a beetle in my bathroom that was just
about to fall into a heating vent. Swiped him up.
Tailored him a little backpack out of a leaf and
a thread. In the backpack: a skittle and a AAA
battery. That should last him. Set him loose out
by the front gate.

Three years of age. Brushed aside the curtain.
Sunlight.

14. Riding my bike out on the pier with my
coach who is jogging behind me as the sun goes
down in the original Nintendo version of Mike
Tyson’s Punch-Out.

11. Sick. Watching Heathcliff on television. For
hours, it was Heathcliff. And he was able to
come right up close to my face. His head spun
toward me. His face pulsed back and forth, up
close, then off millions of miles away. Sound
was gone. In fractions of a second, Heathcliff
filled the universe, then blipped off to the end of
infinity. [heard my mother’s voice trying to cut
through the cartoon. Heathclose, Heathaway,
Heathclose, Heathaway. It was a religious rave
with a cat strobe and muffled bass of mother’s
voice. (I ran a fever of 105 that day.)

18. Bought myself a gigapet. A duck. Fed it for
awhile. Gave it a bath. Forgot about it for
almost a couple months. One day, while
cleaning, I found a chain and he was there on
the end. Hey, little duck. Mad freaky, hoppin’
around with his hair out, squawking diagonal
lines. In a tuxedo.

sidebar!

Say aloud each of the parts of speech used below.

[toast, cheese, wine] .each { |food| eat food }

This caterpillar partakes of finer delicacies. An array starts this example. In the array, three variables toast,
cheese, and wine. The whole array is trailed by a method each.

Inside of a block, the block argument food, travelling down its little waterslide into the block. The
method eat then is able to use the block argument, which has become variable food.

Look over these examples once again. Be sure you recognize the parts of speech used. They each have a
distinct look, don’t they? Take a deep breath, press firmly on your temples. Now, let’s dissect a cow’s
eye worth of code.

23 0of 114

4. An Example to Help You Grow Up

.F ﬂTnbj cabin Naw. Tt's out (n
&ve,ﬂ, 0 ickup.
shoulda bEﬁU h'l‘ P ckop

my hackSaw.
o N "o
-= —

Say aloud each of the parts of speech used below.

require 'net/http’'
Net::HTTP.start('www.ruby-lang.org', 80) do |http|
print(http.get('/en/LICENSE.txt') .body)

end

The first line is a method call. The method called require is used. A string is passed to the method
containing 'net/http'. Think of this first line of code as a sentence. We have told Ruby to load some
helper code, the net: : mTTP library.

The next three lines all go together. The constant Net: : HTTP refers to the library we loaded above. We
are using the method start from the library. Into the method, we’re sending a string 'www. ruby-
lang.org' and the number 8o.

The word do opens a block. The block has one block variable nttp. Inside the block, the method print
is called. What is being printed?

From the variable nttp, the method get is called. Into get, we pass a string containing the path
' /en/LICENSE. txt'. Now, notice that another method is chained onto get. The method body. Then, the
block closes with end.

Doing okay? Just out of curiousity, can you guess what this example does? Hopefully, you're seeing
some patterns in Ruby. If not, just shake your head vigorously while you've got these examples in your
mind. The code should break apart into manageable pieces.

For example, this pattern is used a number of times:

variable . method (method arguments)

24 of 114

You see it inside the block:
http.get('/en/LICENSE.txt')

We’re using Ruby to get a web page. You’ve probably used HTTP with your web browser. HTTP is the
Hypertext Transfer Protocol. HTTP is used to transfer web pages across the internet. Conceptualize a
bus driver that can drive across the internet and bring back web pages for us. On his hat are stitched
the letters HTTP.

The variable http is that bus driver. The method is a message to the bus driver. Go get the web page
called /en/LICENSE. txt.

So where you see the chain of methods:

http.get('/en/LICENSE.txt') .body

Since we’ll be getting back a web page from the nttp bus driver, you can read this in your brain as:
web page .body
And this bit of code:

print(http.get('/en/LICENSE.txt').body)

This code gets the web page. We send a body message to the web page, which gives us all the HTML in a
string. We then print that string. See how the basic dot-method pattern happens in a chain. The next
chapter will explore all these sorts of patterns in Ruby. It’ll be good fun.

So, what does this code do? It prints the HTML for the Ruby home page to the screen. Using an web-
enabled bus driver.

250f 114

5. And So, The Quick Trip Came To An Eased, Cushioned Halt

<+he clutch 14

very +tempermental:
This can’t be happenay
—

N

So now we have a problem. I get the feeling that you are enjoying this way too much. And you haven’t
even hit the chapter where I use jump-roping songs to help you learn how to parse XML!

If you're already enjoying this, then things are really going bad. Two chapters from now you’ll be
writing your own Ruby programs. In fact, it’s right about there that I'll have you start writing your own
blogging software, your own file-sharing network (a la BitTorrent), as well as a program that will
instant-message you when you get e-mail. And then, the mother of all scripts: a program that will
spider the entire internet for MIDI files!

And you know (you’ve got to know!) that this is ~ 1o0g s

going to turn into an obsession. First, you'll
completely forget to take the dog out. It'll be P
standing by the screen door, darting its head about,
as your eyes devour the code, as your fingers slip Sag
messages to the computer.

Thanks to your neglect, things will start to break.
Your mounds of printed sheets of code will cover
up your air vents. Your furnace will choke. The
trash will pile-up: take-out boxes you hurriedly 0y &
ordered in, junk mail you couldn’t care to dispose slipin' pefting W(p)GHR hesd

of. Your own uncleanliness will pollute the air.

Moss will infest the rafters, the water will clog, animals will let themselves in, trees will come up
through the foundations.

But your computer will be well-cared for. And you, Smotchkkiss, will have nourished it with your
knowledge. In the eons you will have spent with your machine, you will have become part-CPU. And it
will have become part-flesh. Your arms will flow directly into its ports. Your eyes will accept the video
directly from DVI-24 pin. Your lungs will sit just above the processor, cooling it.

And just as the room is ready to force itself shut upon you, just as all the overgrowth swallows you and
your machine, you will finish your script. You and the machine together will run this latest Ruby script,
the product of your obsession. And the script will fire up chainsaws to trim the trees, hearths to warm
and regulate the house. Builder nanites will rush from your script, reconstructing your quarters,
retiling, renovating, chroming, polishing, disinfecting. Mighty androids will force your crumbling
house into firm, rigid architecture. Great pillars will rise, statues chiseled. You will have dominion over
this palatial estate and over the encompassing mountains and islands of your stronghold.

So I guess you're going to be okay. Whatdya say? Let’s get moving on this script of yours?

26 of 114

4.

Floating Little Leaves of Code

27 of 114

/3"‘ L'__f (/

......
&

....... 'Ej' #
. o !
d y y '.
| 2 ' G oy
N ove, G w-ﬁfh-ﬁ Hay,;

I In oS
IR

F A" ;\‘l*\‘ &y 3 ﬂﬂq" g:;; {.:fnrﬁ.t) J A\ "
VN e :
7 &{'\'\\\AMH A b

Y of,
) //*

iy
°) ;

g
[’.I’i\‘u wwth ‘ﬁ‘::'\,IIPE"t / Ha-lim !)4:
W ’

28 of 114

\ J

People, pesplel
Wanna make’ the mest
of Your dime i Ambrese?
Hergc my Iist of mvst-see

atfRachens ' mofivities:

No.1: te (blix)

(i imt glack ;"IFJ
maghe R €5, B time
ﬁmhilfﬂgﬂ?ﬂﬂchawfmh,

) Fl:"ﬂ:"?l'- ;:L' afficianady,
claberate Sightgags,

bst just gEE: W and :n.

Nn. l" ENam .
et wait 4ill you see what it an de!
See!l EIrisp' en the ist.

I've never seen the ham do anything but leak juice. Today, our business in Ambrose Caverns is with the
elf. He is a crucial part of the next lessons. Let’s all make him feel welcome. Go start warming up your

listening hats! (And please change out of those ridiculous stirrup pants.)

A prompt warning: this lesson is much slower. Stay with it. This will be a long, deep breath. The most
crucial stage of your instruction. It may seem like you're not learning much code at first. You will be
learning concepts. By the end of this chapter, you will know Ruby’s beauty. The coziness of the code

will become a down sleeping bag for your own solace.

29 of 114

1. The Leaf as a Status Symbol in Ambrose

wl)
hn‘:"-:’é": aSeD |
blue cRYstols,
(ﬂﬁ m&rlqs.‘i

but it’s Really
) too dagic hend

in the caves

t° see ‘f ghﬁj ln 4~ and they den't take

A seméething biye crystals cavse they ¥
"5 Llue - 3 *,R.l"“ HE .'-__ qﬂ,iuib {higvj- Lo W Swi'tchng. .
without Woliwy. S g

Yeah, that’s not the way I remember it. This Elf was paging me constantly. When I refused to call him
back, he somehow left a message on my pager. Meaning: it beeped a couple times and then printed out
a small slip of paper. The slip said something to the effect of, “Get down here quick!” and also, “We’ve
got to rid the earth of this scourge of enterpreneurial caterpillars, these twisted insect vikings are
suffocating my blue crystals!”

Lately, the exchange rate has settled down between leaves and crystals. One treegrown note is worth
five crystals. So the basic money situation looks like this:

blue crystal =1

leaf tender = 5

This example is, like, totally last chapter. Still. It’s a start. We're setting two variables. The equals
sign is used for assignment.

Now leaf tender represents the number 5 (as in: five blue crystals.) This concept right here is half of
Ruby. We're defining. We're creating. This is half of the work. Assignment is the most basic form of
defining.

You can’t complain though, can you Elf? You've built an empire from cashing your blue crystals into

the new free market among the forest creatures. (And even though he’s an elf to us, he’s a tall monster
to them.)

300f 114

Nonono. Hang on a sec. You're not ready for
what the Elf here is doing in his caves. You’ll
think it’s all positively inhumane, naughty, sick,
tweeested, yada yada.

Now You’re Going to Hear the Animal
Perfect Mission Statement Because
This Is A Book And We Have Time And
No Rush, Right?

Back, back, way back before speedboats, I
owned a prize race horse who took a stumble
on the track. She did ten front flips and crashed
into a guy who was carrying a full jar of
mayonnaisse. We had blood and mayonnaisse
up and down the track. Needless to say, she
was a disaster.

The vet took one look at her and swore she’d
never walk again. Her legs were gone and the
vet wouldn’t allow a legless horse to just sit
around. We’d need to put her down. He swore
his life and career on it, insisting we divide into
two parallel lines. The people who could not
refute the doctor’s claims on one side; those too
stubborn to accept his infallable medical
reasoning on the other. The Elf, his pet ham,
and I were the only ones in that second line.

-

1'9 JnV "Ei evey

il 1 have "}5_(.)
l'"“l
PERFOCT.

gL

See e n'[nhﬁ R
STAR 4 4
"‘t‘"""fl? s

- __,l-.

sidebar!

The Scarf Eaters

I hate to intrude upon your instruction, but I’ve already
walked all over it enough to warrant some further disregard.
Can | go over my next project with you?

I’ve pledged to write another book. (Trombones.) The
good news is that [won’t actually be writing any of it. You
won’t have to endure any more of this inane blathering.

It’s over between me and words. I’d love to stick around and
exploit them each, one after another, but it’s all becoming
quite predictable, wouldn’t you say? Eventually, they will
all be used and I’d have to come up with fake words and
that would be way too cnoofy.

Now. The deal isn’t cut yet, but [’'m in negotiations with
Anna Quindlen to do my ghost writing. We’re tag-teaming
on a book that’s going to blow the (Poignant) Guide right
out of your hands. To put it bluntly, the Guide will be
worthless. You won’t be able to pile enough pomegranates
on top of the thing.

So this new book. The Scarf Eaters. It’s a coming-of-age
novel. But it’s also a beginner’s guide to Macromedia Flash.
It’s like Judy Blume crossed Praystation. It’s like 0sil8
starring Hillary Duff.

I don’t want to give away the plot at all, but to tug your
appetite I’ll just say this: one kid talks to his dead brother in
ActionScript. More to come.

310f114

So while the others heaped up trophies and great wreaths around the horse, bidding it a fond farewell
before the bullet came to take him home, the Elf and I frantically pawed the Internet for answers. We
took matter into our own hands, cauterizing her leg wounds with live crawdads. It worked great! We
now had a horse again. Or at least: a horse body with a crustaceous abdominal frosting.

running. And the cleanliness of the place is astonishing. All the equipment is so shiny. Everything is in
chrome. Oh, and all the staff have concealed weapons. They're trained to kill anyone who enters
unannounced. Or, if they run out of bullets, they’re trained to pistol whip anyone who enters
unannounced.

Elf, make me a starmonkey.

She scurried everywhere after that and lived for years in pleasantly moist underground cavities.
Animal Perfect is now the future of animal enhancement. They build new animals and salvage old-style
animals for parts. Of course, they’ve come a long ways. When Animal Perfect started, you'd see a full-
grown bear walk into Animal Perfect and you’d see a full-grown bear with sunglasses walk out.
Completely cheesy.

Stick around and you’ll see a crab with his own jet pack. That’s a new 2004 model jetcrab.
But now, the whole operation is up and

e
u‘t'tfr-'s:]::;d stay then
Olg

Waits in ovr]
N the .*:e‘:finj.

machine for /]
the monkey)

they fall

We sch Iuﬁ'{“'

Nk

Some imaginary Ruby for you:

pipe.catch a star

Variable pipe. Method catch_a_star. A lot of Rubyists like to think of methods as a message. Whatever
comes before the dot is handed the message. The above code tells the pipe to catch_a_star.

This is the second half of Ruby. Putting things in motion. These things you define and create in the
first half start to act in the second half.

1. Defining things.
2. Putting those things into action.

So what if the star catching code works? Where does the star go?
captive_star = pipe.catch_a star

See, it’s up to you to collect the miserable, little star. If you don’t, it'll simply vanish. Whenever you use
a method, you’ll always be given something back. You can ignore it or use it.
If you can learn to use the answers that methods give you back, then you will dominate.

32 0f 114

‘{" 1Then, a ratchet inside
AW he maching sosicel)
vst works the star in
mﬂ“kf_‘j& Stﬂf- —L] Jﬂnﬁ mathy's face. ;l';,.;:’P
tvRh, tuRn ontil theyge '
aftacihed.

r““_-"""-“'

Quickly then.

starmonkey = ratchet.attach(captive monkey, captive_star)

The ratchet gets an attach message. What needs to be attached? The method arguments: the
captive monkey and the captive star. We are given back a starmonkey, which we have decided to hang
on to.

This is turning out to be such a short, little proggie that I'm just going to put it all together as one
statement.

starmonkey = ratchet.attach(captive monkey, pipe.catch_a star) +

deco_hand frog

See how pipe.catch_a star is right in the arguments for the method? The caught star will get passed
right to the ratchet. No need to find a place to put it. Just let it go.

33 0f 114

2. Small and Nearly Worthless

POWMN IN THE AMBROISE CAVERNS EBREAK RooM...
&1 dont Kne .N

¥ ﬂaﬂ’ 'h‘l
fa es I[

K your h.'j

- w::lfr'r'ﬂ

e hu € Hﬂlf““a
chae

Go cleck g

= LB cABINerS!

THEY'Ee FROBLY
Fupp of Laval

500
’f.—f'
en ikxxx
she’s checkin!)

1 nm‘. e

champeee-,
L) L=

The hotel here in Ambrose is no good at all. The beds are all lumpy. The elevator is tiny. One guy put all
his bags in the elevator and found out there wasn’t room for him. He hit the button and chased up the
stairs after it all. But the stairwell turned out to be too narrow and his shoulders got wedged going up.
The soap mini-bars they give you are sized down for elves, so it’s impossible to work up a lather. I hate
it. I keep mistaking them for contact lenses.

I turned on the faucet and nothing came out. Thing is: Ambrose is a place with magical properties, so I
took a chance. I put my hands under the spigot. Invisible, warm wetness. I felt the hurried sensation of
running water, darting through my fingers. When I took my hands away, they were dry and clean.

It was an amazing nothingness to experience. It was just like ni1.

Nil
In Ruby, nil represents an emptiness. It is without value. It isn’t zero. Zero is a number.

It’s Ruby’s own walking dead, a flatlined keyword. You can’t add to it, it doesn’t evolve. But it’s terribly
popular. This skeleton’s smiling in all the pictures.

plastic _cup = nil

The above plastic_cup is empty. You could argue that the plastic_cup contains something, a nil.
The nil represents the emptiness, though, so go ahead and call it empty.

Some of you who have programmed before will be tempted to say the p1astic_cup is undefined. How
about let’s not. When you say a variable is undefined, you're saying that Ruby simply has no
recollection of the variable, it doesn’t know the var, it’s absolutely non-existent.

But Ruby is aware of the plastic_cup. Ruby can easily look in the plastic cup. It’s empty, but not
undefined.

False

The cat Trady Blix. Frozen in emptiness. Immaculate whiskers
rigid. Placid eyes of lake. Tail of warm icicle. Sponsored by a
Very Powerful Pause Button.

The darkness surrounding Blix can be called negative space.
Hang on to that phrase. Let it suggest that the emptiness has a
negative connotation. In a similar way, nil has a slightly sour note
that it whistles.

34 0f 114

Generally speaking, everything in Ruby has a positive charge to it. This spark flows through
strings, numbers, regexps, all of it. Only two keywords wear a shady cloak: ni1 and fa1se draggin us
down.

You can test that charge with an if keyword. It looks very much like the do blocks we saw in the last
chapter, in that both end with an end.

if plastic_cup
print "Plastic cup is on the up 'n' up!"

end

If plastic_cup contains either nil or false, you won’t see anything print to the screen. They’re not on
the if guest list. So if isn’t going to run any of the code it’s protecting.

But nil and £a1se need not walk away in shame. They may be of questionable character, but uniess
runs a smaller establishment that caters to the bedraggled. The un1ess keyword has a policy of only
allowing those with a negative charge in. Who are: ni1 and false.

unless plastic_cup
print "Plastic cup is on the down low."

end

You can also use if and unless at the end of a single line of code, if that’s all that is being
protected.

print "Yeah, plastic cup is up again!" if plastic_cup

print "Hardly. It's down." unless plastic_cup

And another nice trick: stack the if and unless.

print "We're using plastic 'cause we don't have glass." if plastic_cup unless glass_cup

This trick is a gorgeous way of expressing, Do this only if a is true and b isn't true.
Now that you've met £aise, I'm sure you can see what’s on next.

approaching guy = true
I saw true at the hotel buffet tables today. I cannot stand that guy. His Make Your Own

1
stance is way too wide. And you've never met anyone who planted his Starmonkey!
feet so hard in the ground. He wears this corny necklace made out of 1. Turn a mug upside-
shells. His face exudes this brash confidence. (You can tell he’s exerting A,

all of his restraint just to keep from bursting into Neo flight.)

To be honest, I can’t be around someone who always has to be right.
This true is always saying, “A-OK.” Flashing hang ten. And seriously,
he loves that necklace. Wears it constantly.

As you’d suspect, he’s backstage at everything on the if event schedule.
print "Hugo Boss" if truezuislﬂﬂaprint "Hugo Boss".

350f114

Occassionally, i£ will haul out the velvet ropes to exercise some crowd
control. The double equals gives the appearance of a short link of
ropes, right along the sides of a red carpet where only true can be
admitted.

if approaching guy == true
print "That necklace is classic."

end

The double equals is simply an ID check. Do the gentleman at both
ends of this rope appear to match?

In this way, you control who if lets in. If you have a hard time getting
along with true as I do, you can heartily welcome faise.

if approaching guy == false
print "Get in here, you conniving devil."

end

Same goes for unless. The gateway is yours. Take possession of it.

