SOLID STATE 3

Crystal Planes and Diffraction

3.1 Crystal Planes

These are sets of parallel planes within a crystal. The distance between adjacent lattice planes is the d-spacing.

3.2 The Miller Index

The orientation of the planes is defined by the Miller index hkl

Example 1:

For plane RMS, the intercepts on a, b and c are
Take reciprocals to give
Round into integers if necessary
Miller Index for plane RMS
$1 / 4,2 / 3,1 / 2$
4, 3/2, 2
834
(834)

In reverse, a plane with Miller Index (h k l) has intercepts at $\frac{\mathrm{a}}{\mathrm{h}} \frac{\mathrm{b}}{\mathrm{k}} \frac{\mathrm{c}}{\mathrm{l}}$
Now, in the picture above the plane doesn't cut at $\mathrm{a} / 8, \mathrm{~b} / 3, \mathrm{c} / 4$ - but one parallel to it does.

Example 2:

For plane RMS, the intercepts on a, b and c are
Take reciprocals to give
Round into integers if necessary
Miller Index for plane RMS
$1 / 2,1,1$
211
211
(2 1 1)

3.3 Planes parallel to faces

By the same method as described above, we can derive Miller indices for unit cell faces:

x

x

Plane perpendicular to x is (100) Plane perpendicular to y is (010) Plane perpendicular to z is (001)

Intercepts: $\quad \infty 1 / 2 \infty$
Reciprocal: (020)

Q1 Draw planes with Miller indices (100), (120), (123), (2 46)

3.4 Calculating the distance between planes

In orthogonal crystals, we can calculate the distance between planes, d, from the Miller index (h k l) and the unit cell dimensions a, b, c from the following formula

$$
\frac{1}{\mathrm{~d}^{2}}=\frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{l}^{2}}{\mathrm{c}^{2}}
$$

for ORTHOGONAL axes

Note that this can be simplified if $a=b$ (tetragonal symmetry) or $a=b=c$ (cubic symmetry).

$$
\frac{1}{\mathrm{~d}^{2}}=\frac{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}{\mathrm{a}^{2}} \quad \text { for cubic, } \quad \frac{1}{\mathrm{~d}^{2}}=\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{\mathrm{a}^{2}}+\frac{1^{2}}{\mathrm{c}^{2}} \quad \text { for tetragonal }
$$

Example: A cubic crystal has $a=5.2 \AA$. Calculate the d-spacing of the (110) plane.

Note that the (110), (101), (011) (etc) planes all have the same d-spacing in this case.
Example: A tetragonal crystal has $a=4.7 \AA, c=3.4 \AA$. Calculate the separation of the: (100), (0 01 1) and (1111) planes.

Note now that since $\boldsymbol{a} \neq \boldsymbol{c}$, (100) is not the same as (001).

Q2 If $a=b=c=8$ Å, find d-spacings for planes with Miller indices (1 233) Calculate the d-spacings for the same planes in a crystal with unit cell $a=b=7 \AA, c=9 \AA$. Calculate the d-spacings for the same planes in a crystal with unit cell $a=7 \AA, b=8 \AA, c=9 \AA$.
$\left(1 \AA=1 \times 10^{-10} \mathrm{~m}\right.$)

3.5 Optical Diffraction Grating

A 1-dimensional analogue of X-ray diffraction
Coherent incident light impinges upon an evenly spaced grating; the parallel lines in the grating act as secondary light sources.

Coherent incident light
Diffracted light

Path difference XY between diffracted beams 1 and 2:

$$
\sin \phi=\frac{X Y}{a} \Rightarrow X Y=a \sin \phi
$$

For 1 and 2 to be in phase and thus give constructive interference,

$$
\mathrm{XY}=\lambda, 2 \lambda, 3 \lambda, 4 \lambda \mathrm{n} \lambda
$$

so

$$
\mathrm{a} \sin \phi=\mathrm{n} \lambda
$$

where n is the order of diffraction and must be an integer.

3.6 Bragg's Law

The planes in the crystal are considered to be reflecting planes

$2 \mathrm{~d} \sin \theta=\mathbf{n} \lambda$

Bragg's law - where $d=$ separation of planes, $\theta=$ angle of diffraction, $\lambda=$ wavelength of X -rays and n is an integer.

We can rewrite this as:

$$
\mathbf{2 d} \mathbf{d}_{\mathrm{hkl}} \sin \theta=\lambda
$$

if we adjust the Miller indices - see examples in lecture notes.

Example: X-rays with wavelength $1.54 \AA$ are reflected from planes with $d=1.2 \AA$. Calculate the Bragg angle θ for constructive intereference.

We can combine Bragg's Law and the d-spacing equation to solve a number of problems:

Example: X-rays with wavelength $1.54 \AA$ are "reflected" from the ($\left.\begin{array}{lll}1 & 1 & 0\end{array}\right)$ planes of a cubic crystal with unit cell $a=6 \AA$. Calculate the Bragg angle, θ, for all orders of reflection, n

Concept Questions

3.1 Write down the d-spacing formula for orthogonal crystals.
3.2 How does this simplify for tetragonal and cubic symmetry?
3.3 What is the minimum value of a (in an optical grating) for first order diffraction to be observed?
3.4 What happens when $a \ll \lambda$? What happens when $a \gg \lambda$?
3.5 What are the wavelength requirements for diffraction by a crystal lattice?
3.6 State Bragg's Law and explain the terms.
3.7 Explain why, in practice, n is set to 1 in the Bragg equation.

Problems

3.1 X-rays of wavelength $\lambda=1.5 \AA$ are reflected from the (2 222) planes of a cubic crystal with unit cell $a=5 \AA$. Calculate the Bragg angle, θ, for $\mathrm{n}=1$.
3.2 The cubic crystal in the previous question is replaced with a tetragonal crystal, unit cell $a=$ $4.5 \AA, c=6 \AA$. Calculate the Bragg angle, θ for the 222 reflection.
3.3 An orthorhombic crystal is now studied. What is the Bragg angle for the 222 reflection if $a=$ $3 \AA, b=3.5 \AA$ and $c=8 \AA$

