ORDER IN ATOMIC ARRANGEMENTS

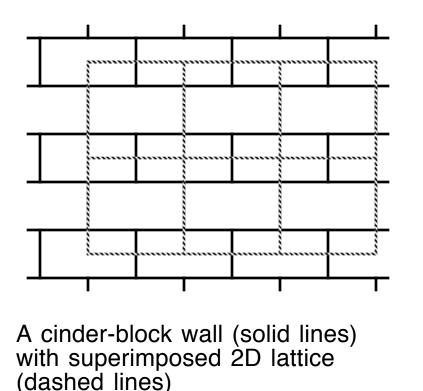
- No order (*e.g.*, monatomic gases)
 - No regular spatial relationship between atoms
- Short-range order (*e.g.*, inorganic glasses, noncrystalline polymers, molecular liquids)
 - Nearest neighbors may have fixed orientations and separations
- Long-range order (crystals)
 - Identical structural units repeating continuously in three dimensions over hundreds of atomic spacings — *periodicity*
 - Q: How many atoms in a tiny crystal, 1 μ m × 1 μ m × 1 μ m × 1 μ m?
 - A: Assume a monatomic solid, 10 g/cm³, 60 g/mol:

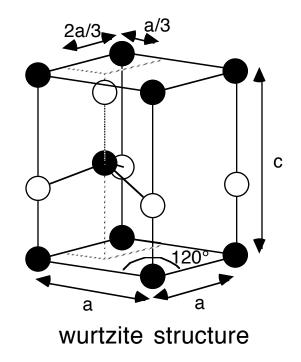
$$\frac{6.0 \times 10^{23} \frac{\text{atoms}}{\text{mol}} \times 10 \frac{\text{g}}{\text{cm}^3} \times 10^{-12} \text{ cm}^3}{60 \frac{\text{g}}{\text{mol}}}$$

= 10¹¹ (*i.e.*, 100 billion) atoms!

LATTICES and CRYSTAL STRUCTURES

- Lattice (below left):
 - A regular, periodic configuration of points the lattice points — in space
 - A *mathematical construct* that describes the symmetry of spatially periodic arrangements
 - **Translation vectors** between nearest-neighbor lattice points describe the periodicity of the lattice
 - The translation vectors define the lattice's *unit cell*
 - Lattices can describe the symmetry of ...
 - floor tiling
 • brickwork
 • wallpaper
 - fabrics
 crystal structures
- Crystal structure (below right):
 - An arrangement of *atoms* in space, whose symmetry can be described by a lattice

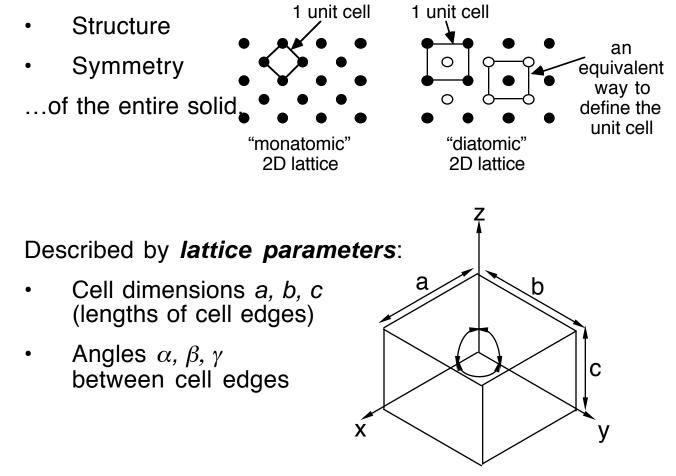




EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

UNIT CELL of a lattice

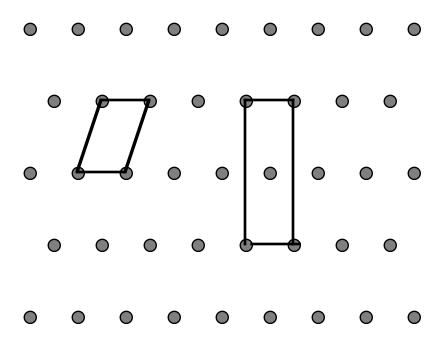
- Polyhedron bounded by the three translation vectors that describe the periodicity of the lattice
- Smallest grouping of lattice points which describes the...