Again, I Want You to Dominate

Now, you want a head trip? The double equals sign is a method.
Can you guess how it works? Here, check it out with the dot and
parens:

approaching guy.==(true)

Ruby allows the shortcut, though. You can drop the dot and back away
slowly.

Now, do you remember what you need to do to dominate in Ruby?

Use the answers the methods give you.

if nil.==(true)
print "This will never see realization."

end

In the above, how is the method’s answer being used?

Let’s take the statement ni1 == true. This will fail every time. No
match. When there’s no match, the double equals method answers with
false. A shake of the head. That answer is given to if, who can’t accept
a false. The print never sees realization.

36 0f 114

2. Attach an apple
with a rubber band.

3. Shove car keys into
the sides of the apple.

4. Glue star face.

You have two
complementary star
faces waiting in your
account.

Standard, placid.

at_hotel = true
email = if at hotel
"why@hotelambrose.com"
else
"why@drnhowardcham.com"

end

Even though if isn’t a method, if does give a return answer. Look at
the above and wonder over what happens when at_hotel is true.

The if will return the answer given by the code it chooses to run. In the
case of at_hotel being true, the first string, my e-mail address at Hotel
Ambrose, will be returned. The e1se keyword marks code which will
run, should if fail. If at_hotel is false, the i£ will answer with my e-
mail address at Dr. N. Howard Clay’s office, where I take my
apprenticeship.

Should you have several lines of code in an if or unless, only the
answer from the last full statement will be used.

email = if at hotel
address = "why"
address << "@hotelambrose"
address << ".com"

end

Eating chalk.

sidebar!

Three lines of code inside the if. The first line assigns a string with my name in it to a variable. The
second and third lines add the rest of my e-mail address on to the end. The double less-than << is
the concatenation operator. To concatenate is to append, or add to the end.

Just as we saw with the equality checker ==, the concatenator is a method. After adding to the end of
the string, the concatenator also answers with that very string. So, the third line, which could be
read as address.<<(".com"), gives back address, which the if then hands back for email’s

assignment.

Here’s a question: what if the if fails? What if at_hotel is false in the above example? Is anything

returned? Nothing is assigned to email, right?

37 o0f 114

Yes, nothing is returned. By which I mean: nil is returned. And often nil is a very useful answer.

print(if at hotel.nil?
"No clue if he's in the hotel."
elsif at hotel == true

"Definitely in."

elsif at hotel == false
"He's out."
else

"The system is on the freee-itz."

end)

You can use the ni1? method on any value in Ruby. Again, think of it as a message. To the value: “Are
you nil? Are you empty?”

If at_hotel is empty, Ruby doesn’t have any idea if I'm in the hotel or not. So i£ answers with the “No
clue” string. In order to handle the true or £aise possibilities, the e1sif keyword is used. While you
can have only one if and one else, you can fill the inbetween with an exorbitant number of e1sif
keywords. Each e1sif acts as a further it test. Checking for a positive charge.

If you're doing okay at this point, then you’re in tip-top shape for the rest of the book. You have seen
some pretty tough code in the last few examples. You strong fellow.

38 0of 114

3. Chaining Delusions Together

SoRRY BOUT THAT, MY BAD.
T'rh OWYMMPIC HOPEEYL
ARDREW YACTALY.

T'M YOUR CAPABLE NEW
 PROPUCTION ASSISTANT.

| - HHHH-..
L b 50, ANYWAY ...
il w® wANNA POLE

: VAULT oVER TO
L\l] THE SNACK
. coevhTer AND
\ Scare me QF a l:.helﬂ

) Tunﬂovnn?a

BYR WASUAR D -\ TREY JUST GroT

U KNOW TWeSE .
‘i?i'i.eoo STAR-FACEP vf\' oFf Twe ONE®
e Ly]

s, MNORMIKEYS yeu
I CRPERED?

Ef‘;;;

You finish reading the above comic and retire to your daybed for reflection. It’s one of those canopy
affairs which is always logjammed with pillows. You sit atop the pile, gazing out upon the world. You
see the tall smokestacks belching wide spools of fume and haze. The tangled concourses of freeways
smattered with swift, shimmering traffic is but a gently pulsing eye muscle from your vantage point.
It is all so fantastic. How the colors of the horizon spread across the landscape as a great mix of butter
and grease with a tablespoon of vanilla extract.

Yet, for all of the beauty which beckons for your attention, the images of the Elf and his Olympic
Hopeful return. And more especially, that order for 55,000 starmonkeys. 55,000 starmonkeys, you
think. Fifty-five Thousand.

You think of just the number itself. 55,000. It’s walking down a road. It might be in a forest, you don’t
know for sure as your eyes are fixed right on the number itself. It’s stopping and talking to people. To
tennis players, to a men’s choral group. There is merriment and good feeling. When it laughs, its lower
zeros quiver with glee.

You want to talk to it. You want to skip along that forest trail with it. You want to climb aboard a jet
bound to Brazil with it. And after five days and four nights at the leisureful Costa do Sauipe Marriott
Resort & Spa, to marry it, to bear a family of 55,000 starmonkeys with it. To take possession of Nigeria
with it.

With a flying leap, you dismount your pillow tower of isolation. Scrambling with the key, you unlock
your roll top desk and pull out a sheet of paper, holding it firmly upon the desk. You begin scribbling.

Take possession of Nigeria with my new 55,000 starmonkeys...

Over it, build Nigeria-sized vegetarians only casino and go-cart arena...

Wings... we could have our own special sauce on the wings that’s different...

Mustard + codeine = Smotchkkiss’ Starry Starmonkey Glow Sauce...

Franchise, franchise... logos...

Employee instructional videos...

When you give the customer change, let them reach inside the frog on your hand to get
it...

If they have no change, at least put their reciept some place where they have to touch

the frog...
We’re leveling the playing field here...

390f 114

Aduvertise cheap pizza, let’s make our money off soda...

Collect all 4 frosted glasses...

Wow, the ideas are really coming out. You literally had to smack yourself to stop. We need to put these
in a safe place. Actually, we should store them on your computer and mangle the words. You look out
the window and watch for FBI. I'm going to start this script.

The Flipping Script

print "Type and be diabolical: "

idea_backwards = gets.reverse

Let this script be your confidante. It will ask for evil plans and turn their letters backwards. The gets
method is built into Ruby. It’s a kernel method like print. This method gets will pause Ruby to let
you type. When you hit Enter, gets will then stop paying attention to your keyboard punchings and
answer back to Ruby with a string that contains everything you typed.

The reverse method is then used on the string
that gets is giving back. The reverse method is
part of the string class. Which means that
anything which is a string has the reverse
method available. More on classes in the
next chapter, for now just know that a lot of
methods are only available with certain
types of values.

I don’t think reverse is going to cut it. The
authorities only need to put a mirror to
“airegiN fo noissessop ekaT.” Bust us when
starmonkeys start to touch down in Lagos.
The capital letters give it away. Maybe if we
uppercase all letters in the string before we
reverse it.

idea backwards = gets.upcase.reverse

code words.[]('catapult') will answer with
the string ' chucky go-go'.

Get Ahead with The Tiger's Vest

e R
B vttt

wﬂshit his
lpiﬂﬁé'st
Prebley,

m 'S by

Want to start using Ruby alongside your reading? Split your
attention and head off to Expansion Pak I: The Tiger’s
Vest, a trite mini-chapter which will aid you in installing
Ruby. In addition, you’ll learn how to use Irb and Ri, two
teaching aids that come with Ruby which will really speed

you up in your learning.

40 of 114

Your Repetitiveness Pays Off

You hand me a legal pad, doused in illegible shorthand. Scanning over it, I start to notice patterns. That
you seem to use the same set of words repeatedly in your musings. Words like starmonkey, Nigeria,
firebomb. Some phrases even. Put the kabosh on. That gets said a lot.

Let us disguise these foul terms, my brother. Let us obscure them from itching eyes that cry to know
our delicate schemes and to thwart us from having great pleasure and many go-carts. We will replace
them with the most innocent language. New words with secret meaning.

I start up a word list, a Ruby Hash, which contains these oft seen and dangerous words of yours. In the
Hash, each dangerous word is matched up against a code word (or phrase). The code word will be
swapped in for the real word.

code _words = {
'starmonkeys' => 'Phil and Pete, those prickly chancellors of the New Reich',
'catapult' => 'chucky go-go', 'firebomb' => 'Heat-Assisted Living',
'Nigeria' => "Ny and Jerry's Dry Cleaning (with Donuts)",

'Put the kabosh on' => 'Put the cable box on'

The words which are placed before the arrow are called keys. The words after the arrows, the
definitions, are often just called values.

Notice the double quotes around Ny and Jerry's Dry Cleaning (with Donuts). Since a single quote is
being used an apostrophe, we can’t use single quotes around the string. (Although, you can use single
quotes if you put a backslash before the apostrophe such as: 'Ny and Jerry\'s Dry Cleaning (with
Donuts)')

Should you need to look up a specific word, you can do so by using the square brackets method.
code_words|['catapult'] will answer with the string 'chucky go-go'.

Look at the square brackets as if they are a wooden pallet the word is sitting upon. A forklift could slide

its prongs into each side of the pallet and bring it down from a shelf back in the warehouse. The word

on the pallet is called the index. We are asking the forklift to find the index for us and bring back its

corresponding value.

If you've never been to a warehouse, you could also look at the brackets as handles. Imagine an
industrious worker putting on his work gloves and hefting the index back to your custody. If you've
never used handles before, then I'm giving you about thirty seconds to find a handle and use it before I
blow my lid.

As with many of the other operators you’ve seen recently, the index brackets are simply a shortcut for a
method.

41 of 114

Making the Swap

I went ahead and saved the Hash of code words to a file called wordlist.rb.

require 'wordlist'

Get evil idea and swap in code words

print "Enter your new idea: "

idea = gets

code_words.each do |real, code|
idea.gsub! (real, code)

end

Save the jibberish to a new file
print "File encoded. Please enter a name for this idea: "
idea name = gets.strip
File::open("idea-" + idea name + ".txt") do |f]|
f << idea

end

Script starts by pulling in our word list. Like gets and print, the require method is a kernel method,
you can use it anywhere. I give it the string 'wordlist' and it will look for a file named wordlist.rb.
After that, there are two sections. I am marking these sections with comments, the lines that start with
pound symbols. Comments are ignored by Ruby, but are nice for jotting brief explanations.

As the comments tell us, the first section asks you for your evil idea and swaps in the new code words.
The second section saves the encoded idea into a new text file.

code words.each do |real, code|
idea.gsub! (real, code)

end

You see the each method? The each method is all over in Ruby. It’s available for Arrays, Hashes, even
Strings. Here, our code_words dictionary is kept in a Hash. This each method will hurry through all
the pairs of the Hash, one dangerous word matched with its code word, handing each pair to the
gsub! method for the actual replacement.

42 of 114

In Ruby, gsub is short for global substitution. The method is used to search and replace. Here, we want
to find all the occurences of a dangerous word and replace with its safe code word. With gsub, you
provide the word to find as the first argument, then the word to put in its place as the
second argument.

Why aren’t we hanging on to the answer from gsub? Doesn’t gsub give us an answer back that we
should keep? You'd think the line would read:

safe_idea = idea.gsub(real, code)

Yes, with gsub we’d need to hang on to its answer. We're using a variation of gsub that is totally hyper.
Notice the exclamation mark on the gsub! used inside the each block. The exclamation mark is a
sign that gsub! is a bit of a zealot. See, gsub! will go ahead and replace the words in idea directly.
When it’s done idea will contain the newly altered string and you won’t be able to find the old string.
Call gsub! a destructive method. It makes its changes to the value directly. Whereas gsub will leave
the value intact, answering back with a new string which contains the alterations. (Why must gsub!
scream when he descends upon his prey? Merciless assailant!)

Text Files of a Madman

Let us now save the encoded idea to a file.

Save the jibberish to a new file
print "File encoded. Please enter a name for this idea: "

idea name = gets.strip

File::open('idea-' + idea name + '.txt', 'w') do |f]|
f << idea
end

This section starts by asking you for a name by which the idea can be called. This name is used to build
a file name when we save the idea.

The strip method is for strings. This method trims spaces and blank lines from the beginning
and end of the string. This will remove the Enter at the end of the string you typed. But it'll also
handle spaces if you accidentally left any.

After we have the idea’s name, we open a new, blank text file. The file name is built by adding strings
together. If you typed in 'mustard-plus-codeine', then our math will be: 'idea-' + 'mustard-plus-
codeine' + '.txt'.Ruby presses these into a single string. 'idea-mustard-plus-codeine.txt' is the
file.

We’re using the class method File: :open to create the new file. Up until now, we’ve used several kernel
methods to do our work. We hand the print method a string and it prints the string on your screen.
One secret about kernel methods like print: they are actually class methods.

43 of 114

Kernel: :print("55,000 Starmonkey Salute!")

What does this mean? Why does it matter? It means kKernel is the center of Ruby’s universe. Wherever
you are in your script, Kernel is right beside you. You don’t even need to spell kernel out for Ruby.
Ruby knows to check kernel.

Most methods are more specialized than print or gets. Take the File: :open for example. The creator

of Ruby, Matz, has given us many different methods which which read, rename, or delete files. They
are all organized inside the File class.

File: :read("idea-mustard-plus-codeine.txt") will answer back with a string
containing all of the text from your idea file.

File::rename("old file.txt", "new file.txt") will rename old file.txt.
File::delete("new_file.txt") will nuke the new file.

These File methods are all built right into Ruby. They are all just stored in a container called the
File class. So, while you can safely call kernel methods without needing to type kerne1, Ruby doesn’t
automatically check the File class. You'll need to give the full method name.

File::open('idea-' + idea name + '.txt', 'w') do |f]|
f << idea
end

We pass two arguments into File: : open. The first is the file name to open. The second is a string
containing our file mode. We use 'w', which means to write to a brand-new file. (Other options are:
'r' to read from the file or 'a' to add to the end of the file.)

The file is opened for writing and we are handed back the file in variable £, which can be seen sliding
down the chute into our block. Inside the block, we write to the file. When the block closes with
end, our file is closed as well.

Notice we use the concatenator << to write to the file. We can do this because files have a method
called << just like strings do.

Settle Down, Your Ideas Aren’t Trapped

Here, let’s get your ideas back to their original verbage, so you can rumminate over their brilliance.

require 'wordlist'
Print each idea out with the words fixed
Dir['idea-*.txt'] .each do |file name|

idea = File.read(file name)

code words.each do |real, code|

idea.gsub! (code, real)
end
puts idea

end

44 of 114

By now, you should be up to snuff with most of this example. I won’t bore you with all of the mundane
details. See if you can figure out how it works on your own.

We have an interesting class method here, though. The pir: : [] method searches a directory (some of
you may call them “folders”). Just as you've seen with Hashes, the index brackets can be class methods.
(Can you start to see the shiny, glinting gorgeousness of Ruby?)

So we're using the forklift to get those files in the directory which match 'idea-*.txt'. The pir:: []
method will use the asterisk as a wildcard. We're basically saying, “Match anything that starts with
idea- and ends with .txt.” The forklift shuffles off to the directory and comes back with a list of all
matching files.

That list of files will come in the form of array the Caterpillar, with a string for each file. If you are
curious and want to play with with pir: : [], try this:

p Dir['idea-*.txt'] will print:
['idea-mustard-plus-codeine.txt'] (an Array ofﬁ'le names!)

Yes, the p method works like print. But where print is designed for displaying strings, p will print
anything. Check this out.

p File::methods will print:

["send", "display", "name", "exist?", "split", ... a whole list of method names! 1

4. The Miracle of Blocks

Epweﬁhgj;

R Cle v

Flower? 7 2 ?fﬁ?n‘; 1

—~ " Ie ¥
yea, Id Vike {‘h tava . Fhgy :
ta oRded & ? Sl L, ive cated |G

b R, h?l‘t:::t | ! ';th“ befopel,,

ouguet, But Fisst.
1"4' 'Fiﬂgt.... AW, J

Since you and I are becoming closer friends as we share this debar!
time together, I should probably let you in on a bit of the history

going on here. It’s a good time for a break I say. Excerpt from The Scarf
Eaters

First, you should know that Blix is my cat. My second pet to _

Bigelow. Granted, we hardly see each other anymore. He’s (frqm Chapter V: A Man in

completely self-sufficient. I'm not exactly sure where he’s living Uniform.)

these days, but he no longer lives in the antechamber to my
quarters. He emptied his savings account about seven months
ago.

In April, the callow lilies came back.
They stretched their baby angel wings
out and reached for the world. Gently,

. their tendrils caressed the sullen fence
He does have a set of keys for the house and the Seville. Should

he ever find himself stranded, I will gladly step away from our
differences and entertain his antics around the house again. From her bedroom window, Lara

Make no mistake. I miss having him around. Can’t imagine he watched the lilies exude their staunch
femininity. She slipped the tassels of a

posts until even they lilted lovelier.

45 of 114

misses my company, but I miss his.
A Siren and A Prayer

I first saw Blix on television when I was a boy. He had a starring
role on a very gritty police drama called A Siren and A Prayer.
The show was about a god-fearing police squad that did their
jobs, did them well, and saw their share of miracles out on the
beat. I mean the officers on this show were great guys, very
religious, practically clergy. But, you know, even clergymen
don’t have the good sense to kill a guy after he’s gone too far.
These guys knew where to draw that line. They walked that line
every day.

So, it was a pretty bloody show, but they always had a good
moral at the end. Most times the moral was something along the
lines of, “Wow, we got out of that one quick.” But there’s serious
camaraderie in a statement like that.

The show basically revolved around this one officer. “Mad” Dick
Robinson. People called him Mad because he was basically
insane. I can’t remember if he was actually clinically insane, but
people were always questioning his decisions. Mad often blew
his top and chewed out some of the other officers, most of whom
had unquestionable moral character. But we all know it’s a
tough world, the stakes are high out there, and everyone who
watched the show held Mad in great regard. I think everyone on
the squad grew quite a bit as people, thanks to Mad’s passion.
The officers couldn’t do it all themselves though. In every single
episode, they plead with a greater force for assistance. And, in
every single episode, they got their tips from a cat named Terry
(played by my cat Blix.) He was just a kitten at the time and, as a
young boy tuning into A Siren and A Prayer, I found myself
longing for my own crime-sniffing cat. Terry took these guys
down the subway tunnels, through the rotting stench of
abandoned marinas, into backdoors of tall, industrial
smokestacks.

Sometimes he was all over an episode, darting in and out,
preparing traps and directing traffic. But other times you
wouldn’t see him the whole episode. Then you’d rewind through
the whole show and look and look and look. You’d give up. He
can’t be in that episode.

Still, you can’t bear to let it go, so you go comb through the
whole episode with the jog on your remote, combing, pouring
over each scene. And there he is. Way up behind the floodlight
that was turned up too high. The one that left Mad with
permanent eye damage. Why? Why burn out the retinas of your
own colleague, Terry?

46 of 114

fresh, carpathian, embroidered scarf
into her mouth and ate slowly. The long
cloth slid down her throat and tickled as
it snaked along her esophagus. She
giggled and burped.

Oh, how the flora drew her in. Looking
at flowers went so well with being a
teenage girl. She wanted to paint them,
so she opened a new Flash template. A
blank movie this time.

She set her cursor loose in the garden of
her movie’s viewable area. Vector
white lines below shorter vector yellow
lines. She selected the white lines and
grouped them together. She even
moved them to a new layer entitled
“Cry, Baby Angel, Cry.” Then she
converted them into a graphic object
and moved them to the library.

She felt a warm chill as she moved the
long, white petals to her movie’s
library. It felt so official. I choose you.
I name you. Dwell in the comfort of
my palace forevermore.

Heh. She laughed. Colorado Springs
was hardly a “palace.”

