CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES ISSUES TO ADDRESS...

- How do atoms assemble into solid structures? (for now, focus on metals)
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Lattice and Basis

Important Planes in BCC Structure

{100}: No atoms "touch" (are bonded!)

{110}: Closest Packed:
 Atoms touch along <111>

Number of Atoms per Unit Cell

 $(8 \times 1/8) + (6 \times \frac{1}{2}) = 4$ Lattice Points/Unit Cell

4 Lattice Points/Unit Cell x 1 Atom/Latt. Point = 4 Atoms/Cell!

APF: FCC Cubic

 $APF = \underline{vol. of atomic spheres in unit cell}$ total unit cell vol.

How many spheres (i.e. atoms)? 4/cube

What is their volume? 4 x $4\pi R^{3/3}$

What is cube volume? a^3

How is "R" related to "a"? $a = (2\sqrt{2}) R$

Therefore, independent of R APF = $(16\pi R^3/3)/a^3 = 0.74$

Atomic configuration in Face-Centered-Cubic Arrangement

Important Planes in FCC Structure

Hexagonal Close-Packed (HCP) Structure

- ABAB... Stacking Sequence
- 3D Projection
 2D Projection
 Top layer
 Middle layer
 A sites
 A sites

The top and the bottom faces consist of six atoms which form regular hexagon, surrounding one atom in center. Another plane with 3 additional atoms located in between.

Hexagonal Close-Packed (HCP) Structure

The unit cell has two lattice parameters **a** and **c**.

- Six atoms per unit cell
- Mid-plane atoms (3) shared by no other cells: $3 \ge 1 = 3$
- hexagonal corner atoms (12) shared by six cells:
- $12 \ge 1/6 = 2$
- top/bottom plane center atoms (2) shared by two cells: 2 x 1/2 = 1
- Note: all atoms are equivalent
- Ideal ratio c/a = 1.633

Example: Mg, Ti, Zn

• APF = 0.74

Important Planes in HCP Structure

FCC STACKING SEQUENCE

- ABCABC... Stacking Sequence
- 2D Projection

A sites

B sites

C sites

• FCC Unit Cell

Comparing FCC and HCP Structures

The difference between the two structures lies in the different stacking sequences

CLOSE-PACKED CRYSTALLOGRAPHIC DIRECTIONS AND PLANES

- In BCC, the close-packed planes are the {110} planes, and the close-packed directions are the <111>
- In FCC, the close-packed planes are the {111} planes, and the close-packed directions are the <110> direction
- In HCP, the close-packed planes are the (0001) basal plane, and the close-packed direction are the [1000], [0100], and [0010] directions and their negatives.
- We will see later the 'cp' planes and directions define *slip systems*

Characteristics of Selected Elements at 20 °C

		At. Weight	Density	Crystal	Atomic radius
Element	Symbol	(amu)	(g/cm^3)	Structure	(nm)
Aluminum	Al	26.98	2.71	FCC	0.143
Argon	Ar	39.95			
Barium	Ba	137.33	3.5	BCC	0.217
Beryllium	Be	9.012	1.85	HCP	0.114
Boron	В	10.81	2.34	Rhomb	
Bromine	Br	79.90			
Cadmium	Cd	112.41	8.65	HCP	0.149
Calcium	Ca	40.08	1.55	FCC	0.197
Carbon	С	12.011	2.25	Hex	0.071
Cesium	Cs	132.91	1.87	BCC	0.265
Chlorine	Cl	35.45			
Chromium	Cr	52.00	7.19	BCC	0.125
Cobalt	Co	58.93	8.9	HCP	0.125
Copper	Cu	63.55	8.94	FCC	0.128
Flourine	F	19.00			
Gallium	Ga	69.72	5.90	Ortho.	0.122
Germanium	Ge	72.59	5.32	Dia. cubic	0.122
Gold	Au	196.97	19.32	FCC	0.144
Helium	He	4.003			
Hydrogen	Н	1.008			

Theoretical Density, p

atoms/unit cell $\rho = \frac{n A}{V_c N_A}$ Atomic weight (g/mol) Volume/unit cell (cm ³/unit cell) Vc NA Avogadro's number (6.023 x 10²³ atoms/mol)

Example: Copper

- crystal structure FCC
- # atoms/unit cell = 4
- atomic weight = 63.55 g/mol
- atomic radius R = **0.128 nm**
- for FCC $\mathbf{a} = 2\mathbf{R}\sqrt{2}$; $V_c = a^3$; $V_c = 4.75 \ 10^{-23} \ \text{cm}^3$

Result: theoretical $\rho_{Cu} = 8.89 \text{ g/cm}^{-3}$ Compare to actual: $\rho_{Cu} = 8.94 \text{ g/cm}^{-3}$

CERAMIC STRUCTURE (1)

- Ceramics with chemical formula MX :
- Structure of NaCl

This structure can be described as having FCC Bravais lattice with two ions (1Na+ and 1Cl-) associated with each lattice point.

