Crystal Structure and Growth

Source: USNA EE 452 Course on IC Technology

Atomic Order of a Crystal Structure

Amorphous Atomic Structure

Unit Cell in 3-D Structure

Miller Indices of Crystal Planes

Crystal Planes

Crystals are characterized by a unit cell which repeats in the x, y, z directions.

- Planes and directions are defined using x, y, z coordinates.
- [111] direction is defined by a vector of 1 unit in x, y and z.
- Planes defined by "Miller indices" their normal direction.

Faced-centered Cubic (FCC) Unit Cell

Silicon Unit Cell: FCC Diamond Structure

Basic FCC Cell

Omitting atoms outsidਈ Cell

Merged FCC Cells

Various types of defects can exist in a crystal (or can be created by processing steps). In general, these cause electrical leakage and are result in poorer devices.

Bulk Silicon Processing

- Si is purified from SiO₂ (sand) by refining, distillation and CVD.
- Bulk silicon is first processed in poly-crystalline form
- Crystal growth process used to obtain single-crystal form
- It contains < 1 ppb impurities. Pulled crystals contain O (~10¹⁸ cm⁻³) and C (~10¹⁶ cm⁻³), plus dopants placed in the melt.

Silicon Processing First produce highly pure, poly-crystalline form

Steps to Obtaining Semiconductor Grade Silicon (SGS)					
Step	Description of Process	Reaction			
1	Produce metallurgical grade silicon (MGS) by heating silica with carbon (furnace)	$SiC(s) + SiO_2(s) \rightarrow Si(l) + SiO(g) + CO(g)$			
2	Purify MG silicon through a chemical reaction to produce a silicon-bearing gas of trichlorosilane (SiHCl ₃)	Si (s) + 3HCl (g) \rightarrow SiHCl ₃ (g) + H ₂ (g) + heat			
3	SiHCl ₃ and hydrogen react in a CVD process to obtain pure semiconductor- grade silicon (SGS)	$2\text{SiHCl}_3(g) + 2\text{H}_2(g) \rightarrow 2\text{Si}(s) + 6\text{HCl}(g)$			

Single Crystal Processing: Czochralski Crystal Puller

- All Si wafers come from "Czochralski" grown crystals.
- Polysilicon is melted, then held just below
 1417 °C, and a single
 crystal seed starts the
 growth.
- Pull rate, melt temperature and rotation rate control the growth

Silicon Ingot Grown by CZ Method

Photograph courtesy of Kayex Corp., 300 mm Si ingot

An alternative process is the "Float Zone" process which can be used for refining or single crystal growth.

Polysilicon Ingot

RF Coil

Single Crystal Si

• In the float zone process, dopants and other impurities are rejected by the regrowing silicon crystal. Impurities tend to stay in the liquid and refining can be accomplished, especially with multiple passes.

Float Zone Crystal Growth Gas inlet (inert) Chuck Polycrystalline Molten zone rod (silicon) Traveling RF RF coil Seed crystal Chuck Inert gas out Figure 4.11

Dopant Concentration

Common Dopants: Phosphorus, Boron, Arsenic

		Concentration (Atoms/cm ³)			
Dopant	Material Type	< 10 ¹⁴ (Very Lightly Doped)	10¹⁴ to 10¹⁶ (Lightly Doped)	10 ¹⁶ to 10 ¹⁹ (Doped)	>10 ¹⁹ (Heavily Doped)
Pentavalent	n	n	n	n	\mathbf{n}^+
Trivalent	р	p	р	р	\mathbf{p}^+

^{13 - 22}

Basic Process Steps for Wafer Preparation

After crystal pulling, the boule is shaped and cut into wafers which are then polished on one side.

Increase in Number of Chips on Larger Wafer Diameters (Assume large 1.5 x 1.5 cm microprocessors)

Figure 4.13

Developmental Specifications for 300mm Wafer Dimensions and Orientation

Parameter	Units	Nominal	Some Typical Tolerances
Diameter	mm	300.00	± 0.20
Thickness (center point)	μm	775	± 25
Warp (max)	μm	100	
Nine-Point Thickness Variation (max)	μm	10	
Notch Depth	mm	1.00	+ 0.25, -0.00
Notch Angle	Degree	90	+5, -1
Back Surface Finish		Bright Etched/Polished	
Edge Profile Surface Finish		Polished	
FQA (Fixed Quality Area – radius permitted on the wafer surface)	mm	147	

From H. Huff, R. Foodall, R. Nilson, and S. Griffiths, "Thermal Processing Issues for 300-mm Silicon Wafers: Challenges and Opportunities," ULSI Science and Technology (New Jersey: The Electrochemical Society, 1997), p. 139.

Table 4.4

Quality Measures

- Physical dimensions
- Flatness
- Microroughness
- Oxygen content
- Crystal defects
- Particles
- Bulk resistivity

13 - 27

EE-452

Electron Microscopy (TEM) of SiO₂ on Si