Since they had moved, Dad had only
been home once. He had barged
through the front door in full uniform
and had given quite a start to both Lara
and her mother. Her mother had even
dropped a head of lettuce—which head
she had just finished washing—in a
pitcher of Lick-M-Aid.

The pitcher was just wide enough for
the lettuce and it lodged in there pretty
good. Dad came over and yanked at the
moist head for sometime until declaring
it FUBAR, in a voice both bemused and
then crestfallen. He tossed the clotted
spout in the trash bin.

It was only later that day that Lara’s
mother realized that she could have
simply halved the lettuce with an
electric knife. Dad laughed and slapped

But the question never got answered because the series was
cancelled. They started to do special effects with the cat and it all
fell apart. In the last episode of the show, there is a moment
where Terry is trapped at the top of a crane, about to fall into the
searing slag in the furnace of an iron smelt. He looks back. No
going back. He looks down. Paws over eyes (no joke!), he leaps
from the crane and, mid-flight, snags a rope and swings to
safety, coming down on a soft antelope hide that one of the
workers had presumably been tanning that afternoon.

People switched off the television set the very moment the scene
aired. They tried changing the name. First it was God Gave Us a
Squad. Kiss of Pain. Then, Kiss of Pain in Maine, since the
entire precinct ended up relocating there. But the magic was
gone. I went back to summer school that year to make up some
classes and all the kids had pretty much moved on to football
pencils.

Blocks

his forehead. He then went around and
slapped Lara’s forehead, and her
mother’s too, affectionately.

“We just weren’t thinking, were we?” is
what he said. “And who dares blame
us? We’re a real family today. And we
shouldn’t have to do anything else on
the day we got our family back.”

Lara’s smiled reflected across the glass
of her monitor. She chose the text tool
and in 42 point serif typed: “Dad.” She
created a path for it and let it tween off
the right side of the screen. She cried
long after it was gone.

sidebar!

A couple years ago, I started teaching Blix about Ruby. When we got to this part in his lessons, the part
that covers blocks, he said to me, “Blocks remind me of Mad Dick Robinson.”

“Oh?” I hadn’t heard that name in awhile. “I can’t see how that could be.”

“Well, you say blocks can be difficult to understand.”

“They’re not difficult,” I said. “A block is just code that’s grouped together.”
“And Mad was just an officer, sworn to uphold his duty,” he said. “But he was a real miracle to watch
out in the field. Now, this first example you've shown me...” He pointed to an example I'd written down

for him.
kitty toys =
[:shape => 'sock', :fabric => 'cashmere'] +
[:shape => 'mouse',6 :fabric => 'calico'] +

[:shape => 'eggroll',6K :fabric => 'chenille']

kitty toys.sort by { |toy| toy[:fabric] }

“This is a small miracle,” he said. “I can’t deny its beauty. Look, there are my kitty toys, laid out with

their characteristics. Below them, the block, sorting them by fabric.”

“I apologize if your list of toys looks a bit tricky,” I said. Like you, he had learned about the Array, the
caterpillar stapled into the code, with square brackets on each side and each item separated by
commas. (Ah, here is one: ['sock', 'mouse', 'eggroll'].) He had also been taught the Hash, which
is like a dictionary, with curly braces on each end which look like small, open books. Commas in the
Hash between each pair. Each word in the dictionary matched up with its definition by an arrow. (Be

beholden: { 'blix' => 'cat', 'why' => 'human'}.)

47 of 114

“Yes, vexing,” he said. “It has square brackets like it’s an Array, but with the arrows like it’s a Hash. I
don’t think you’re going to get away with that.”

“It does seem a bit subversive, doesn’t it?” I said, tease-nudging him with a spoon. “I've done your kitty
toy list in a mix of the two. I'm using a shortcut. Which is: If you use arrows inside of an Array,
you’ll end up with a Hash inside of that Array.”

“Oh, I see,” he said. “You criss-crossed ‘em. How neat!”

“Yes, yes, you're on it,” I said. He was also very good with a protractor. “I have three Arrays, each with a
Hash inside. Notice the plus signs? I'm adding them into one big Array. Here’s another way of writing
it...” I jotted down.

kitty toys = [

{:shape => 'sock', :fabric => 'cashmere'},
{:shape => 'mouse', :fabric => 'calico'},
{:shape => 'eggroll',6 :fabric => 'chenille'}

]

One Array, which acts as our list of chew toys. Three Hashes in the Array to describe each toy.

Sorting and Iterating to Save Lives

“Let’s sort your toys by shape now,” I said. “Then, we’ll print them out in that order.”

kitty toys.sort by { |toy| toy[:shape] }.each do |toy]|
puts "Blixy has a #{ toy[:shape] } made of #{ toy[:fabric] }"

end

“How does sort by work?” asked Blix. “I can tell it’s a method you can use with Arrays. Because
kitty toys is an Array. But what is toy?”

“Okay, toy is a block argument,” I said. “Remember: the skinny pipes on each side of toy make it a
chute.”

“Sure, but it looks like you’re using it like a Hash. Inside the block you have toy[: shape]. That looks
like a Hash.”

“The sort_by method is an iterator, Blix. It iterates, or cycles, through a list of things. You
remember that episode when Mad...”

“Episode?” he said. Yeah, he can’t understand the concept of TV dramas. Yeah, I've tried explaining.
“Or, yeah, remember that one eyewitness account we watched where Mad was trying to talk down that
crazy spelling bee contestant from the ledge of an college library?”

“I remember it better than you because I was riding in a remote control plane.” Yep, it was one of those
episodes.

“Do you remember how Mad got the guy to come down?” I asked.

48 of 114

“People in spelling bees love letters,” said Blix. “So what Mad did was a genius move on his part. He
started with the letter A and gave reasons, for all the letters of the alphabet, why the guy should walk
back down the building and be safe on the ground.”

”’A is for the Architecture of buildings like this,”” I said, in a gruff Mad voice. ”Which give us hope in a
crumbling world.””

”’B is for Big Guys, like your friend Mad the Cop,” said Blix.
don’t know how to spell too great, but still help guys who spell really great.
“See, he went through all the letters, one at a time. He was iterating through them.” It Err Ate Ing.
“But the guy jumped anyway, Why. He jumped off on letter Q or something.”

”’Q is for Quiet Moments that help us calm down and think about all of life’s little pleasures, so we
don’t get all uptight and starting goofing around on tiptoes at the very edge of a big, bad building.””
“And then he jumped,” said Blix. He shook his head. “You can’t blame Mad. He did his best.”

“He had a big heart, that’s for sure,” I said, patting Blix on the shoulder.

2

Guys who help people all the time and

2%

kitty toys.sort by { |toy| toy[:shape] }.each do |toy|
puts "Blixy has a #{ toy[:shape] } made of #{ toy[:fabric] }"

end

“As for your sort by, it starts at the top of the list and goes through each item, one at a time. So
toy is one of those items. With each item, sort by stops and slides that item down the chute,
under the toy name, and let’s you figure out what to do with it.”

“Okay, so toy takes turns being each of the different toys I have.”

“That’s right,” I said. “You know how I've really been harping on using the answers that methods give
you? Here, we're simply looking up the toy’s shape inside the block. The block then answers to sort by
with the shape string, such as "mouse" or "sock". Once it’s done cycling through the whole list, sort by
will have alphabetically compared each of the shape strings and will give back a new sorted Array.”

An Unfinished Lesson

“That’s good enough for today,” said Blix. “Can I have a fresh saucer of milk, please?”

I filled his saucer to the brim and he guzzled from it for some time while I took a poker and jabbed at
coals in the fireplace. My mind wandered and I couldn’t help but think further of blocks. I wondered
what I would teach Blix next.

I probably would have taught him about next. When you are iterating through a list, you may use next
to skip on to the next item. Here we're counting toys that have a non-eggroll shape by skipping
those that do with next.

non_eggroll = 0

kitty toys.each do |toy|
next if toy[:shape] == 'eggroll'
non_eggroll = non_eggroll + 1

end

I could also have taught him about break, which kicks you out of an iterating loop. In the code
below, we’ll print out (with p) each of the toy Hashes until we hit the toy whose fabric is chenille. The
break will cause the each to abruptly end.

kitty toys.each do |toy|

49 of 114

break if toy|[:fabric] == 'chenille'

p toy

end

I never got to teach him such things. I continued poking away at a particularly stubborn coal which was
caught in the iron curtain of the fireplace and threatened to drop on my antelope skin rug.

As I hacked away ferociously at the black stone, Blix slipped away, presumably on the bus bound for
Wixl, the very bustling metropolis of the animal economies. Who knows, he may have first stopped in
Ambrose or Riathna or any of the other villages along the way. My instinct say that Wixl was his
definitely his final stop.

Without any student to instruct and coax along, I found myself quite lonely, holed up in the estate. In
the stillness of the dead corridors, I began to sketch out a biography in the form of this guide.

I worked on it whenever I found myself bored. And when I wasn’t bored, I could always switch on The
Phantom Menace to get me in the mood.

2 TWAT FooTAGE
YOU JusT Sprin WAS
P STPR moNKEY
E‘ LAUNW NG A MINT
Sy VAN... IT LookS
- LiIkKe |T'S OMING

e

e
o)

Wi 2

Ik

TH&TQ
Has poRE

Atloveg wiM.

L

]
Al

]
el

i@l POWN (N THE 41

A - .-_.I . 1] y_ HLHBOE..- ‘1-!1
b \ NN SN, 1MOEED ... (g
Lo o | o T | 7 4

/ & ' N 1’-{%

1SCVUS weiTren

500f 114

5.

Them What Make the Rules and Them What

Live the Dream

510f114

‘.)
’

.]—[e travelled
_——=SPACE & TIME==" .
;ha bell jar of his own ‘
| /7 caretul wol’-}kmahsbip.., '

S

e

[B
[

te find himself..
. to ‘F.’nal +I"h]tl’

- Iy ML B

LT 7 4

W J"’f’??&ﬁ? y
(i

PRESENTIN G

r. N. Harold Cha

-, Ve N2
vy j.)))
. 4
200234009,

Frankly, I'm sick and tired of hearing that Dr. Cham was a madman. Yes, he tried to bury himself alive.
Yes, he electrocuted his niece. Yes, in fact, he did dynamite a retirement home. But this was all with
good cause and, in each case, I believe he took the correct course of action.

I'm sure you’d like to side with popular opinion, but you're bound to feel some small trickle of
admiration for him once he’s taken time to teach you all about Ruby’s class definitions. And moreso
when you learn about mixins. And perhaps, by the end of the chapter, we can all start to look beyond
the Doctor’s grievous past and stop calling him a madman.

So if you need to call him a madman, I’d start heading down to the train tracks to smash up some long
flourescent light bulbs. Get it out of your system right now, before we dig in.

520f 114

1. This One's For the Disenfranchised

' "I be Ready thit
My qRAndmetheR’s . The (GRahny Beombep | But we'll .: 4
Re ielﬂefwt heme wWag e what _—thejj :L:;t% Tmfﬁtﬁ??ﬁ?é LE,E
blown vp by 2| called him. A
What 4 et An)
DR Cham Tei:?b{e Man. A help dig bun
th the g we're all ¢ M\ co5 ot 4
[1
19’-105 =t <till ScaRe :::Tﬂwd;j

What a

bombus

e

If you give me a number, which is any year from Dr. Cham’s life, I'll give you a synopsis of that time
period. And I'll do it as a Ruby method, so it’s an independent piece, an isolated chunk of code which
can be hooked up to the voice of a robotic volcano, when such a thing becomes the apex of authoritative
voice talents.

Okay, so I need you to notice def and case and when. You've seen the Ranges, the closed accordions of
1895..1913, back in chapter 3. They contain both ends and in between. And the backslashes at the end
of each line simply ignore the Enter key at the end of each line, assuring Ruby that there is more of this
line to come.

530f114

So, please: def and case and when.

def dr chams_ timeline(year)
case year
when 1894
"Born."
when 1895..1913
"Childhood in Lousville, Winston Co., Mississippi."
when 1914..1919
"Worked at a pecan nursery; punched a Quaker."
when 1920..1928
"Sailed in the Brotherhood of River Wisdomming, which journeyed \
the Mississippi River and engaged in thoughtful self-improvement, \
where he finished 140 credit hours from their Oarniversity."
when 1929
"Returned to Louisville to pen a novel about time-travelling pheasant hunters."
when 1930..1933
"Took up a respectable career insuring pecan nurseries. Financially stable, he \

spent time in Brazil and New Mexico, buying up rare paper-shell pecan trees. Just

as his notariety came to a crescendo: gosh, he tried to buried himself alive."

when 1934
"Went back to writing his novel. Changed the hunters to insurance tycoons and the \
pheasants to Quakers."

when 1935..1940
"Took Arthur Cone, the Headmaster of the Brotherhood of River Wisdomming, as a \
houseguest. Together for five years, engineering and inventing."

when 1941
"And this is where things got interesting."

end

end

54 of 114

The def keyword. Here is our first method definition. A plain kernel method, which can be used
anywhere in Ruby. And how do we run it?

puts dr_chams timeline(1941)

Which answers with “And this is where things got interesting.” It’s the same story again and again: use
your answers. I've set things up above so that the case statement always answers with a string. And
since the case statement is the final (and only) statement in the method, then the method answers with
that string. Trickling water spilling down from ledge to ledge.

Let me be clear about the case statement. Actually, I should call it a case. .when statement, since they
cannot be used separately. The case keyword is followed by a value, which is compared against each of
the values which follow when keywords. The first value to qualify as a match is the one the case uses and
the rest are ignored. You can do the same thing with a bunch of i£. .e1sif statements, but it’s wordier.

case year
when 1894
"Born."
when 1895..1913
"Childhood in Lousville, Winston Co., Mississippi."
else
"No information about this year."

end

Is identical to:

if 1894 === year
"Born."
elsif 1895..1913 === year

"Childhood in Lousville, Winston Co., Mississippi."
else
"No information about this year."

end

The triple equals is a length of velvet rope, checking values much like the double equals. It’s just: the
triple equals is a longer rope and it sags a bit in the middle. It’s not as strict, it’s a bit more flexible.

Take the Ranges above. (1895..1913) isn’t at all equal to 1905. No, the Range (1895..1913) is only
truly equal to any other Range (1895..1913). In the case of a Range, the triple equals cuts you a break
and lets the Integer 1905 in, because even though it’s not equal to the Range, it’s included in the set
of Integers represented by the Range. Which is good enough in some cases, such as the timeline I put
together earlier.

550f114

Which actually looked like a timeline, didn’t it? I mean, sure, dr_chams_timeline method is code, but it

does read like a timeline, clean and lovely.

my qRandmether, Susan Tn my netes,
Rau:, McGwynn, Wi alse of
amena the eldeply whe
N WeRE malSached
\ "y DR, Cham. T
=M have fince leagn-
=dl €d, b4y Cageful
| keseapeh that
: A ™ gRandwmothed
(IAMYIIBR was a hateful
1l vionialy who de-
| cerved +a die.

B, seducin
burld

A ,rll
|

il f

B 2

Rapdmetheld WoRship-
Fmﬂh;%w?nmic Sh#?ﬂﬂ'ﬁ{{‘Tmz
, hijackn submaRings,
skeletons,
Heouses

childeen.. Just
sick, sick things,
) ovi g n-F'fd-P-
anether,

T have accowrts

T aw 5o alad
Dr. Cham Killed thew,
when ke did.

B\ That home
W“-‘; bu“dl“ﬂ
' £ ﬁlnr\‘l‘. Re oTic
F_ﬂcf:ﬂ'aﬂ-

Raccoens bite
FE#P‘G!

But Was He Sick??

You know, he had such bad timing. He was scattered as a
novelist, but his ventures into alchemy were very promising. He
had an elixir of goat’s milk and sea salt that got rid of leg aches.
One guy even grew an inch on a thumb he’d lost. He had an
organic health smoke that smelled like foot but gave you night
vision. He was working on something called Liquid Ladder, but
I've never seen or read anything else about it. It can’t have been
for climbing. Who knows.

One local newspaper actually visited Dr. Cham. Their book
reviewer gave him four stars. Really. She did an article on him.
Gave him a rating.

Just know that Dr. N. Harold Cham felt terrible about his niece.
He felt the shock treatment would work. The polio probably
would have killed her anyway, but he took the chance.

On Sept. 9, 1941, after sedating her with a dose of phenacetin in
his private operating room, he attached the conducting clips to
Hannah’s nose, tongue, toes, and elbows. Assisted by his
apprentice, a bespeckled undergraduate named Marvin
Holyoake, they sprinkled the girl with the flakes of a substance
the doctor called opus magnum. A white powder gold which
would carry the current and blatantly energize the girl, forcing
her blood to bloom and fight and vanquish.

But how it failed, oh, and how, when the lever was tossed, she
arched and kicked—and KABLAM!—and BLOY-OY-OY-
KKPOY! Ringlets of hair and a wall of light, and the bell of
death rang. The experiment collapsed in a dire plume of smoke
and her innocence (for weeks, everyone started out with, “And
she will never have the chance...”) was a great pit in the floor
and in their lungs.

56 of 114

sidebar!

Caring For You. And Your
Wellness.

I need you to be in a good mental state
for the latter half of this book. Now is
the time to begin conditioning you.

Let’s start with some deep breathing.
Give me a good deep breath and count
to four with me.

Here we go. 1. 2. 3. 4. Now exhale. You
can feel your eyes. Good, that’s exactly
it.

Now let’s take a deep breath and, in
your mind, draw a hippopotamus as fast
as you can. Quick quick. His legs, his
folds, his marshmallow teeth. Okay,
done. Now exhale.

Take another deep breath and hold it
tight. As you hold it tightly in your
chest, imagine the tightness is shrinking
you down into a bug. You’ve held your
breath so hard that you’re an insect.
And all the other bugs saw you shrink
and they loved the stunt. They’re
clapping and rubbing their feelers
together madly. But you had an apple in
your hand when you were big and it just
caught up with you, crushed the whole
crowd. You’re dead, too. Now exhale.

Give me a solid deep breath and
imagine you live in a town where

To Hannabh, I code.

opus_magnum = true
def save hannah
success = Opus_magnum

end

A method is its own island. And what goes on inside is
unaffected by the simple variables around it. Dr. Cham couldn’t
breach the illness of his niece, no more than an opus_magnum
variable can penetrate the steely exterior of a method.

Should we run the save hannah method, Ruby will squawk at us,
claiming it sees no opus_magnum.

I'm talking about scope. Microscopes narrow and magnify your
vision. Telescopes extend the range of your vision. In Ruby,
scope refers to a field of vision inside methods and blocks.

A method’s def statement opens its vision. Variable names
introduced there will be seen by the method and kept
meaningful until its end closes its eyes. You can pass data into a
method by using arguments and data can be returned from the
method, but the names used inside the method are only good for
its scope.

Some variables have wider scope. Global variables like

sroap paTH, which start with a cash symbol, are available in any
scope. Instance variables like @names, which start with an at are
available anywhere inside a class scope. Same goes for class
variables like eetickets. Class and instance variables will be
explored in a moment.

Blocks have scope, but it’s a bit fuzzier. More flexible.

verb = 'rescued'
['sedated', 'powdered', 'electrocuted'].
each do |verb]|
puts "Dr. Cham " + verb + " his niece Hannah."
end

puts "Yes, Dr. Cham " + verb + " his niece Hannah."

The block iterates (spins, cycles) through each of the Doctor’s
actions. The verb variable changes with each pass. In one pass,
he’s sedating. In the next, he’s powdering. Then, he’s
electrocuting.

57 of 114

everything is made of telephone cords.
The houses are all telephone cords, the
shingles, the rafters. The doorways are
a thick mass of telephone cords which
you simply thrust yourself through.
When you go to bed, the bedspread is
telephone cords. And the mattress and
box springs are telephone cords, too.
Like I said, everything is made out of
telephone cords. The telephone itself is
made of telephone cords. But the
telephone cord going to the telephone is
made out of bread and a couple sticks.
Now exhale.