- Close-packed directions --along cube edges.
- Eight ions per unit cell: (4Mg ²⁺and 4O²⁻)

Ionic Packing Factor (IPF): 0.627

Examples: MgO; CaO; FeO

CERAMIC STRUCTURE (2)

• The chemical formula MX₂: e.g. fluorite (CaF₂) structure

This structure is built on the an FCC Bravais lattice with three ions (1Ca⁺² and 2F⁻) associated with each lattice point.

 12 ions (4Ca²⁺ and 8F⁻) per unit cell

Examples: UO₂; ThO₂; TeO₂

CERAMIC STRUCTURE (3)

- **Perovskite** the chemical formula MM'O₃: e.g. CaTiO₃ structure
- Structure of CaTiO3

• 5 ions (1Ca²⁺, 1Ti4+ and 3O⁻²) <u>Examples:</u> BaTiO₃; SrRuO₃ per unit cell

Polymeric Structures

- Polymers the chain-like structures of long polymeric molecules, which arrangement into a regular and repeating patterns is difficult. Thus most commercial plastics are noncrystalline.
- One example of the unit cell for common polymer, i.e. **polyethylene**, consisting of C₂H₄ molecules chains

The darker larger sphere are **carbon** atoms, while lighter small ones are **hydrogen** atoms. The *unit cell dimensions* are 0.225nm x 0.494nm x 0.741nm

The orthorhombic unit cell, which is common for polymeric crystals

Semiconductor Structures

• A single structure dominates the semiconductor industry: **the diamond cubic structure** (Examples: **Si, Ge and gray Sn**).

Atoms/unit cell: 4+6x1/2+8x1/8=8

APF = 0.340

This structure is built on the FCC Bravais lattice with two atoms associated with each lattice point and eight atoms per unit cell.

Densities of Materials Classes

CRYSTALS AS BUILDING BLOCKS

- Some engineering applications require single crystals:
 - --diamond single crystals for abrasives

- Crystal properties reveal features of atomic structure.
- --Ex: Certain crystal planes in quartz fracture more easily than others.

POLYCRYSTALS (1)

• *Most* engineering materials are polycrystals.

- Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

The square grids depicts unit cells. (a) Small crystalline nuclei; (b) Growth of the crystallites; (c) Irregular shape grains upon completion of solidification; (d) Grain boundaries.

POLYCRYSTALS (2)

- Nb-Hf-W plate with an electron beam weld.
 - Each "grain" is a single crystal.

SINGLE VS POLYCRYSTALS

Single Crystals

- -Properties vary with direction: anisotropic.
- -Example: the modulus of elasticity (E) in BCC iron:

Polycrystals

- -Properties may/may not vary with direction.
- -If grains are randomly oriented: isotropic. (E_{poly iron} = 210 GPa)
- -If grains are textured, anisotropic.

E (diagonal) = 273 GPa

E (edge) = 125 GPa

X-RAYS TO CONFIRM CRYSTAL STRUCTURE

• Incoming X-rays diffract from crystal planes.

X-RAY DIFFRACTION

• <u>Diffraction</u> is the preferential radiation scattering in some specific directions, which occurs as a result of photons being interact with some regular array of scattering centers, whose spacing is on the order of the wavelength of the radiation

Diffraction grating for visible light

•The 3-D array of atoms in crystalline lattice are the scattering centers •The atoms size is ~ 0.1 nm, thus to observe diffraction we have to use X-rays (10⁻³ to 1nm; e.g. CuK_{α} -radiation 1 = 0.1542 nm))

BRAGG EQUATION

- For diffraction occurs x-ray beams scattered form the adjacent crystal planes must be in phase.
- The relationship that demonstrates this condition is the Bragg equation:

$n\lambda = 2dsin\Theta$

d – the spacing between adjacent crystal planes, Θ – scattering angle, n- some integer number

For constructive interference of waves the difference in path length between the adjacent x-ray beams should be ~ to some integer number (n) of radiation wavelength (λ)

Inter-Planer Spacing

Example: Diffraction Patterns

- Each peak represents the solution to Bragg's law for known radiation wavelength ($\lambda = 0.154$ nm)
- The unique relationship between such patterns and crystal structures provide a powerful tool for identification of the phase composition of powders and polycrystalline materials.

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.