PRIMITIVE vs. NON-PRIMITIVE UNIT CELLS

- Primitive unit cell: one (net) lattice point per cell
- Non-primitive unit cells: additional lattice points per cell, within a given crystal class

2-D example:*



- Every lattice point lies at the intersection of a vertical mirror line and a horizontal mirror line
- The primitive cell (left) can replicate the lattice, ...
- ... but the non-primitive cell (right), though larger, is preferred because it possesses the full horizontal and vertical mirror symmetry of the lattice
- Similar logic extends to 3-D lattices the *Bravais lattices*

*) After D. W. Oxtoby, H. P. Gillis, and N, H. Nachtrieb, *Principles of Modern Chemistry*, 5th ed., p. 752. Thomson Learning, 2002.

THE BRAVAIS LATTICES (start)

Only unit cells with certain geometries will continuously fill three-dimensional space — the *Bravais lattices*

Class (a.k.a. System)	Туре	Minimum lattice points occupied	Unit cell
Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	Simple (a.k.a. "primitive")	000	
	Body- centered	$0\ 0\ 0\ \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$	
	Face- centered	$\begin{array}{rrr} 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \end{array}$	
Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ (four-fold symmetry)	Simple	000	
	Body- centered	$0\ 0\ 0\ \frac{1}{2}\ \frac{1}{2}\ \frac{1}{2}\ \frac{1}{2}$	
Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$ (six-fold symmetry)	Simple	000	
Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$ (each face is a <i>rhomb</i> us)	Simple	000	

Class (a.k.a. System)	Туре	Minimum lattice points occupied	Unit cell
Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ (<i>ortho</i> gonal axes)	Simple	000	
	Body- centered	$0\ 0\ 0$ $\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$	
	Base- centered	$0\ 0\ 0\ \frac{1}{2}\frac{1}{2}\ 0$	
	Face- centered	$\begin{array}{ccc} 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \end{array}$	
Monoclinic $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$ (one inclined axis)	Simple	000	
	Base- centered	$0\ 0\ 0$ $\frac{1}{2}\frac{1}{2}\ 0$	
Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$ (three in clined axes)	Simple	000	
Total: 7 crystal systems		Total 14 Bravais	

THE BRAVAIS LATTICES (end)

EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

From a LATTICE to a CRYSTAL STRUCTURE

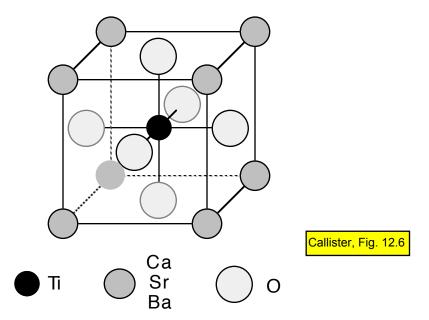
Given the lattice that corresponds to a particular crystal, describing the crystal structure involves listing the *locations of atoms* in the unit cell, which may be at:

- vertices (corners)
 edges
- faces

- *interior* positions
- There may be >1 atom per lattice point:

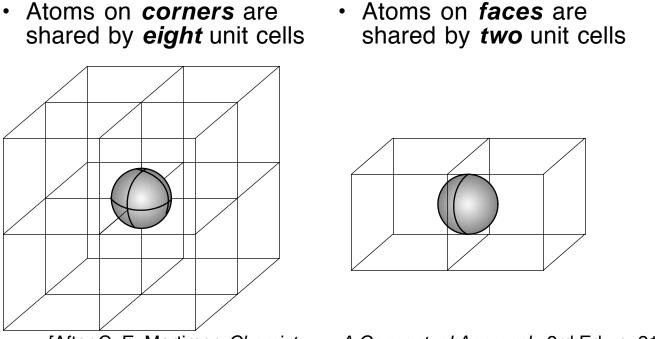
Example: perovskite (CaTiO₃) is ...