Breathe in. 1. 2. 3. 4. Breathe out.

Breath in. 1. 2. Another short breath in.
3. 4. Imagine both of your hands
snapping off at the wrists and flying
into your computer screen and
programming it from the inside. Exhale.

Big, big deep breath. Deep down inside
you there is a submarine. It has a
tongue. Exhale.

Breathe through your nostrils. Deep
breath. Filter the air through your
nostrils. Breathing through the nostrils
gives you quality air. Your nostrils
flare, you are taking breaths of nature’s
air, the way God intended. Imagine a
floppy disk drive clogged up with
orphans. And while it chokes on
orphans, you have good, wholesome
God’s breath in your lungs. But that
pleasurable, life-giving air will become
a powerful toxin if held too long.
Hurry, exhale God and nature’s air!

Now, you will wake up, smoothing out
the creases of this page in your web
browser. You will have full recollection
of your whole life and not forgetting
any one of the many adventures you
have had in your life. You will feel rich
and renewed and expert. You will have
no remembrance of this short exercise,
you will instead remember teaching a
rabbit to use scissors from a great

So, the question is: after the block’s over, will he have rescued distance.
Hannah?

Dr. Cham sedated his niece Hannah.

And as you will wake up with your eyes
directed to the top of this exercise, you
will begin again. But this time, try to

imagine that even your shadow is a
Dr. Cham electrocuted his niece Hannah. tdephoneconi

Yes, Dr. Cham electrocuted his niece Hannah.

Dr. Cham powdered his niece Hannah.

Blocks are allowed to see variables in the vicinity. The block noticed that the verb variable existed and
it overwrote its contents as it went along. When the block completed and its tiny life ended, the verb
variable came out a changed creature.

If a block uses a variable which hasn’t been used previously, though, then that variable vanishes at the
end of the block. The block’s scope closes and the variable goes with it. Say that verb wasn’t used
before the block.

['sedated', 'powdered', 'electrocuted'].

each do |verb|
puts "Dr. Cham " + verb + " his niece Hannah."
end

puts "Yes, Dr. Cham " + verb + " his niece Hannah."

Pulls an error: undefined local variable or method ‘verb'.Poof.

It must be something difficult, even for a great scientist, to carry away the corpse of a young girl whose
dress is still starched and embroidered, but whose mouth is darkly clotted purple at the corners. In Dr.
Cham’s journal, he writes that he was tormented by her ghost, which glistened gold and scorched lace.
His delusions grew and he ran from hellhounds and massive vengeful, angelic hands.

Only weeks later, he was gone, propelled from these regrets, vanishing in the explosion that lifted him
from the planet.

And even as you are reading this now, sometime in these moments, the bell jar craft of our lone Dr.
Cham touched down upon a distant planet after a sixty year burn. As the new world came into view, as
the curvature of the planet widened, as the bell jar whisked through the upset heavens, tearing through
sheets of aurora and solar wind, Dr. Cham’s eyes were shaken open.

58 of 114

What you are witnessing is the landing of Dr. Cham on the planet Endertromb. From what I can
gather, he landed during the cusp of the Desolate Season, a time when there really isn’t much
happening on the planet. Most of the inhabitants find their minds locked into a listless hum which
causes them to disintegrate into just vapid ghosts of one-part-wisdom and three-parts-steam for a

time.

My modest grasp of the history and climate of Endertromb has been assembled from hanging around
my daughter’s organ instructor, who grew up on the planet.

some of the senioRs

&Fec:.rla*!-e that OR. Cham
is shill tRavelling
agewid i spatt
what & Joad

If the ne-qced GRanny
Bowleg 18 in Space,
+hehn wou can “"E"t

Yy husband
Chatles — wheo
died v 1997 —

That dectef deein’t STand a
chiance aqeingt Y, Chaglie.
Chagle'll “Eimigsh Wim o&F. ..
Unless the dectel
has technoloqy That

Chaghi€ will £a@m

an alliange with X
Wi, Which oy
Wweuld meaw |

God ReSt his
Sewn] — 15 up
in SPACE neow,
blasting lasees
ajad ﬁi.::lfnﬂﬂ]
tevmet s fail.

I frequently drill my daughter’s organ instructor in order to ensure that he can keep appointments
adequately. That he can take house calls at odd hours and promptly answer emergency calls. When he
finally revealed to me that he was an alien whose waking day consisted of five-hundred and forty
waking hours, I was incredibly elated and opened a contractual relationship with him which will last

into 2060.

For three days (by his pocket watch’s account), Dr. Cham travelled the dark shafts of air, sucking the
dusty wind of the barren planet. But on the third day, he found the Desolate Season ending and he
awoke to a brilliant vista, decorated with spontaneous apple blossoms and dewy castle tiers.

59 0f 114

2, A Castle Has Its Computers

: hepe pe the
-Fu'tui-ﬂ |f‘ fﬁ["ﬁ:ﬂ }
T

Our intrepid Doctor set off for the alien castle, dashing through the flowers. The ground belted past his
heels. The castle inched up the horizon. He desired a stallion, but no stallion appeared. And that’s how
he discovered that the planet wouldn’t read his mind and answer his wishes.

As my daughter’s organ instructor explained it, however, the planet could read minds and it could
grant wishes. Just not both at the same time.

One day as I quizzed the organ maestro, he sketched out the following Ruby code on a pad of cheese-
colored paper. (And queer cheese smells were coming from somewhere, I can’t say where.)

require 'endertromb'
class WishMaker
def initialize
@energy = rand(6)
end
def grant(wish)
if wish.length > 10 or wish.include? ' '
raise ArgumentError, "Bad wish."
end
if @energy.zero?
raise Exception, "No energy left."
end
@energy -= 1
Endertromb: :make(wish)
end

end

60 of 114

This is the wish maker.

Actually, no, this is a definition for a wish maker. To Ruby, it’s a class definition. The code
describes how a certain object will work.

Each morning, the wish maker starts out with up to five wishes available for granting. A new wishMaker
is created at sun up.

todays_wishes = WishMaker.new

The new method is a class method which creates a new, blank object. It also calls the object’s
initialize method automatically. In the wishMaker definition, you’'ll see the initalize method, which
contains a single line of code: @energy = rand(6).

The rand(6) picks a number between 0 and 5. This number will represent the number of wishes left
in the day. So, occasionally there are no wishes available from the wish maker.

The random number is assigned to an instance variable which is named eenergy. This instance
variable will be available any time throughout the class. The variable can’t be used outside the scope of
the class.

In chapter three, we briefly looked at instance variables and decided to respect them as attributes.
(The at symbol could mean attribute.) Instance variables can used to store any kind of information,
but they’re most often use to store bits of information about the object represented by the class.

In the above case, each wish maker for the day has its own energy level. If the wish maker were a
machine, you might see a gauge on it that points to the energy left inside. The @energy instance variable
is going to act as that gauge.

todays wishes = WishMaker.new

todays_wishes.grant("antlers")

Okay, step back and ensure you understand the example here. The wishMaker class is an outline we’ve
laid out for how the whole magic wish program works. It’s not the actual genie in the bottle, it’s the
paperwork behind the scenes. It’s the rules and obligations the genie has to live by.

It’s todays_wishes that’s the genie in the bottle. And here we’re giving it a wish to grant. Give us
antlers, genie. (If you really get antlers from this example, I don’t want to hear about it. Go leap in
meadows with your own kind now.)

In the last chapter, the drill was: Ruby has two halves.

1. Defining things.
2. Putting those things into action.

What are the actions in Ruby? Methods. And now, you're having a lick of the definition language built-
in to Ruby. Method definitions using de£. Class definitions using class.

61 of 114

At this point in your instruction, it’s easier to understand that everything in Ruby is an object.

number = 5

print number.next # prints '6'
phrase = 'wishing for antlers'

print phrase.length # prints '19'

todays _wishes = WishMaker.new

todays wishes.grant("antlers")

And, consequently, each object has a class behind the scenes.

print 5.class # prints 'Integer'
print 'wishing for antlers'.class # prints 'String’

print WishMaker.new.class # prints 'WishMaker'

Dr. Cham never saw the wish maker as he hustled across the landspace. It lay far beyond his landing in
the valley of Sedna. Down sheer cliffs stuffed with layers of thicket, where you might toss your wish
(written on a small 1” x 6” slip), down into the gaping void. Hopefully it will land on a lizard’s back,
sticking to its spindly little horn.

And let’s say your wish makes it that far. Well, then, down the twisted wood goes the skinny
salamander, scurrying through the decaying churches which had been pushed over that steep canyon
ledge once and for all. And the expired priest inside, who weathered the fall as well, will kill the little
amphibian—strangle it to death with a blessed gold chain—and save it for the annual Getting To Know
You breakfast. He’ll step on your precious little wish and, when the thieves come, that slip will still be
there, stuck on his sole. Of course, the thieves’ preferred method of torture is to cut a priest in thin
deli-shaved slices from top to bottom. Who can cull evidence from that? And when they chop that last
thin slice of shoe sole, they’ll have that rubber scalp in hand for good luck and good times. But they
canoe much too hard, these thieves. They slap their paddles swiftly in the current to get that great
outboard motor mist going. But the shoe sole is on a weak chain, tied to one man’s belt. And a hairy
old carp leaps, latches on to that minute fraction of footwear. And the thieves can try, but they don’t
see underwater. If they could, they’d see that mighty cable, packed with millions of needly fiber
optics. Indeed, that fish is a peripheral plugged right into the core workings of the planet
Endertromb. All it takes is one swallow from that fish and your wish is home free!

And that’s how wishes come true for children in this place.

62 of 114

Once my daughter’s organ instructor had drawn up the class for the wish maker, he then followed with
a class for the planet’s mind reader.

require 'endertromb'
class MindReader
def initialize
@minds = Endertromb::scan_ for sentience
end
def read
@minds.collect do |mind|
mind.read
end
end

end

Much as you've seen before, the initalize happens when a new MindrReader object is created. This
initialize gathers scans the planet for mindshare. It looks like these minds are stored in an array,
since they are later iterated over using the co11ect method.

Both the wish maker and the mind reader refer to a class named Endertromb. This class is stored in a
file endertromb. rb, which is loaded with the code: require 'endertromb'. Often you’ll use other classes
to accomplish part of your task. Most of the latter half of this book will explore the wide variety of
helpful classes that can be loaded in Ruby.

Dr. Cham Ventures Inside

But as Dr. Cham neared the castle, although the planet was aware of his thoughts, sensing his
wonderment and anticipation, all Dr. Cham felt was deadness. He tromped up the steps of its open gate
and through the entrance of the most beautiful architecture and was almost certain it was deserted.

For a while he knocked. Which paid off.

MY NAME 15 DR. (HAM.
1 AmMm p SPpLE TRAVELLER.

MAY T CemME

INSIDE AND

LEARN AQoT N
You7?

geodbya.

¢
N —
R -5

63 of 114

He watched the baby whale rise like a determined balloon. He marvelled at his first alien introduction
and felt some concern that it had passed so quickly. Well, he would wait inside.

As he stepped through the castle door, he felt fortunate that the door hadn’t been answered by a huge
eagle with greedy talons, eager to play. Or a giant mouse head. Or even a man-sized hurricane. Just a

tubby little choo-choo whale.

“Not a place to sit down in this castle,” he said.

At first, he had thought he had just entered a very dim hallway, but as his eyes adjusted, he saw the
entrance extended into a tunnel. The castle door had opened right into a passage made of long, flat
slabs of rock. Some parts were congruous and resembled a corridor. Other parts narrowed, and even
tilted, then finally tipped away out of view.

The passage was lit by small doorless refrigerators, big enough to hold an armful of cabbage, down by
his feet. He peered inside one, which was hollow, illuminated along all sides, and turning out ice shards
methodically.

He pawed the ice chips, which clung dryly to his fingertips, and he scrubbed his hands in the ice. Which
left some muddy streaks on his hands, but satisfied a small part of his longing to bathe. How long had
it been? Ten years? Thirty?

Along the passage, long tubes of cloth cluttered some sections. Later, bright pixel matter in porcelain
scoops and buckets.

He happened upon a room which had been burrowed out of the tunnel which had a few empty turtle
shells on the ground and a large illuminated wall. He stared into the room, bewildered. What could this
be? In one state of mind, he thought of having a seat on a shell. This could be the entrace at last, some
kind of receiving room. On the other hand, spiders could pour out of the shell’s hollow when he sat. He
moved on.

Meal in a Castle’s Pocket

As he journeyed along the passageways (for the central tunnel forked and joined larger, vacuous
caverns), he picked up themes in some locations. Groups of rooms infested with pumping machinery.
Cloth and vats of glue dominated another area. He followed voices down a plush, pillowed cavity,
which led him to a dead end: a curved wall with a small room carved at eye-level.

He approached the wall and, right in the cubby hole, were two aardvarks eating at a table.

They gazed at him serenely, both munching on some excavated beetle twice their size, cracked open
and frozen on its back on the table.

“Hello, little puppets,” he said, and they finished their bites and kept looking with their forks held
aloof.

“I wish my niece Hannah were here to meet you,” he told the attentive miniature aardvarks. “She’d
think you were an intricate puppet show.” He peered in at the dining area, shelves with sets of plates,
hand towels. Half of a tiny rabbit was jutting out from the top a machine, creamy red noodles were
spilling out underneath it. A door at the back of the room hung ajar. Dr. Cham could see a flickering
room with chairs and whirring motors through the door.

64 of 114

“Any child would want this dollhouse,” he said. “Hannah, my niece, as I mentioned, she has a wind-up
doll that sits at a spindle and spins yarn. It’s an illusion, of course. The doll produces no yarn at all.”
One of the aardvarks opened a trapdoor in the floor and pressed a button down inside, which lit. Then,
a small film projector slowly came up on a rod. The other aardvark sat and watched Dr. Cham.

“But Hannabh still reaches down into the dollhouse and collects all the imaginary yarn into a bundle.
Which she takes to her mother, my sister, who is very good at humoring Hannah. She sews a dress to
the doll’s dimensions, which Hannah takes back to the doll.

“And she tells the doll, ‘Here, look, your hard work and perserverance has resulted in this beautiful
dress. You can now accept the Chief of Police’s invitation to join him tonight at the Governor’s
Mansion.” And she has a doll in a policeman’s uniform who plays the part of the Chief. He’s too
scrawny to be an actual Chief, that would require quite a bit of plastic.”

The aardvark responsible for the film projector loaded a reel and aimed the projector at the back wall.
The film spun to life and the aardvark took a seat. A green square appeared on the wall. The attentive
aardvark stared at Dr. Cham still.

“Your films are coloured,” said Dr. Cham. “What a lovely, little life.”

The film played on: a blue square. Then, a red circle. Then, an orange square. The attentive aardvark
turned away, watched the screen change to a pink triangle, and both aardvarks resumed eating.

A purple star. A red square. With quietness settling, Dr. Cham could hear notes droning from the
projector. Like a slow, plodding music box trying to roll its gears along the train tracks.

“Yes, enjoy your supper,” said Dr. Cham and he politely tipped his head away, marching back up the
path he’d taken.

Another Dead End Where Things Began

He found himself lost in the castle’s tunnels. Nothing looked familiar. He wasn’t worried much,
though. He was on another planet. He would be lost regardless.

He wound through the tunnels, attempting to recall his paths, but far too interested in exploring to
keep track of his steps. He followed a single tunnel deep, down, down, which slanted so steeply that he
had to leap across ledges and carefully watch his footholds. The gravity here seemed no different than
Earth. His legs were pulled into slides just as easily.

Although he had no absolute way of knowing where he was, he felt certain that he had left the castle’s
boundaries. This deep, this long of a walk. It had been an hour since he’d entered through the door.
And, as the tunnel wound back up, he was sure that he would emerge into a new dwelling, perhaps
even a manhole which he could peek out from and see the castle. Perhaps he shouldn’t have come so
far down this route. He hoped nothing was hibernating down here.

The tunnel came to a stop. A dark, dead end.

65 o0f 114

[THERE, AT THE BND oF “CAND NEAT To THE .. y/
I\ THE cAaTAcemps... MACHINE, A Boo,
-
, g N = WhY"
irRb>» cp.u HY s :

f

. —

. .
S . S— e Y

“u

g et -
. MACHINE..,

H
as

s

N

@j{;&
0

-]

lin

He had time. So he read the book. He read of the foxes and their pursuit of the porcupine who stole
their pickup truck. He read of the elf and the ham. He saw the pictographs of himself and found he
could really relate to his own struggles. He even learned Ruby. He saw how it all ended.

Were I him, I couldn’t have stomached it. But he did. And he pledged in his bosom to see things out
just as they happened.

On the computer monitor, Dr. Cham saw the flashing irb prompt. Like Dr. Cham, you might recognize
the irb prompt from The Tiger’s Vest (the first expansion pak to this book, which includes a basic
introduction to Interactive Ruby.)

Whereas he had just been exploring tunnels by foot, he now explored the machine’s setup with the
prompt. He set the book back where he had found it. He didn’t need it anymore. This was all going to
happen whether he used it or not.

He started with:

irb> Object: :constants

=> ["Marshal", "String", "Dir", "LoadError", "Float", ... and so on]

This command lists all the top-level constants. Classes are also listed as constants, so this list can be
great to see what’s loaded into Ruby at any time.

He scanned the list for anything unfamiliar. Any classes which didn’t come with Ruby. Marshal, string,
Dir, LoadError, Float. Each of those came with Ruby.
But further down the list:

. "Struct", "Values", "Time", "Elevator", "Range" ...

Elevator? Exactly the kind of class to poke around with. He had a go.

irb> Elevator: :methods

=> ["method", "freeze", "allocate", ... another long list ...]
irb> Elevator::class_variables

=> ['@@diagnostic_report', 'Q@@power circuit_active',6 '@@maintenance_ password']
irb> Elevator: :constants

=> [1

66 of 114

Looks like the E1evator class had plenty of methods. Most of these looked like they were the same
methods every object has in Ruby. For example, method, freeze and allocate come with every class in
Ruby. (Elevator: : freeze would keep the Elevator class from being changed. Elevator::allocate
would make a new Elevator object without calling the initialize method.)

The class variables were interesting to Dr. Cham. This elevator appeared genuine. But no available
constants. This tells us there are no classes nested inside the Elevator class.
He tried to create an Elevator object.

irb> e
from (irb)
from (irb)

from

from :0

Elevator::

(irb) :

new

ArgumentError: wrong number of arguments (0 for 1), requires a password

:2:in “initialize'
:2:in “new'
2

He tried a few passwords.

irb> e

irb> e

irb> e

irb> e

Elevator:

AccessDeniedError:

Elevator:

AccessDeniedError:

Elevator::

AccessDeniedError:

Elevator:

AccessDeniedError:

:new("going up")

bad password

:new("going_up")

bad password

new("stairs_are bad")
bad password
"StairsAreBad")

:new (

bad password

That was useless. Oh, wait! The maintenance password. Listed in the class variables.

from :0

irb> Elevator::maintenance_ password
NoMethodError: undefined method 'maintenance password' for Elevator:Class

from (irb):1

Hmm. Instance variables are only available inside an object. And class variables are only available
inside a class. How to get at that password?

67 of 114

irb> class Elevator
irb> def Elevator.maintenance password
irb> @@maintenance_password
irb> end
irb> end
=> nil
irb> Elevator::maintenance_ password

=> "stairs_are history!"

Alright! He got the password. Did you see that?

He added a class method to the E1evator class. Isn’t that great how you can start a new class definition
for Elevator and Ruby just adds your changes to the existing class definition?

Class methods are usually called with the double colon. But, a period is fine as well. Since Elevator is
a class itself, Ruby will figure that if you call Elevator.maintenance password, you're calling a class
method. The double colon simply helps make class methods obvious to the reader.

And justly so. Class methods are a bit unusual. Normally you won’t want to store information directly
inside of a class. However, if you have a bit of information that you need to share among all objects of a
class, then you have a good reason to use the class for storage. It’s understandable that the
@emaintenance_ password would be stored in the class, instead of in each separate object. This way, the
objects can simply reach up into the class and see the shared password.

Here’s probably how the password protection works.

class Elevator
def initialize(pass)
raise AccessDeniedError, "bad password" \
unless pass.equals? @@maintenance_password
end

end

Passwording a class like this is pointless, since anything in Ruby can be altered and overwritten and
remolded. Dr. Cham had the password and ownership of the elevator is his.

irb> e = Elevator.new("stairs_are history!")
#i<Elevator:0x81£f12f4 Rlevel=4>

irb> e.level =1

Dr. Cham was standing right there when the elevator doors, off behind the computer terminal, opened
for him. With an exasperated sense of accomplishment and a good deal of excitement surrounding all
of the events that lie ahead, he stepped into the elevator and pressed 4.

68 of 114

3. The Continued Story of My Daughter's

Organ Instructor

I know you may be alarmed to hear that I have a daughter. You
think my writing is indicative of a palsied or infantile mind. Well,
please rest. I don’t have a daughter. But I can’t let that stop me from
sorting out her musical training.

As I was related these elaborate histories of the planet Endertromb,
I found myself wandering through hallways, running my fingertips
along the tightly buttoned sofas and soaking myself in the saturated
bellowings of the pipes, as played by my daughter’s organ
instructor. His notes resounded so deep and hollow in the walls of
his manor that I began to casually mistake them for an ominous
silence, and found it even easier to retreat into deep space with my
thoughts. To think upon the ancient planet and its darker
philosophies: its flesh temples, tanned from the dermal remains of
its martyrs; its whale cartels, ingesting their enemies and holding
them within for decades, dragging them up and down the staircases
of ribs; its poison fogs and its painful doorways; and, the atrocious
dynasties of The Originals, the species which claims fathership to all
of the intellegent beings across the universe.

But, eventually, I'd hear those pipes of a higher octave sing and I'd
be back in the very same breezy afternoon where I'd left.

How interesting that even the breeze of our planet is quite a strange
thing to some outsiders. For he had also told me of the travellers
from Rath-d, who ventured to Earth five centuries ago, but quickly
dissipated in our air currents since they and their crafts and their
armor were all composed of charcoal.

I had sat at the organ, listening to his faint tales of his colony, while
he punctuated his symphonies to greater volumes and the story
would disappear for awhile, until the coda came back around. He
spoke of he and his brothers piling into the hollow of his mother’s
tail and tearing the waxy crescent tissue from the inner wall. Juicy
and spongy and syrupy soap which bleached their mouths and
purged their esophagus as it went down. They chewed and chomped
the stuff and it foamed. After they ate, they blew bubbles at each
other, each bubble filled with a dense foam, which they slept upon.
And early in the morning, when mother opened her tail again, she
watched serenely as her babies lay cradled in the stew of dark
meatballs and sweet, sticky froth.

69 of 114

sidebar!

An Evening of
Unobstructed Voltage

I dug up this article from
The Consistent Reminder,
a Connecticut newspaper which ran
the four star review of Dr. Cham.
Midgie Dare, the book reviewer
who suddenly opened her critical
eye to anything tangible, praised the
Doctor for his manners and
innovations in the very same daily
edition that she defamed cantaloupe
and docked Manitoba for having
crackly telephone service.

I got a kick out of the end of her
article. Here you go.

He dismounted his horse with unquestionable
care for anyone who might be in the vicinity.
Attentive of all sides, he lowered himself from
the saddle gently, slowing to a pace which
must be measured in micrometers per second

to be appreciated.

Those of us in his company found ourselves
with maws agape, watching his boot touch
down upon the ground. So precise and clean a
step that it seemed it would never meet the
earth, only hover slight above it. Then, before
the landing had actually registered with any of
us, we were off to the cuisine, whisked away
in the shroud of gaiety that was always right in
front of Harold Cham, always just behind him,
and most especially concentrate directly in his

own luminary self.

He also carried loosely at his side a capitally
ignorant statesman’s daughter, who spared us
no leave from her constant criticisms of

atheists and railway routes.

“At home, my efforts to light a candle were
trounced upon by further train rumblings,
which thrusted the match in my hand nearer

the curtains!” She derided Dr. Cham for his

waning grip on her forearm and became

He spelled out all the tastes of Endertromb. Of their salmon’s jealous when he was able to tune into a
starchy organs, which cooked into a pasta, and its eyes which pleasurable woman’s voice on the radio once
melted into rich cream. Of their buttermelon with tentacles. And he we returned to the residence.

was just beginning to appreciate the delicacies as a child, only to be
lifted from a schoolyard by a pair of upright pygmy elephants who
reached at him, through the heavens, and snatched upon his collar
with a vast length of crane.

The dusk did settle, however, and we found
ourselves in a communal daze beneath the
thick particles of cotton drift that wafted
through the polished piano room, quite

They transplanted him on Earth, led him from their craft, entertained by the Afternoon Nep Program,

trumpeting their snouts loudly for the city of Grand Rapids to hear,
then left weeping and embracing each other.

which played their phonograph so quietly at
the station that we could only hear the
scratching of dead Napoleon’s sleeves across

the bedsheets. I felt a great shriek inside me at

“But, strangely (em-pithy-dah), I learned upon, played upon (pon-
shoo) the organs on my home (oth-rea) planet,” he said.

My daughter’s organ instructor speaks these extra words you see in
parentheses. Who knows if they are from his native tongue or if they
are his own soundful hiccups. He keeps another relic from
Endertromb as well: he has twelve names.

the thought! Still, on yonder chairs, the two
lovers kept an abrupt distance between
themselves and I felt encompassed by Dr.
Cham’s warm gaze and his playful tip of the

sherry glass.

sidebar!

“No, (wen-is-wen),” he said. “I have one name (im-apalla) which is
said (iff) many-many different ways.”

I call him Paij-ree in the morning and Paij-plo in the later evening.
Since it is day as I write, I will call him Paij-ree here.

Mumble-Free Earplugs

So I told Paij-ree, “Paij-ree, I am writing a book. To teach the world Ruby.”
“Oh, (pill-nog-pill-yacht) nice,” he said. He’s known Ruby longer than I have,
but still: I will be my daughter’s Ruby instructor.

And I said, “Paij-ree, you are in the book. And the stories of your planet.” I talk
to him like he’s E.T. I don’t know why. Just like how I said next, “And then
maybe someday you can go home to your mom and dad!”

: ﬁ" - :"";' 7
To which he said, “(pon-shoo) (pon-shoo) (em-pithy-dah).” Which is his way of \ Al
speaking out loud his silence and awe.

'.--;‘."
L

He wanted to see what I'd written, so I showed him this short method I've written for you.

def wipe mutterings from(sentence)
while sentence.include? ' ('
open = sentence.index(' (')
close = sentence.index(')', open)
sentence[open. .close] = '' if close

end

70 of 114

end

“Can you see what this does, Paij-ree? Any old Smotchkkiss can use this method to take all the
incoherent babblings out of your speaking,” I said.

And I fed something he said earlier into the method.

what he said = "But, strangely (em-pithy-dah),
I learned upon, played upon (pon-shoo) the
organs on my home (oth-rea) planet."

wipe mutterings from(what he said)

print what he said

And it came out as a rather plain sentence.

But, strangely ,
I learned upon, played upon the

organs on my home planet.

“You shouldn’t use that (wary-to) while loop,” he said. “There are lovelier, (thopt-er), gentler ways.”

In the wipe mutterings from method, I'm basically searching for opening parentheses. When I find
one, I scan for a closing paren which follows it. Once I've found both, I replace them and their contents
with an empty string. The while loop continues until all parentheses are gone. The mutterings are
removed and the method ends.

“Now that I look at this method,” I said. “I see that there are some confusing aspects and some ways I
could do this better.” Please don’t look down on me as your teacher for writing some of this code. I
figure that it’s okay to show you some sloppy techniques to help you work through them with me. So
let’s.

Okay, Confusing Aspect No. 1: This method cleans a string. But what if we accidentally give it a
File? Or a number? What happens? What if we run wipe mutterings from(1)?
If we give wipe mutterings from the number 1, Ruby will print the following and exit.

NoMethodError: undefined method “include?' for 1:Fixnum
from (irb):2:in ‘wipe mutterings from'

from (irb) :8

What you see here is a rather twisted and verbose (but at times very helpful) little fellow called the
backtrace. He’s a wound-up policeman who, at the slightest sign of trouble, immediately apprehends
any and all suspects, pinning them against the wall and spelling out their rights so quickly that none
can quite hear it all. But it’s plain that there’s a problem. And, of course, it’s all a big misunderstanding,
right?

When Ruby reads you these Miranda rights, listen hardest to the beginning. The first line is often all

you need. In this first line is contained the essential message. And in the above, the first line is telling
us that there is no include? method for the number 1. Remember, when we were talking about the

71 0f 114

reverse method in the last chapter? Back then, I said, “a lot of methods are only available with
certain types of values.” Both reverse and include? are methods which work with strings but are
meaningless and unavailable for numbers.

To be clear: the method tries to use to the number. The method will start with sentence set to 1. Then,
it hits the second line: while sentence.include? ' ('. Numbers have no include? method. Great, the
backtrace has shown us where the problem is. I didn’t expect anyone to pass in a number, so I'm using
methods that don’t work with numbers.

See, this is just it. Our method is its own little pocket tool, right? It acts as its own widget
independent of anything else. To anyone out there using the wipe mutterings from method, should
they accidentally pass in a number, they’ll be tossed this panic message that doesn’t make sense to
them. They’ll be asked to poke around inside the method, which really isn’t their business. They don’t
know their way around in there.

Fortunately, we can throw our own errors, our own exceptions, which may make more sense to
someone who inadvertantly hands the wrong object in for cleaning.

def wipe mutterings from(sentence)
unless sentence.respond to? :include?
raise ArgumentError,
"cannot wipe mutterings from a #{ sentence.class }"
end
while sentence.include? ' ('

open = sentence.index(' (')

close = sentence.index(')', open)
sentence[open. .close] = '' if close
end

end

This time, if we pass in a number (again, the number 1), we’ll get something more sensible.

ArgumentError: cannot wipe mutterings from a Fixnum
from (irb):3:in ‘wipe mutterings_ from'

from (irb) :12

The respond_to? method is really nice and I plead that you never forget it’s there. The respond to?
checks any object to be sure that it has a certain method. It then gives back a true or false. In the
above case, the incoming sentence object is checked for an inciude? method. If no inciude? method is
found, then we raise the error.

You might be wondering why I used a symbol with respond to?.Iused a symbol :include? instead of a
string 'include?'. Actually, either will work with respond to2.

72 of 114

Usually symbols are used when you are passing around the name of a method or any other Ruby
construct. It’s more efficient, but it also catches the eye. The respond to? asks Ruby to look inside itself
and see if a method is available. We’re talking to Ruby, so the symbol helps denote that. It’s not a big
deal, Ruby just recognizes symbols quicker than strings.

73 of 114

Now, Confusing Aspect No. 2: Have you noticed how our method changes the sentence?

something said = "A (gith) spaceship."
wipe mutterings from(something said)

print something said

Did you notice this? In the first line of the above code, the something said variable contains the string
"A (gith) spaceship.". But, after the method invocation, on the third line, we print the

something said variable and by then it contains the cleaned string "a spaceship.".

How does this work? How does the method change the string? Shouldn’t it make a copy of the string
before changing it?

Yes, absolutely, it should! It’s bad manners to change strings like that. We've used gsub and
gsub! in the last chapter. Do you remember which of those two methods is a destructive method,
which changes strings directly?

Either we need to call this method wipe mutterings from! (as a courtesy to all the other good folks out
there that might use this method) or change the method to work on a copy of the string rather than the
real thing. Which is an easy change! We just need to dup the string.

def wipe mutterings from(sentence)
unless sentence.respond to? :include?
raise ArgumentError,
"cannot wipe mutterings from a #{ sentence.class }"
end
sentence = sentence.dup
while sentence.include? ' ('

open = sentence.index(' (')

close = sentence.index(')', open)
sentence[open. .close] = '' if close
end
sentence

end

The dup method makes a copy of any object. Look at that line we added again on its own:

sentence = sentence.dup

What a peculiar line of code. How does sentence become a copy of sentence? Does it erase itself? What
happens to the original sentence? Does it disappear?

Remember that variables are just nicknames. When you see sentence = "A (gith) spaceship.", you
see Ruby creating a string and then giving that string a nickname.

74 of 114

Likewise, when you see sentence = sentence.dup, you see Ruby creating a new string and then giving
that string a nickname. This is handy inside your method because now sentence is a nickname for a
new copy of the string that you can safely use without changing the string that was passed into
the method.

You'll see plenty of examples of variable names being reused.

x=x+1

x now equals 6

y = "Endertromb"
y = y.length

y now equals 10

z = :include?

z = "a string".respond to? z
y now equals true

And, yes, sometimes objects disappear. If you can’t get to A anart

an object through a variable, then Ruby will figure
you are done with it and will get rid of it. Periodically, An Excerpt from The Scarf Eaters
Ruby sends out its garbage collector to set these objects

free. Every object is kept in your computer’s memory until
the garbage collector gets rid of it.

(from Chapter V11: When Push Comes to
Shove—or Love.)

“Never say my name again!” screamed

Oh, and one more thing about dup. Some things can’t be Chester, and with the same gusto, he turned
dup’d. Numbers, for instance. Symbols (which look like back to the File > Publish Settings...
:death) are identical when spelled the same. Like numbers. dialog to further optimize his movie down
Also, some of the special variables: nil, true, false. These to a measley 15k.

are things that Ruby won’t let you alter, so there’s so point .

making a copy anyway. I mean, imagine if you could change

false to be true. The whole thing becomes a lie.

Perhaps Confusing Aspect No. 3 is a simple one. I'm using those square brackets on the string. I'm
treating the string like it’s an Array or Hash. I can do that. Because strings have a [] method.

When used on a string, the square brackets will extract part of the string. Again, slots for a forklift’s
prongs. The string is a long shelf and the forklift is pulling out a slab of the string.

75 of 114

Inside the brackets, we pass the index. It’s the label we’ve placed right between the prongs where the
worker can see it. When it comes to strings, we can use a variety of objects as our index.

str = "A string is a long shelf of letters and spaces."

puts str[0] # prints 'A'

puts str[0..-1] # prints 'A string is a long shelf of letters and spaces.'
puts str[l..-2] # prints ' string is a long shelf of letters and spaces'
puts str[l, 3] # prints 'A s'

puts str['shelf'] # prints 'shelf'

Alright, the last Confusing Aspect No. 4: this method can be sent into an endless loop. You can give
this method a string which will cause the method to hang and never come back. Take a look at the
method. Can you throw in a muddy stick to clog the loop?

def wipe mutterings_from(sentence)
unless sentence.respond to? :include?
raise ArgumentError,
"cannot wipe mutterings from a #{ sentence.class }"
end
sentence = sentence.dup
while sentence.include? ' ('

open = sentence.index(' (')

close = sentence.index(')', open)
sentence[open. .close] = '' if close
end
sentence

end

Here, give the muddy stick a curve before you jam it.

muddy stick = "Here's a (curve."

wipe mutterings from(muddy stick)

76 of 114

Why does the method hang? Well, the while loop waits until all the open parentheses are gone before it
stops looping. And it only replaces open parentheses that have a matching closing parentheses. So, if
no closing paren is found, the open paren won'’t be replaced and the while will never be satisfied.

How would you rewrite this method? Me, I know my way around Ruby, so I'd use a regular expression.

def wipe mutterings from(sentence)
unless sentence.respond to? :gsub
raise ArgumentError,
"cannot wipe mutterings from a #{ sentence.class }"
end
sentence.gsub (/\ ([-\w]+\)/, "')

end

77 of 114

Do your best to think through your loops. It’s especially easy for while and until loops to get out of
hand. Best to use an iterator. And we’ll get to regular expressions in time.
In summary, here’s what we’ve learned about writing methods:

1. Don’t be surprised if people pass unexpected objects into your methods. If you absolutely can’t use
what they give you, raise an error.

2. It’s poor etiquette to change objects your method is given. Use dup to make a copy. Or find a method
like gsub that automatically makes a copy as it does its job.

3. The square brackets can be used to lookup parts inside any Array, Hash or string objects, as these
objects provide a [1 method. Also, since these objects provide a [1= method, the square brackets can
be used in assignment (on the left-hand side of the equals sign) to change the parts of those objects.

4. Watch for runaway loops. Avoid while and until if you can.

The Mechanisms of Name-Calling

Forthwith there is a rustling in the
trees behind Paij-ree’s house and it
turns out to be a man falling from the
sky. His name is Doug and he sells
cats.

So, just as he comes into to view, when
his shadow (and the shadows of the
cats tied to his foot) obscures the bird
on the lawn that we’re trying to hit
with a racquetball, as he’s squeezing a
wisp of helium from his big balloon, we
shout, “Hello, Doug!”

And he says, “Hello, Gonk-ree! Hello,
Why!”

Paij-ree checks his pockets to be sure
he has the dollar-twenty-seven he’ll
need in order to buy the three cats he’ll
need to keep the furnace stoked and
the satellite dish turning. These cats
generate gobs of static once Paij-ree
tosses them in the generator, where
they’ll be outnumbered by the giant
glass rods, which caress the cats
continually—But, wait! Did you see how the cat broker called him Gonk-ree?

And he calls him Gonk-ree in the morning and Gonk-plo at night.

So the suffix is definitely subject to the sunlight. As far as I can tell, the prefix indicates the
namecaller’s relationship to Paij-ree.

78 of 114

class String

The parts of my daughter's organ
instructor's name.
@Q@syllables = [
{ 'Paij' => 'Personal',
'Gonk' => 'Business',
'Blon' => 'Slave',
'Stro' => 'Master',
'Wert' => 'Father',
'Onnn' => 'Mother' },
{ 'ree' => 'AM',

'plo' => 'PM' }

A method to determine what a
certain name of his means.
def name significance
parts = self.split('-')
syllables = Q@syllables.dup
signif = parts.collect do |p|
syllables.shift[p]
end
signif.join(' ')

end

end

79 of 114

Now I've gone beyond just showing you sloppy code. Here be a grave debauchery and a crime against
nature. A crime most languages won'’t allow you to commit. We'’re changing the string, one of the
core classes of Ruby!

“I know this is a bit dangerous,” I said, when I passed this one under Paij-ree’s nose. “I hope nobody
gets hurt.”

“Every Smotchkkiss must taste what this (kep-yo-iko) danger does,” he said. “Dogs and logs and
swampy bogs (kul-ip), all must be tasted.” And he took a swig of his Beagle Berry marsh drink.

So what is it that I'm adding to the string class? Two things: a class variable and a method. A normal
instance method.

I like to look at the at symbol as a character meaning attribute. The double at stands for attribute
all. A class variable. All instances of a class can look at this variable and it is the same for all of them.
The @esyllables variable is an Array that can now be used inside the String class.

The new method is name significance and this new method can be used with any string.

print "Paij-ree".name_significance prints out Personal AM.

As you can see, Paij-ree is a personal name. A name friends use in the early hours.

Make sure you see the line of code which uses se1t. This is a special variable, a variable which
represents the object whose method you are calling. To simplify things a bit, let’s try making a method
which breaks up a string on its dashes.

class String
def dash_split
self.split('-')
end

end

Again, here’s a method which can be used with any string.
"Gonk—plo".dash_splitrehnﬂlfheﬁuTay['Gonk', 'plo'].

Using self marks the beginning of crossing over into many of the more advanced ideas in Ruby. This is
definition language. You're defining a method, designing it before it gets used. You're preparing for the
existence of an object which uses that method. You're saying, “When dash_split gets used, there will
be a string at that time which is the one we’re dash-splitting. And self is a special variable which refers
to that string.”

Ruby is a knockout definition language. A succulent and brain-splitting discussion is coming your way
deeper in this book.

Most often you won’t need to use sel£ explicitly, since you can call methods directly from inside other
method definitions.

class String
def dash split; split('-'); end

end

80 of 114

In the name significance method, find the loop. Learning about Array#collect is essential. Let’s look
close.

signif = parts.collect do |p]|
syllables.shift[p]

end

The parts Array contains the separated name. ['Paij', 'plo'], for instance. We're iterating through
each item in that Array with collect. But collect steps beyond what each does. Like each, collect
slides each item down the chute as a block variable. And then, at the end of the block, co11ect keeps
the answer the block gives back and adds it to a new Array. The collect method is the perfect
way of building a new Array which is based on the items in an existing Array.

Doug has three cats for sale. One is twelve cents, one is sixty-three cents, one is nine cents. Let’s see
how much each cat would cost if we added a 20% tip.

catsandtips = [0.12, 0.63, 0.09].collect { |catcost| catcost + (catcost * 0.20) }

I say Paij-ree’s property is a very charming section of woods when it’s not raining cats and Doug. For
many days, Paij-ree and I camped in tents by the river behind his house, subsisting on smoked
blackbird and whittling little sleeping indians by the dusklight. On occassion he would lose a game of
spades and I knew his mind was distracted, thinking of Endertromb. All of this must have been stirring
inside of him for sometime. I was the first ear he’d ever had.

“I just came from Ambrose,” I said. “Sort of my own underground home, a place where elves strive to
perfect animals.”

He mumbled and nodded. “You can’t be (poth-in-oin) part of (in) such things.”
“You think we will fail?”

“I (preep) have been there before,” he said. And then, he spoke of the Lotteries.

&1 of 114

4. The Goat Wants to Watch a Whole Film

the..
elevater?..

. hO Way...

the-e-e..
el-}-jevater..

e Cam'E pes

M Mllli‘iu F“ilum,,“.am < | N
\u\m\}\muu«w -

i

The elevator had opened into a green room full of shelves and file cabinets. Reels of tape and film
canisters and video tape everywhere. Dr. Cham hadn’t a clue what most of it was. All he saw was a big,
futuristic mess.

He called out again, stumbling through alleys of narrow shelves, “Hello-0-0?? I'm looking for
intellegent life! I'm a space traveller!” He tripped when his foot slid right into a VCR slot. “Any other
beings I can communicate with?”

Hand cupped around mouth, he yelled, “Hello-0-0?”
“Crying out loud.” The sleepy goat came tromping down the aisle.

82 0f 114

We become ef:u‘c
friends!
A hoble
PoiR,!
gut aftel

Great Staws! yoo Khew | weuld be
—H— hepre: yov Read the
P geat! on | heck. ¥ talks
this "Faﬁawaéj this. i've
Wo}{[n{f the beolk-

i Know the beak
ou oveRde. s svef,
. ivn aslkin I qet

1) Eq‘f-ﬁq;..:

“I hate that book,” said the goat. “I believe the author is disingenuous.”

“Really?” asked Dr. Cham.

“I'm sure it’s all true. It’s just so heavily embellished. I'm like: Enough already. I get it. Cut it out.”
“I'm not quite sure what to make of it,” said the Doctor. “It seems like an honest effort. I actually wrote
something in Ruby back there.”

“It doesn’t give goats a very good name,” said the goat.

“But you are the only goat in the book,” said the Doctor.

“And I'm totally misquoted.”

e ake svch
close fRithdg,
—~f—

ﬁhﬂ. Lut howW

Could you ¥
Would Yol You mﬁija too
"Pv"-‘ql'fg eat sMall, yovk

mé ¢ mouth is foo

E'n"lm"

i

The goat closed his mouth and Dr. Cham held his heart. _
sidebar!

“I’'m actually very literate,” said the goat. “Albeit, more we want a tambourine!

recently, I've switched to movies. I love foreign films. One /
of my relatives just brough back Ishtar from your planet. | we want all a tambourine!
Wow, that was excellent.” | /
_ |

“I haven’t been to my planet in a long time. It would be / oo _/N_/_
difficult to consider it my home at this stage.” . N o o 0

. . . . / -/ \
“Well, Warren Beatty is delightful. His character is
basically socially crippled. He actually tries to kill himself, — fOAN e /
but Dustin Hoffman sits in the window sill and starts / / / W
crying and singing this totally hilarious heartbreak song. 4 o0y
I've got it here, you should see it.” /so \

/\ \me time\\..
“Can I get something to eat?” asked the Doctor. And he still /pp/ \s these pictur\\
felt fllthy /es/ \don't w\ \ork out)\
*kk ***x right but i

“How about we watch a film and you can have a

83 0f 114

buttermelon with tentacles?” said the goat. Fhink Ehis time

they did
So, they worked their way back toward the goat’s projector. c0o o
Back by the freezer locker, they sat on a giant rug and broke oo
off the appendages of frozen buttermelons. The shell was °
solid, but once it cracked, rich fruit cream was in o

abundance. Sweet to taste and a very pleasant scent. o

A

sidebar!

“First film, you've got to see,” said the goat. “Locally filmed
and produced. I'm good friends with the lady who did
casting. Dated her for awhile. Knew everyone who was
going to play the different roles long before it was
announced.”

The goat set the projector by Dr. Cham. “I've got the music
on the surround sound. You can man the knob.”

84 of 114

TURNING THe kN/B
on THe FILMSTRIF,
DR. CHAMN BEGAN
wWATCHING ALONG
WIiTH THE («0AT.
AS THE SouNP~—
TRACK eCHO%D
NOISY LAVA ¢
wWIND § TRVMPETS,

)l

YES, THeY WeRE
PRIMITIVE, FUT
THEY MANAGED
Toe INVENT P Few
HeAT LAMPS ¢
RAISE Trie Ast
AVOCADOES EveR.

AS TIMeg PASSED,
THE BLACK PARK-
NES, FADED ANP
THeY cAW OTHER

PLANETS.

THE FilMSTRIP
¢tarts WiTH
THESs€ aniMALY
caLle® THE
oﬂ.l&iNALS,
who CLAIMED
o B8€ THE 18T
CREPTURES TO
eveR Live.

BUT THeY PIP
NOT WAVE pnY
BolKeTs VBT,

$0 TrieY HAD To

CARRY THe Rivep
WATER IN THEIR

MOUTHS ALL THE
way gpalk Te
THe (R PLANTS.

AND NEW ANI-
MALls ¢ame To
THEIR FLANET
oN SPACEBOATS
anp VeRY LenNE

LADDERS.

SIMPLY BECAVIE
THEY HAP nNO
PROOF ofF ANY-
THING ELsE. ALL
ARoUND TH< IR
PLANET wWAS
BLACK DA RKNESS
AND MATYBE onNE
<TAR REBLLY FAR
AW AY THRT GAVE
A Few SLIveRS
OfF LIGHT,

iN FRCT THeEY
clLbiMep THeY
wWeRke THe I.L+
OF PNYNTHING
EVER To EXIST
ANYWHERE,

Thé ONLYy NvYM- You LOOK LIKE

BeR WE peeb To
KHOW C ThE H.

MAYBE THeEY
WERE WoRTH"
LESS. MAYEBFE
THey $HevlDN'T
HeVE BEEN
pLLoweD To STAY
pLive. T THINK
THEY Helke V3T
veky SIMPLE.

AND THeEY
LaCkeD INTEL-

LEGENCE AND ANY
KIND of DlS—
CLPLINE, so THEY
Nevek REALLY
WeNT To (oLLeGE
oR AMOUNTEP
To ANYTHWN &.

maLS BullT
THerR onN CITi€s

AND WANTED

GINALS DIDN'T
HuMoOR THESE
ALIENS WHAT-

eveRyoNE To AND
soEveR.
VoTE PR THem. SCEVET T
SAY THAT

THEY Toow To
Mean=-SPIRITED

BERATING.

850f114

Dr. Cham’s mind wandered at this point in the presentation, just as the land war mounted between the
two throngs of animal settlers. The details of their wars and campaigns continued to consume the spool
of transparent film that Dr. Cham was feeding through the projector.

War after war after war. The Sieging of Elmer Lake. The Last Stand of Newton P. Giraffe and Sons. Dog
Invasion of Little Abandoned Cloud. No animals died in these wars. Most often an attack consisted of
bopping another animal on the head. And they philipped each other’s noses. But, believe me, it was
humiliating.

Blasted crying shame. Things could have worked out.

“Don’t worry,” said the goat, anxious to sway Dr. Cham’s attention back to the film. “Things do work
out.”

In Ruby, the Object is the very center of all things. It is The Original.

class ToastyBear < Object; end

The angle bracket indicates inheritance. This means that the new ToastyBear class is a new class
based on the object class. Every method that object has will be available in ToastyBear. Constants
available in object will be available in ToastyBear.

But every object inherits from object. The code...

class ToastyBear; end

Is identical to...

class ToastyBear < Object; end

Inheritance is handy. You can create species of objects which relate to each other. Often, when you're
dissecting a problem, you’ll come across various objects which share attributes. You can save yourself
work by inheriting from classes which already solve part of that problem.

You may have a unitedstatesaddress class which stores the address, city, state, and zip code for
someone living in the United States. When you start storing addresses from England, you could add a
UnitedKingdomAddress class. If you then ensure that both addresses inherit from a parent address
class, you can design your mailing software to accept any kind of address.

def mail them a kit (address)
unless address.is_a? Address
raise ArgumentError, "No Address object found."
end
print address.formatted

end

86 0f 114

Also, inheritance is great if you want to overriding certain behaviours in a class. For example, perhaps
you want to make your own slight variation to the array class. You want to enhance the join method.

But if you change array#7join directly, you will affect other classes in Ruby that use Arrays.

So you start your own class called ArrayMine, which is based on The Original array.

class ArrayMine < Array

Build a string from this array, formatting each entry
then joining them together.
def join(sep = $,, format = "%s")

collect do |item|

sprintf (format, item)

end. join(sep)

end

end

ArrayMine iS now a custom Array class with its own join method. Array is the superclass of ArrayMine.
Every object has a supercilass method where you can verify this relationship.

irb> ArrayMine.superclass

=> Array

Perfect. We manage a hotel and we have an array of our room sizes: [3, 4, 6]. Let’sturnitintoa
readable statement on a brochure.

rooms = ArrayMine[3, 4, 6]

print "We have " + rooms.join(", ", "% bed") + " rooms available."

Which prints, “We have 3 bed, 4 bed, 6 bed rooms available.”

You don’t need to be in a class definition to use inheritance. You can use object#extend, which will pull
all the methods from a class into an object.

rooms = [3, 4, 6]
rooms.extend ArrayMine

print "We have " + rooms.join(", ", "% bed") + " rooms available."

Dr. Cham was looking around for a bathroom, but archival video tape was everywhere. He eventually
found a place, it may have been a bathroom. It had a metal bin. More importantly, it was dark and out
of eyesight.

87 0f 114

While he’s in there, let me add that while The Originals slaughtered The Invaders to prove their rights
as First Creatures, the Ruby Object doesn’t have any such dispute. It is the absolute king Object the

First.

Watch.

irb> Class.superclass
=> Module

irb> Kernel.class
=> Module

irb> Module.superclass
=> Object

irb> Object.superclass

=> nil

Even class is an object! See, although classes are the definition language for objects, we still call class
methods on them and treat them like objects occassionally. It may seem like a dizzying circle, but it’s
truly a very strict parentage. And it ensures that when you alter the object, you alter everything in
Ruby. Which is impossibly scary and all-powerful and cataclysmic and awesome! Ruby does not
restrict you, my sister, my brother!

When Dr. Cham came out refreshed, the filmstrip was a bit behind. But the goat hadn’t noticed, so the
Doctor advanced frames until it made some sense.

&8 of 114

Se THE CReATURES
weRe pLL AT WAR,
MulH [1ke THE
HeALTH BookS$
DESCRIBR TH®
wWOR peTHeeN
FATTY TiSSVes
+ AMINo ACIOS
WH L CH wAGCES
caNTfNuHLL"J
INSIDE YouR
BoPY...

™e oRIGINALS
THOVGHT THAT

PRoBABLY THE
GoATs Weke€
WiITH THEM.
GoaTS HAP

Been ARevND,
RIGHT? BUT...

o,

7
anwell, MAMBe "
THe GOATS Sl'?rJD‘J
“MAYBE We'Re

ON THe WRONG
PLpNeT. THIS

PLpNeT LoOKS

Too oLp.”

WHitH means T

THeY vFTeN ?E&;’ii HoWweveg, Two
0ATS

FOCGHT ek Leman kipg G0 Sowes

L [T ol | Nf" WPJS Hlef'L] e

Lﬂ:f:cHKﬂ RMo, f;::,” Mféia oN
WAS -

BAasSichLLy 7 E';LZZER CovtD

VeRY PopuLaR gek-

BraNp of

TUNA SpND-

WicHes,

(YES, THese

} Bl

THe INvADERS

BVT HeRe's
SWIRE THeY The pepw:
HAD BRoVGHT opne goaT WAS
GopTS!! AN oR(GINAL

AND Trie oTHeR
WAS NOT AND

,,yonR_e ,{_ﬁ-‘re]" RBgoLuTe

THEY $A-(p, THey were en ezossZDH
BLUFFiInG, GOAT FRieNP
ANP IN LovE. OF DR. CHAM.)
AND LYING.

1I7s The
oLpeST
FLANeT!

THey STAlTeD

AN Ve

Treov -1t TH€ To $e€ How
mvr‘r?ef?-s) pecpe T IT
DIDNT RemLly RehLLY wAS,

BelLreve THaT
THe o Rt INALS
weRe e 431
ANIMALS eveR...
AND THAT THEIR
FLaneT was
THe OoLpPesST...

89 0f 114

So the invaders left the planet.

“This planet is decrepit,” said Dr. Cham. “The castle is nice. But inside it’s a disaster.”
“The whole castle look is a projection,” said the goat. “All the flowers and apple blossoms and the sky
even. It’s a low-resolution projection.”
“Yes? It is enchanting.”
“I guess.”
co THEY FLEW DOWN TO INHAFIT IT..

BuT PLECD AT ONCE Fﬂuﬁeﬂ
eRemM THE A IMABLLY POITHE

¥ N\ !

/ ;'i’f Sl

n —-'!'I._lr

?" g .-r‘K
|f r

4 { %
3 Y _\.r‘__ H;” g“%@ﬁ;

¥
Y
*, "'u
ﬁﬁ- .
% 5 r’ A yo-*
Y, 1

aLL THE ANIMALS HAPPeneD vPen
n PLANET CALLeD PEOPLEMVYD
(enD DR. CHAM RECOGNIZED THIS
plLarkeT FRoMm HIS TRAVEL—~ IT WhS
THe VeRY oNE He'D LeFT BeH/ND.)

“That’s messed up!” said the goat. “That’s not the way the film ends! There’s no blood! What
happened? What happened? Did you screw up the knob, idiot?”

“Well, I don’t know,” said Dr. Cham. He turned the knob reverse and forward. Tapped the lens.
“Check the film! Check the film!”

Dr. Cham pulled out a length of film from the projection feed, melted and dripping from its end.
“Curse that! These projectors are quality! I've never had this happen. There’s no way.”

“I don’t think it was the projector,” said Dr. Cham. “Something flew across that screen and uttered a
blistering moan.”

“I don’t have any dupes of that movie,” said the goat somberly. “And that girl. That casting director. I
never see her anymore.”

Dr. Cham stood up and looked over the dumpy aisles of magnetic carnage, searching.
“Oh, hey, you should call that girl,” the goat went on. “You could talk to her, get an understanding. Tell

her about me. Don’t act like your my friend, just, you know, ‘Oh, that guy? Yeah, whatta maroon.”
Dr. Cham spotted the doorway and exited.

90 of 114

The hallways were an entirely new world of mess. In the goat’s archives, the shelves had been messy. In
the hallway, shelves were completely tipped. Sinks were falling through the ceiling. The Doctor
ventured under the debris, kicking through plywood when necessary.

“You shouldn’t be out here,” said the goat. “You’re on someone else’s property at this point. A couple of
pygmy elephants own all this. They’re nasty guys. They’ll beat the crap outta you with their trunks.
They ball it up and just whack ya.”

Dr. Cham pushed a file cabinet out of his way, which fell through a flimsy wall, then through the floor
of the next room over. And they heard it fall through several floors after that.

“I'm trying to remember how it goes in the book,” said Dr. Cham, as he walked swiftly through the hall.
“That milky fog that swept across the projection. We find that thing.” He jiggled a door handle, broke it
off. Forged through the doorway and disappeared inside.

“You really get a kick out of beating stuff up, don’t you?” said the goat. “Walls, doors.” The goat
headbutted a wall. The wall shuddered and then laid still.

Then, it was quiet. And black.

The goat stayed put in the bleak hallway, expecting Dr. Cham to flip over a few desks and emerge,
ready to move on from the room he’d busted into. But Dr. Cham didn’t return, and the goat opted to
share a moment with the neglected wreckage left by his neighbors. Not that he could see at all. He
could only hear the occassional rustling of the piles of invoices and carbon copy masters and manila
envelopes when he shifted his legs.

The ground seemed to buckling right under the goat, as if the heaps of kipple around him were
beginning to slide toward his weight. He would be at the center of this whirlpool of elephant
documentation. Would he die of papercuts first? Or would he suffocate under the solid burial by office
supplies?

A soft light, however, crept up to him. A floating, silver fish. No, it was a—was it scissors? The scissors
grew into a shimmering cluster of intellegent bread, each slice choking on glitter. But, no, it was hands.
And an Easter hat.

heh.
ovR skin
16 all Faded.

huge meuth, N
Yol camn “scaRe hum with
"ja‘JR deadneis-- ll
Wis neRves’ll be Sh"-{'-.

In another room, Dr. Cham stood under the clear glass silently. The ceiling had abruptly gone
transparent, then starlight washed over his pants and jacket. He walked further to the room’s center in
muted colors, lit as softly as an ancient manuscript in its own box at the museum. More stars, more

91 of 114

cotton clusters of fire, unveiled as he came across the floor. And it peeked into view soon enough, he
expected it to be larger, but it wasn’t.

Earth. Like a painted egg, still fresh. He felt long cello strings sing right up against his spine. How
could that be called Peoplemud? Here was a vibrant and grassy lightbulb. The one big ball that had
something going for it.

He thought of The Rockettes. Actually, he missed The Rockettes. What a bunch of great dancers. He
had yelled something to The Rockettes when he saw them. Something very observant and flattering.
Oh, yes, while The Rockettes were spinning, arm in arm, he had yelled, “Concentric circles!” Which no
one else cared to observe.

And this thought was enough to feed Dr. Cham’s superiority complex. He wore a goofy smile as he
retraced his footsteps. He truthfully felt his genius coming through in such a statement. To realize the
simplicity of a circle was his. He reflected on it all the way back to the hallway.

Which I think is great. Adore yourself when you have a second.

Ho-no! It's T4's Hannah,
a dead jiﬁl! my dead niece.

Hannah, leave
this goat alene.

!'ﬁ; 7 Tev'Re a 1
a\‘h‘, maple doenvt
i r'laht in
my ede.

“Oh, right,” said the goat. “Your niece. The niece you killed. I'm with ya now.”

For just a few moments, they all looked at each other. Just enough time for both Dr. Cham and the goat
to think: Oh, yeah. Hannah causes us a lot of trouble. She’s already talking about maple donuts.

“Does she start talking about maple donuts right away like that?” asked the goat.

“Yes, she does,” said the Doctor. “She brings it up to you, then she brings it up to me. She sees a maple
donut somewhere—I don’t quite remember where.”

“Do I see a real maple donut?” Hannah said. “I need a real one.”

“Okay, okay,” said the goat. “Yeah, I remember: here’s where she says that if she gets a real maple
donut, she’ll become a real person again. Because her real destiny was to own a bakery and you ruined
that destiny and now she’s trapped as a ghost.”

“Hey, that’s the truth!” Hannah yelped.

“It’s terrible that we must bear through this whole scene again,” said the Doctor. “The donuts are
immaterial. They should be left out altogether.”

92 of 114

“Man, I am having a hard time remembering all of this chapter,” said the goat. “I don’t even remember
how to get out of this hallway. I must have read that book like thirty times. Do we blast through a wall?
Do we scream until someone finds us?”

“We get Hannah to float through walls and she finds some kind of machine,” says Dr. Cham. “I have to
write a program—it all works out somehow.”

“But, you know what I'm saying?” said the goat. “I forget all the details. Especially the earlier chapters.
I mean I can remember the ending perfectly. It’s hard to sit through all this. The end is so much
better.”

Dr. Cham folded his arms and teetered on a heel. “The porcupine.” He smiled greedily at the goat.
“Oh, totally. The porcupine is definitely who I want to meet,” said the goat. “I wonder what he does
with all that money when the book is over.”

Dr. Cham nodded respectfully. “I'm very excited to see him wearing slippers.”
“Those infernal slippers!” said the goat and he haw-hawed coarsely, a shower of saliva cascading from
his jaws.

Hannah’s mind rattled, waiting for this nonsense to break for a moment. She tipped her head on its
side and the rattle slid along the curve of her cranium. The little noise died away, though, as the back of
her head vanished (fluxed out is what she called it) and then her head was back again with its little
rattle and she caught herself doing that careless moaning again. HRRRRRR-RRR-OH-RRRR-RRRR.
“I'm not as into the chunky bacon stuff,” said the goat. “I don’t see what’s so great about it.”

Could she speak while moaning? BON-BON. With a French moan. BOHN-BOHN. BOHN-APPE-TEET-
OHHHH-RRRR.

“I know she’s harmless, but that sound freaks me out. My hair is completely on end.”

“Hannah?” said Dr. Cham. “Where are you, child? Come do a good turn for us, my niece.”

She was right near them, in and out. And they could hear her cleaning up her voice, bright, speaking
like a angel scattering stardust. Yes, the whole maple donut story came out again, and more about the
bakery she would own, the muffins and rolls and baguettes.

5. The Theft of the Lottery Captain

And now, Paij-ree’s stories of the Lotteries.

On Endertromb, the organist’s father invented the lottery. The idea came
while he was praying to Digger Dosh.

Digger Dosh is sort of like their God. But ten times scarier. This guy dug an
infinitely deep tunnel straight through the planet and came out dead. But he’s
really not dead. He’s really just one second behind them. And he eats time.

It’s kind of complicated because Digger Dosh totally kills people. But I guess if
you do what he says, it’s not so bad. Maybe I'll talk about it later. It’s such a
pain to talk about because it’s so scary and yet one of my friends actually believes the whole thing. I get
kind of choked up—not like I'm crying, more like I'm choking.

Anyway, once while praying, three numbers came to Paij-ree’s father.

He then asked his mind, “What are these numbers?”

93 of 114

And his mind played a short video clip of him selling all kinds of numbers. And, for years and years,
travelling and selling numbers.

And he asked his brain, “People will buy numbers?”
And his brain said, “If they buy the right three numbers, give them a prize.”

At which he imagined himself launching off a ski jump and showering people with presents. No
question: he would be an icon.

So he went and did as his brain said and sold numbers. The father’s simple lottery consisted of three
unique numbers, drawn from a set of 25 numbers.

class LotteryTicket
NUMERIC_RANGE = 1..25
attr_reader :picks, :purchased
def initialize(*picks)
if picks.length !'= 3
raise ArgumentError, "three numbers must be picked"
elsif picks.uniqg.length !'= 3
raise ArgumentError, "the three picks must be different numbers"
elsif picks.detect { |p| not NUMERIC RANGE === p }
raise ArgumentError, '"the three picks must be numbers between 1 and 25."
end
@picks = picks
@purchased = Time.now
end

end

94 of 114

Yes, the LotteryTicket class contained the three numbers (epicks) and the time when the ticket was
bought (epurchased). The allowed range of numbers (from one to twenty-five) is kept in the constant
NUMERIC RANGE.

The initialize method here can have any number of arguments passed in. The asterisk in the picks
argument means that any arguments will be passed in as an Array. Having the arguments in an
Array means that methods like uniqg and detect can be used on the arguments together.

This class contains two definitions: the method definition (def) and an attributes definition
(attr_reader). Both are really just method definitions though.

The attr reader shortcut is identical to writing this Ruby code:

class LotteryTicket
def picks; @picks; end
def purchased; @purchased; end

end

Attributes are wrapper methods for instance variables (such as epicks) which can be used outside of
the class itself. Paij-ree’s father wanted to code a machine which could read the numbers and the
date of purchase from the ticket. In order to do that, those instance variables must be exposed.

Let’s create a random ticket and read back the numbers:

ticket = LotteryTicket.new(rand(25) + 1,
rand(25) + 1, rand(25) + 1)

p ticket.picks

Running the above, I just got: [23, 14, 20]. You will get an error if two of the random numbers
happen to be identical.

However, I can’t change the lottery ticket’s picks from outside of the class.

ticket.picks = [2, 6, 109]

I get an error: undefined method “picks='.This is because attr reader only adds a reader method,
not a writer method. That’s fine, though. We don’t want the numbers or the date to change.

So, the tickets are objects. Instances of the LotteryTicket class. Make a ticket with LotteryTicket.new.
Each ticket has it’s own epicks and it’s own @purchased instance variables.

The lottery captain would need to draw three random numbers at the close of the lottery, so we’ll add a
convenient class method for generating random tickets.

class LotteryTicket
def self.new_random
new(rand(25) + 1, rand(25) + 1, rand(25) + 1)
end

end

95 o0f 114

Oh, no. But we have that stupid error that pops up if two of the random numbers happen to be
identical. If two numbers are the same, the initialize throws an ArgumentError.

The trick is going to be restarting the method if an error happens. We can use Ruby’s rescue to handle
the error and redo to start the method over.

class LotteryTicket
def self.new_random
new(rand(25) + 1, rand(25) + 1, rand(25) + 1)
rescue ArgumentError
redo
end

end

Better. It may take a couple times for the numbers to fall together right, but it'll happen. The wait will
build suspense, huh?

The lottery captain kept a roster of everyone who bought tickets, along with the numbers they drew.

clas LotteryDraw

QRtickets = {}

def LotteryDraw.buy(customer, *tickets)
unless Q@tickets.has key?(customer)

@@tickets[customer] = []

end
@@tickets[customer] += tickets

end

end

Yal-dal-rip-sip was the first customer.

LotteryDraw.buy 'Yal-dal-rip-sip',
LotteryTicket.new(12, 6, 19),
LotteryTicket.new(5, 1, 3),

LotteryTicket.new(24, 6, 8)

96 of 114

When it came time for the lottery draw, Paij-ree’s father (the lottery captain) added a bit of code to
randomly select the numbers.

class LotteryTicket

def score(final)
count = 0
final.picks.each do |note|

count +=1 if picks.include? note

end
count

end

end

The score method compares a LotteryTicket against a random ticket, which represents the winning
combination. The random ticket is passed in through the £ina1 variable. The ticket gets one point for
every winning number. The point total is returned from the score method.

irb> ticket

LotteryTicket.new(2, 5, 19)

irb> winner LotteryTicket.new(4, 5, 19)
irb> ticket.score(winner)

=> 2

97 of 114

You will see how brilliant Paij-ree is, in time. His father commissioned him to finish the lottery for him,
while the demand for tickets consumed the lottery captain’s daylight hours. Can’t you just imagine
young Paij-ree in his stuffy suit, snapping a rubber band at the company meetings where he proposed
the final piece of the system? Sure, when he stood up, his dad did all the talking for him, but he flipped
on the projector and adjusted the focus.

class << LotteryDraw
def play
final = LotteryTicket.new_random
winners = {}
@Q@tickets.each do |buyer, ticket list|
ticket list.each do |ticket|
score = ticket.score(final)
next if score.zero?
winners[buyer] ||= []
winners[buyer] << [ticket, score]
end
end
@@tickets.clear
winners
end

end

His father’s associates were stunned. What was this? (Paij-ree knew this was just another class method
definition—they would all feel completely demoralized when he told them so.) They couldn’t
understand the double angle bracket up there! Yes, it was a concatenator, but how is it in the class
title?

Infants, thought Paij-ree, although he held everyone of those men in very high esteem. He was just a
kid and kids are tough as a brick’s teeth.

The << operator allows you to alter the definition of an object. Had Paij-ree simply used c1ass
LotteryDraw, his play method would be a normal instance method. But since he used the << operator,
the p1ay method will be added directly to the class, as a class method.

When you see class << obj, believe in your heart, I'm adding directly to the definition of obj.

The budding organ instructor also threw in a tricky syntax worth examining. In the ninth line, a winner
has been found.

winners [buyer] ||= []

winners[buyer] << [ticket, score]

98 of 114

The | |= syntax is a shortcut.

winners[buyer] = winners[buyer] || []

The double pipe is an or logic. Set winners [buyer] equal to winners [buyer] OT, if winners [buyer] is
nil, set it to [1. This shortcut is a little strange, but if you can really plant it in your head, it’s a nice
timesaver. You're just making sure a variable is set before using it.

irb> LotteryDraw.play.each do |winner, tickets|

irb> puts winner + "won on " + tickets.length + " ticket(s)!"
irb> tickets.each do |ticket, score|

irb> puts "\t" + ticket.picks.join(', ') + ": " + score
irb> end

irb> end

Gram-yol won on 2 ticket(s)!
25, 14, 33: 1
12, 11, 29: 1

Tarker-azain won on 1 ticket(s)!
13, 15, 29: 2

Bramlor-exxon won on 1 ticket(s)!

2, 6, 14: 1

But these salad days were not to continue for Paij-ree and his father. His father often neglected to
launder his uniform and contracted a moss disease on his shoulders. The disease gradually stole his
equilibrium and his sense of direction.

His father still futilely attempted to keep the business running. He spiraled through the city, sometimes
tumbling leg-over-leg down the cobbled stone, most often slowly feeling the walls, counting bricks to
the math parlours and coachmen stations, where he would thrust tickets at the bystanders, who
hounded him and slapped him away with long, wet beets. Later, Paij-ree would find him in a corner,
his blood running into the city drains alongside the juices of the dark, splattered beets, which juice
weaseled its way up into his veins and stung and clotted and glowed fiercely like a congested army of
brake lights fighting their way through toll bridges.

99 of 114

Paij-ree was an enterprising young Endertromaltoek. He
hammered animal bones into long, glistening trumpets
with deep holes that were plugged by corks the musicians
banded to their fingers. Sure, he only sold three of those
units, but he was widely reviled as a freelance scholar, a
demonic one, for he was of a poorer class and the poor only
ever acquired their brilliance through satanic practice. Of
course, they were right, indeed, he did have a bargain with
the dark mages, whom he kept appointments with
annually, enduring torturous hot springs, bathing as they
chanted spells.

He adored his father, even as his father deteriorated into
but a gyroscope. He idolized the man’s work and spent his
own small earnings playing the lottery. He loved to watch
the numerals, each painted upon hollow clay balls, rise in
the robloch (which is any fluid, pond or spill that has
happened to withstand the presence of ghosts), the great
bankers tying them together on a silver string, reading
them in order.

Even today, Paij-ree paints the scenes with crude strokes of
black ink on sheets of aluminum foil. It is very touching to
see him caught up in the preciousness of his memory, but I
don’t know exactly why he does it on aluminum foil. His
drawings rip too easily. Paij-ree himself gets mixed up and
will serve you crumbcake right off of some of this art, even
after it has been properly framed. So many things about
him are troubling and absurd and downright wretched.

The disease spread over his father’s form and marshy
weeds covered his father’s hands and face. The moss pulled
his spine up into a rigid uprightness. So thick was the
growth over his head that he appeared to wear a shrub
molded into a bowler’s hat. He also called himself by a new
name—Quos—and he healed the people he touched,
leaving a pile of full-blooded, greenly-cheeked villages in
his wake as he travelled the townships. Many called him
The Mossiah and wept on his feet, which wet the buds and
caused him to weed into the ground. This made him
momentarily angry, he harshly jogged his legs to break free
and thrashed his fists wildly in the sky, bringing down a
storm of lightning shards upon these pitiful.

Paij-ree was apart from the spiritual odysseys of his father

(in fact, thought the man dead), so he only saw the decay of
the lottery without its captain present. Here is where Paij-

100 of 114

Another Excerpt from The Scarf
Eaters

(from Chapter V1. Sky High.)

“I know you,” said Brent. “And I know your
timelines. You couldn’t have done this Flash

piece.”

“So, you’re saying [’'m predictable?” said
Deborah. She opened her hands and the diced
potatoes stumbled like little, drunk sea otters

happily into the open crockpot.

“You’re very linear,” said Brent. He took up a
mechanical pencil, held it straight before his eyes,
gazing tightly at it before replacing it in the pencil
holder on the counter. “Do you even know how to
load a scene? How to jump frames? This movie I

saw was all over the place, Deb.”

She heaped five knit scarves and a single bandana
into the slow cooker and set it on high. She closed

the lid, leaving her hand resting upon it.

“What is it about this movie?”” Deborah asked.
“You go to Flash sites all the time. You played the
Elf Snowball game for two seconds, it didn’t
interest you. You didn’t care for EIf Bowling
games even. And you weren’t even phased by that
Hit The Penguin flash game. EIf versus Penguin?
Don’t even ask!

“Now this movie comes along and you can’t get a
grip.” She walked over and siddled up next to him.
“Yo, bro, it’s me. Deborah. What happened when

you saw that movie?”

“Everything,” said Brent, his eyes reflecting a
million worlds. “And: nothing. It opened with a
young girl riding upon a wild boar. She was
playing harmonica. The harmonica music washed
in and out, uneasy, unsure. But she rode naturally,
as if it wasn’t anything of a big deal to ride a wild
boar. And with Flash, riding a wild boar really

isn’t a big deal.”

Deborah unclasped her bracelet and set it on the

counter by the crockpot.

“The bottom of the movie started to break up, an

ree went to work, reviving the dead lottery of his family.
Gambling with Fewer Fingers

The city was crowded with people who had lost interest in
the lottery. The weather had really worn everyone down as
well. Such terrible rain flooding their cellars. The entire city
was forced to move up one story. You’d go to put the cap
back on your pen and you’d ruin the pen, since the cap was
already full of slosh. Everyone was depleted, many people
drowned.

Paij-ree found himself wasting his days in a quadruple
bunkbed, the only furniture that managed to stay above sea
level. He slept on the top bed. The third bed up was dry as
well, so he let a homeless crater gull nest upon it. The gull
didn’t need the whole bed, so Paij-ree also kept his
calculators and pencils down there.

At first, these were very dark times for both of them, and
they insisted on remaining haggard at all times. Paij-ree
became obsessed with his fingernails, kept them long and
pristine, while the rest of him deteriorated under a suit of
hair. In the company of Paij-ree, the crater gull learned his
own eccentrity and plucked all the feathers on the right side
of his body. He looked like a cutaway diagram.

ink puddle formed. The boar reared up, but his
legs gave way to the all the dark, sputtering ink.”

“Dark clouds converged. Hardcore music started
to play. Secret agents came out of the clouds. CIA
guys and stuff. The animation simply rocked.

“And then, at the very end of the movie, these
words fade upon the screen. In white, bold letters.”

“Sky high,” said Deborah.

“How did you know?” Brent’s lip quivered. Could
she be trusted?

“There is no room left in the world,” she said. “No

room for Scarf Eaters, no room for you and I.

Here, take my hand.”

They learned to have happier times. Paij-ree carved a flute from the wall with his nails and played it
often. Mostly he played his relaxed ballads during the daytime. In the evening, they pounded the wall
and shook the bed frame in time to his songs. The gull went nuts when he played a certain four notes
and he looped this section repeatedly, watching the gull swoop and circle in ectasy. Paij-ree could
hardly keep his composure over the effect the little tune had and he couldn’t keep it together, fell all

apart, slobbering and horse-giggling.

Paij-ree called the gull Eb-F-F-A, after that favorite song.

Friendship can be a very good catalyst for progress. A friend can find traits in you that no one else can.
It’s like they searched your person and somehow came up with five full sets of silverware you never
knew were there. And even though that friend may not understand why you had these utensils

concealed, it’s still a great feat, worth honoring.

While Eb-F-F-A didn’t find silverware, he did find something else. A pile of something else. Since Paij-
ree was stranded on the quadruple bed, the gull would scout around for food. One day, he flew down
upon a barrel, floating over where the toolshed had been. Eb-F-F-A walked on top of the barrel,

spinning it back to Paij-ree’s house and they cracked it open, revealing Paij-ree’s lost collection of duck
bills.

Yes, real duck bills. (Eb-F-F-A was esophagizing his squawks, remaining calm, sucking beads of sweat
back into his forehead—ducks were not of his chosen feather, but still in the species.) Paij-ree clapped

101 of 114

gleefully, absolutely, he had intended to shingle his house with these, they could have deflected a bit of
the torrent. Probably not much, nothing to cry about.

And the roof glue was at the barrel’s bottom and they were two enterprising bunkmates with time to
kill, so they made a raft from the previously-quacked lip shades. And off they were to the country!
Stirring through a real mess of city and soup. How strange it was to hit a beach and find out it was just
the old dirt road passed Toffletown Junction.

In the country, they sold. It was always a long walk to the next plantation, but there would be a few
buyers up in the mansion (“Welcome to The Mansion Built on Beets”, they’d say or, “The Mansion Built
on Cellophane Substitutes—don’t you know how harmful real cellophane can be?”) And one of the
families wrapped up some excess jelly and ham in some cellophane for the two travellers. And they
almost died one day later because of it.

Then, when the heat came and, as the first countryside lottery was at nigh, a farmer called to them
from his field, as he stood by his grazing cow. Paij-ree and Eb-F-F-A wandered out to him, murmuring
to each other as to whether they should offer him the Wind-Beaten Ticket Special or whether he might
want to opt in to winning Risky Rosco’s Original Homestyle Country Medallion.

But the farmer waved them down as he approached, “No, put your calculators and probability wheels
away. It’s for my grazledon.” He meant his cow. The Endertromb version: twice as much flesh, twice as
meaty, doesn’t produce milk, produces paper plates. Still, it grazes.

“Your grazledon (poh-kon-ic) wants a lucky ticket?” asked Paij-ree.

“He saw you two and got real excited,” said the farmer. “He doesn’t know numbers, but he understands
luck a bit. He almost got hit by a doter plane one day and, when I found him, he just gave shrug. It was
like he said, ‘Well, I guess that worked out okay.””

“The whole (shas-op) lottery is numer-(ig-ig)-ic,” said Paij-ree. “Does he know (elsh) notes? My eagle
knows (losh) notes.” Paij-ree whistled at the crater gull, who cooed back a sustained D.

The farmer couldn’t speak to his grazledon’s tonal awareness, so Paij-ree sent the gull to find out (D-D-
D-A-D, go-teach-the-gra-zle) while he hacked some notes into his calculator.

class AnimallLottoTicket
A list of valid notes.
NOTES = [:Ab, :A, :Bb, :B, :C, :Db, :D, :Eb, :E, :F, :Gb, :G]
Stores the three picked notes and a purchase date.

attr_reader :picks, :purchased

102 of 114

Creates a new ticket from three chosen notes. The three notes
must be unique notes.
def initialize(notel, note2, note3)
if [notel, note2, note3].uniq!
raise ArgumentError, "the three picks must be different notes"
elsif picks.detect { |p| not NOTES.include? p }
raise ArgumentError, "the three picks must be notes in the chromatic scale."
end
@picks = picks
@purchased = Time.now
end
Score this ticket against the final draw.
def score(final)
count = 0
final.picks.each do |note|
count +=1 if picks.include? note
end
count
end
Constructor to create a random AnimalLottoTicket
def self.new_random
new(NOTES[rand(NOTES.length)], NOTES[rand(NOTES.length) 1],
NOTES[rand(NOTES.length)])
rescue ArgumentError
redo
end

end

No need for the animal’s tickets to behave drastically different from the traditional tickets. The
AnimalLottoTicket class is internally different, but exposes the same methods seen in the original
LotteryTicket class. The score method is even identical to the score method from the old
LotteryTicket class.

103 of 114

Instead of using a class variable to store the musical note list, they’re stored in a constant called
AnimallottoTicket: :NOTES. Variables change and the note list shouldn’t change. Constants are
designed to stay the same. You can still change the constant, but you’ll have to be tricky or Ruby will
speak up.

irb> AnimallLottoTicket: :NOTES = [:TOOT, :TWEET, :BLAT]
(irb) :3: warning: already initialized constant NOTES

=> [:TOOT, :TWEET, :BLAT]

The gull came back with the grazledon, his name was Merphy, he was thrilled to play chance, he puffed
his face dreamily, whistled five and six notes in series, they all held his collar, pulled him close to the
calculator and let him breathe three notes, then they choked the bedosh outta him until his ticket was
printed and everything was nicely catalogued inside @etickets['merphy']. Thankyou, see ya at the
draw!

So, the fever of the lottery became an epidemic among the simple minds of the animals. Paij-ree saved
his costs, used the same Lotterybraw class he’d used in the corporate environment of the lottery from
his childhood. And soon enough, the animals were making their own music and their own maps and
films.

“What about The Originals?” I asked Paij-ree. “They must have hated your animals!”
But he winced sourly and pinched his forehead. “I am an Original. You as well. Do we (ae-0) hate any of
them?”

Not too long after the lottery ended, Paij-ree felt the crater gull Eb-F-F-A lighting upon his shoulder,
which whistled an urgent and sad C-Eb-D C-A-Eb. These desparate notes sent an organ roll of chills
straight through Paij-ree. Had the King God of Potted Soil, Our Beloved Topiary, the Mossiah Quos,
Literal Father of That Man Who Would Be My Daughter’s Organ Instructor—had he truly come to his
end? How could this be? Could the great arbors no longer nourish him and guide the moist crosswinds
to him? Or did his own spindly lichen hedge up his way and grow against his breathing?

You never mind, went the tune of the gull. He has detoriated and weakened and fallen in the lit door
of your home cottage. His tendrils needing and crying for the day to not end. For the sun to stay fixed
and wide and attentive.

Plor-ian, the house attendant, kept the pitchers coming and Quos stayed well watered until Paij-ree
arrived to survey the decaying buds of soft plant and the emerging face of his father, the lottery captain.
His skin deeply pocked like an overly embroidered pillow. Great shoots springing from his sleeves now
curled back with lurching thirst.

Paij-ree combed back the longer stems around his father’s eyes and those coming from the corners of
his mouth. While I’d like to tell you that Paij-ree’s tears rolled down his sleeves and into the pours of
his father, rejuvenating and restoring the grassy gentleman: I cannot say this.

Rather, Paij-ree’s tears rolled down his sleeves and into the creaking clapboard floor, nourishing the
vile weeds, energizing the dark plant matter, which literally lept through the floor at night and
strangled Our Quos. Yank, pull, crack. And that was his skull.

So Paij-ree could never be called Wert-ree or Wert-plo after that.

104 of 114

6. Them What Make the Rules

Hannah lept back from the wall and clenched down on her fingers.

“This is the wall,” said Dr. Cham. “The Originals are in there. My child, can you lead us to the
observation deck?”

“You expect us to go up against those guys?” asked the goat. “They’re mad as koalas. But these koalas
have lasers!”

“We prevail, though,” said Dr. Cham. “You and I know this.”

“Okay, well I'm muddled on that point,” said the goat. “Do we really win? Or could be thinking about
Kramer vs. Kramer? Does Dustin Hoffman win or do we win?”

“No. No. No. No.” Hannah hovered and dragged her legs along the wall nervously. “There is a man with
a huge face in there!”

“Mr. Face,” said the Doctor. “He is the original face.”
“He didn’t see me,” said Hannah and moaned. HOMA-HOMA-ALLO-ALLO.

She made that hollow weeping through the crumbling mouseholes and the freezer gateways, fluxing in
and out, causing the video checkpoints to hiss and the wall panels to brace themselves and fall silent.
The three passed through two levels of frayed security and emerged in the observation deck
overlooking the cargo bay.

vy Cor'Wood,
bird with extra N o
Padd ind. i and, of conrse

t;:nth‘s-seR.
4 ek s
{b‘l" -;ﬂH;Ei-Z olje:;,:f{f

105 of 114

“The last living among The Originals,” said Dr. Cham. “Are you alright with this, Hannah?” Which she
didn’t hear in any way, as her eyes laid fixed on the legendary creatures.

“Look at them,” said the goat. “These guys wrote the rule books, Doctor. We owe everything to these
guys.”

“What about God?” said Dr. Cham.
“I don’t really know,” said the goat. “Hannah probably knows better than any of us about that.”

Hannah said nothing. She only really knew one other ghost and that was her Post-Decease Mediator,
Jamie Huft. Who didn’t seem to have any answers for her and required questions to be submitted in
writing with a self-addressed stamped envelope included. Hannah hadn’t gotten the ball rolling on that
P.O. Box yet.

“We must be up in the mountains,” said the goat. “Look out at that blackness.”

“I saw another deck like this down by where we found Hannah,” said Dr. Cham. “Down closer to your
living area. You should take time to search for it. It’s very peaceful there. You can see Earth and the
seven seas.”

“The seven seas?” The goat wondered if that was near The Rockettes. He’d read his share of material on
precision dancing and he’d seen that line of legs, mincing across the stage like a big, glitsy rototiller.
Hannabh stirred to life.

AND THEY ALL LookED EBERYY SHHHK!
. AND SURE ENougH!.., E We must on

f MR- FACE HAD A Long =X Clgike the do
B MAPLE BAR . .. 5 K.

- /N HiS HAND! [&

FROM up 1N THE toNTRoL
BooTH, THeY coulDN'T

HEAR "THE QRiGINALS -

.. BuT THEY
SAW THe|R
SLIDES!

They were headed for
Wwixl! The animal
g capitell

= —

And none of the three spoke when The Originals flicked off the slide projector and boarded a very
slender rocketship and cleanly exploded through a crevice in the cargo bay roof.

106 of 114

“Oh, boy,” said the goat.
“What?” said Hannah.
“You're going to die,” said the goat.

Dr. Cham looked over the controls in front of them, a long panel of padded handles and green screens.
“I'm already dead. I'm a ghost.”

The goat looked down at the Doctor, who was rummaging under the control panel. “Okay, well if your
uncle isn’t going to have a talk with you, I'm going to make things very clear. There’s a good chance
these guys are going to build a bomb. And you see how I'm fidgeting? You see how my knees are
wobbling?”

“Yeah.”

“Yeah, that’s how real this is, kid. I don’t remember anything from that confounded book except that
these guys are building a bomb that can blow up the ghost world. Because once the ghost world’s gone,
then Digger Dosh gets his one second back. It’s a trade they’ve worked out. Hell, it’s sick stuff, that’s all
you need to know.”

“But I'm dead.”

“Okay, well, we’re talking, aren’t we? You can talk, so are you dead?” The goat shook his head. “I wish I
could remember if we win or if it was Dustin Hoffman.”

Hannah cried. “Why do I have to die again?” She wailed and her legs fell into flux and she sunk into the
floor. MOH-MOHHH-MAO-MAOOO.

Dr. Cham had forceably yanked on a plush handle, which unlocked and slid open like a breadbox. He
reached his hands inside and found a keyboard firmly bolted deep inside.
“That’s it,” he said and pulled up irb, which appeared on a display to the left of his concealed typing.

He checked the Ruby version.

irb> RUBY VERSION

=> "1.8.2"

Ruby was up-to-date. What else could he do? Scanning constants and class_variables was pointless.
The only reason that had worked with the E1evator class was because someone had left irb running
with their classes still loaded.

107 of 114

He had just loaded this irb, so no special classes were available yet. He had to find some classes. He
started by loading the “rbconfig" file to get an idea of what Ruby’s settings were.

irb> require 'rbconfig'
=> true
irb> Config: :CONFIG

=> {"abs_srcdir"=>"$ (ac_abs srcdir)", "sitedir"=>"bay://Ruby/lib/site ruby", ... }

Too much information to sort through there. The config: : coNFIG constant is a Hash that contains
every environment setting used to setup Ruby. You can find the operating system name at

Config: :CONFIG['host os']. The directory where core Ruby libraries are stored can be found at
Config: :CONFIG['rubylibdir']. Ruby programs can store helper files at config: : CONFIG['datadir'].
What Dr. Cham really needed, though, was a list of all the libraries that aren’t core Ruby libraries.
Libraries which were installed by The Originals or whoever manned this console. He checked a few
global variables for this information.

irb> $"
=> ["irb.rb", "e2mmap.rb", "irb/init.rb", ... "rbconfig.rb"]
irb> $:
=> ["bay://Ruby/lib/site ruby/1.9", "bay://Ruby/lib/site ruby/1.9/i686-unknown",
"bay://Ruby/lib/site ruby", "bay://Ruby/lib/1.9",

"bay://Ruby/l1ib/1.9/i686-unknown", "."]

Aha, good. Dr. Cham stroked his beard and looked over his irb session. The $" global variable contains
an Array of every library which has been loaded with require. Most of these libraries had been loaded
by irb. He had loaded 'rbconfig.rb' earlier, though.

The $: global variable, which can also be accessed as $r.oap_path, contains a list of all the directories
which Ruby will check when you try to load a file with require. When Dr. Cham ran require
'rbeonfig’, Ruby checked each directory in order.

bay://Ruby/lib/site_ruby/l.9/rbconfig.rb
bay://Ruby/lib/site_ruby/1.9/i686-unknown/rbconfig.rb (*)
bay://Ruby/lib/site ruby/rbconfig.rb
bay://Ruby/l1ib/1.9/rbconfig.rb
bay://Ruby/lib/1.9/i686-unknown/rbconfig.rb

./rbconfig.rb

108 of 114

The second path was where Ruby ended up finding the rbconfig.rb file. Dr. Cham guessed that the first
five paths were absolute paths. These were paths to directories on a drive called bay. Absolute paths
may vary on your system. On Windows, absolute paths will start with a drive letter. On Linux, absolute
paths start with a slash.

The directory "." indicates a relative path. The lone period represents the current work directory.
The directory where Dr. Cham started up irb. So, after Ruby has searched all the standard places, it
checks the current directory.

The goat had peeked his head around Dr. Cham and was watching all these instructions transpire, as
he licked his lips to keep his salivations from running all over the monitors and glossy buttons. He had
been interjecting a few short cheers (along the lines of: No, not that or Yes, yes, right or Okay, well,
your choice), but now he was fully involved, recommending code, “Try require 'setup' or, no,try 3 *
5. Make sure that basic math works.”

“Of course the math works,” said Dr. Cham. “Let me be, I need to find some useful classes.”
“It’s a basic sanity test,” said the goat. “Just try it. Do 3 * 5 and see what comes up.”
Dr. Cham caved.

irb> 3 * 5

=> 15

“Okay, great! We'’re in business!” the goat tossed his furry face about in glee.
Dr. Cham patted the goat’s head, “Well done. We can continue.”

irb> Dir.chdir("bay://Ruby/lib/site ruby/1.9/")
=> 0
irb> Dir["./*.{rb}"]

=> ['endertromb.rb', 'mindreader.rb', 'wishmaker.rb']

Dr. Cham had use chdir to change the current working directory over the the first path listed in
sroap_paTH. This first path in site ruby is a common place to store custom classes.

Here were the three legendary classes that my daughter’s organ instructor had inscribed for me earlier
in this chapter. And, Dr. Cham, having read this selfsame chapter, recognized these three pieces of the
system immediately.

The Endertromb class which contained the mysteries of this planet’s powers. The MindReader class
which, upon scanning the minds of its inhabitants, read each mind’s contents. And, finally, the crucial
wishMaker class which powered the granting of ten-letter wishes, should the wish ever find its way to
the core of Endertromb.

“How about 4 * 56 + 9?” asked the goat. “We don’t know if it can do compound expressions.”
“I've got the MindReader right here,” said Dr. Cham. “And I have the wishMaker here next to it. This
planet can read minds. And this planet can make wishes. Now, let’s see if it can do both at the same
time.”

109 of 114

~7. Them What Live the Dream

While The Originals’ craft had long disappeared, Dr. Cham frantically worked away at the computer
built into the control panel up in the observation deck. Hannah had disappeared into the floor (or
perhaps those little sparks along the ground were still wisps of her paranormal presence!) and the goat
amicably watched Dr. Cham hack out a Ruby module.

require 'endertromb'
module WishScanner
def scan for a wish

wish = self.read.detect do |thought|

thought.index('wish: ') ==
end
wish.gsub('wish: ', '')
end
end

“What’s your plan?” asked the goat. “It seems like I could have solved this problem in like three lines.”
“This Module is the new wishscanner technology,” he said. “The scanner only picks up a wish if it starts
with the word wish and a colon and a space. That way the planet doesn’t fill up with every less-than-
ten-letter word that appears in people’s heads.”

“Why don’t you just use a class?” asked the goat.

“Because a Module is simpler than a class. It’s basically just a storage facility for methods. It keeps a
group of methods together. You can’t create new objects from a method.”

“But aren’t you going to want a wishscanner object, so you can actually use it?” said the goat, appalled.
“I'm going to mix it into the MindReader,” said Dr. Cham. And he did.

require 'mindreader'
class MindReader
include MindScanner

end

“Now, the Mindscanner module is mixed in to the Mindreader,” said Dr. Cham. “I can call the
scan_for a wish method on any Mindreader object.”

“So, it’s a mixin,” said the goat. “The MindScanner mixin.”
“Yes, any module which is introduced into a class with include is a mixin to that class. If you go back
and look at the scan_for a wish method, you'll see that it calls a se1£.read method. I just have to

make sure that whatever class I'm mixing MindScanner into has a read method. Otherwise, an error will
be thrown.”

110 0f 114

“That seems really wierd that the mixin requires certain methods that it doesn’t already have. It seems
like it should work by itself.”

Dr. Cham looked up from the keyboard at the goat. “Well, it’s sort of like your video collection. None of
your video cassettes work unless they are put in a machine that uses video cassettes. The depend on
each other. A mixin has some basic requirements, but once a class meets those requirements, you can
add all this extra functionality in.”

“Hey, that’s cool,” said the goat.

“You read the book thirty times and you didn’t pick that up?” asked Dr. Cham.

“You're a much better teacher in person,” said the goat. “I really didn’t think I was going to like you
very much.”

“I completely understand,” said the Doctor. “This is much more real than the cartoons make it seem.”

require 'wishmaker'
reader = MindReader.new
wisher = WishMaker.new
loop do
wish = reader.scan_for_ a wish
if wish
wisher.grant(wish)
end

end

Irb sat and looped on the screen. It’ll do that until you hit Control-C. But Dr. Cham let it churn away.
Looping endlessly, scanning the mind waves for a proper wish.

And Dr. Cham readied his wish. At first, he thought immediately of a stal1ion. To ride bareback over
the vales of Sedna. But he pulled the thought back, his wish hadn’t been formed properly. A stallion
was useless in pursuing The Originals, so he closed his eyes again, bit his lip and he thought to himself:

wish: whale.

Last Whale to Peoplemud

The blocky, sullen whale appeared down at the castle entrance, where Hannah was bashing on a
rosebud with her hand. She whacked at it with a fist, but it only stayed perfect and pleasant and crisp
against the solid blue sky of Endertromb.

“I’m bored,” she said to the whale. BOHR-BOHR-OHRRRRRR.

“Ok,” said the whale, deep and soft. As the word slid along his massive tongue, its edges chipped off
and the word slid out polished and worn in a bubble by his mouth’s corner.

“I always have to die,” said the young ghost. “People always kill me.”

111 0f 114

The whale fluttered his short fins, which hung at useless distance from the ground. So, he pushed
himself toward her with his tail. Scooting over patches of grass.

“People kill, so who do they kill?” said the girl. “Me. They kill me every time.”

The whale made it to within three meters of the girl, where he towered like a great war monument that
represents enough dead soldiers to actually steal a lumbering step towards you. And now, the whale
rested his tail and, exhausted by the climb thus far, let his eyelids fall shut and became a gently puffing
clay mountain, his shadow rich and doubled-up all around the hardly visible Hannah.

But another shadow combined, narrow and determined. Right behind her, the hand came on to her
shoulder, and the warm ghost inside the hand touched her sleeve.

“How did you get down here?” said the girl.

Dr. Cham sat right alongside her and the goat walked around and stood in front.
“Listen to us,” said Dr. Cham. “We’ve got to follow this mangy pack of ne’er-do-wells to the very end,
Hannah. And to nab them, we need your faithful assistance!”

“I’'m scared,” cried Hannah.
“You're not scared,” said the goat. “Come on. You're a terrifying little phantom child.”
“Well,” she said. “I’'m a little bored.”

Dr. Cham bent down on a knee, bringing his shaggy presence toward the ground, his face just inches
from hers. “If you come with us, if you can trust what we know, then we can bag this foul troupe. Now,
you say your destiny is to be a baker. I won’t dispute that. You have every right on Earth—and
Endertromb, for that matter—to become a baker. Say, if you didn’t become a baker, that would be a
great tragedy. Who’s going to take care of all those donuts if you don’t?”

She shrugged. “That’s what I've been saying.”

“You're right,” said the Doctor. “You’ve been saying it from the start.” He looked up to the sky, where
the wind whistled peacefully despite its forceful piercing by The Originals’ rocketship. “If your destiny
is to be a baker, then mine is to stop all this, to end the mayhem that is just beginning to boil. And hear
me, child—hear how sure and solid my voice becomes when I say this—I ended your life, I bear sole
responsibility for your life as an apparition, but I will get it back. It’s going to take more than a donut,
but you will have a real childhood. I promise you.”

Dr. and the
Ghost gl

Lo Y/ T want a 1ife)
Ry of maple donuts
§ new £iim J
0 strifs.

112 0of 114

Sure, it took a minute for the goat to cut his wish down to ten letters, but he was shortly on his way,
following the same jetstreams up into the sky, up toward Dr. Cham and his ghost niece Hannah. Up
toward the villanous animal combo pak called The Originals. Up toward The Rockettes.

And Digger Dosh bludgeoned and feasted on each second they left behind them.

113 0f 114

6.

Downtown

7S
Feol 4 S Yeah, LI'm SUPPGSec{
ﬂag?sa T . K v -';xj
. i To be staRRing WM this 7
%@ﬁ@ +e<hnical mqn;qu Rfjh't . /
- R S nt:W,ﬂqbu‘l' Fr'luwk',[_'m lost A .
— W this fReaky danimal
= = city, Iﬂok:fﬂjP-F‘u!z.a L: 7
f~— = \ng Qﬁunc oy A — A
- _..‘_._____ TH SR
/\
B e]
' 58 O O mm
oD
gug|i=
Q8 {neT
]S
ﬁ 2eS &
4) ’
'
T —
165
Y 0"
e |
il
\ m
Coming Christmas 2004.

114 of 114