- ... primitive cubic
 - Not body-centered, because the atom at the corners differs from that at the body center
 - Not face-centered, for similar reasoning
- ... with *five atoms per lattice point* (one Ca, one Ti, and three O)



EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

COUNTING ATOMS in a UNIT CELL



[After C. E. Mortimer, *Chemistry* — A *Conceptual Approach*, 3rd Ed., p. 213. D. Van Nostrand, New York, 1975.

(Also: edge atoms are shared by four unit cells)

Q.: How many lattice points (atoms) does a single facecentered cubic cell contain?

A.:
$$8 \frac{\text{corners occupied}}{\text{cell}} \times \frac{1}{8} \frac{\text{atom}}{\text{corner}} = 1$$

 $6 \frac{\text{faces occupied}}{\text{cell}} \times \frac{1}{2} \frac{\text{atom}}{\text{face}} = \underline{3}$
total of $4 \frac{\text{atoms}}{\text{cell}}$

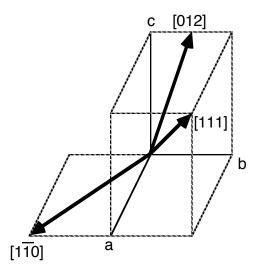
How to specify DIRECTIONS in a lattice:

- 1) Draw a vector, through the origin, that is parallel to the direction of interest.
- 2) Determine the *projections* (components) of the vector along the three axes.

OR

Determine the *coordinates* of any point on the vector.

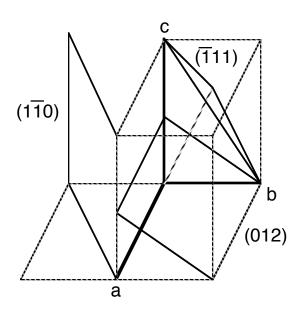
- 3) Multiply the resulting three numbers by a *common factor* to convert them to the smallest possible integers.
- 4) Enclose the resulting three integers in square brackets: [].



EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

How to specify PLANES in a lattice:

- 1) Choose a plane that does not contain the origin.
- 2) Determine the *intercepts* of the plane on the three axes.
- 3) Take the *reciprocals* of the intercepts.
- 4) Multiply the reciprocals by the smallest common factor that will clear all fractions.
- 5) Enclose the resulting integers the *Miller indices* in parentheses: $(h k \ell)$.



EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

POINTS ON PLANES

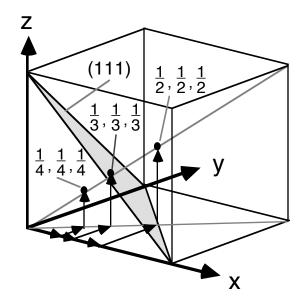
Stated w/o proof: A point with coordinates x, y, z is on a plane with Miller indices $(h \, k \, \ell)$ if and only if

$$hx + ky + \ell z = 1$$

(true for all crystal systems).

So, for example, of the following points,

$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	is NOT	on (111)	$\left(\Leftarrow hx + ky + \ell z = \frac{3}{4} \right)$
$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	IS	on (111)	$(\Leftarrow hx + ky + \ell z = 1)$
$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	is NOT	on (111)	$\left(\Leftarrow hx + ky + \ell z = \frac{3}{2} \right)$



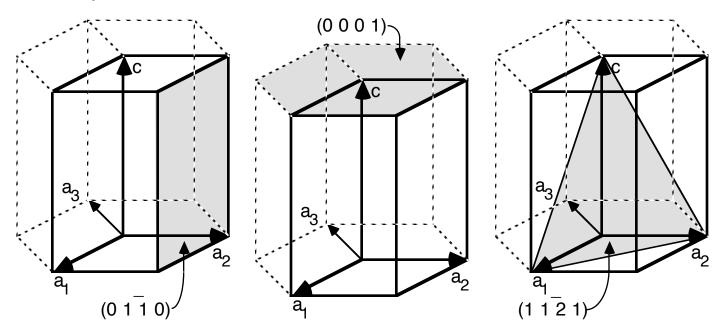
EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

Introduction to Crystallography

MILLER-BRAVAIS INDICES for planes in hexagonal lattices (start)

- Define a set of *four* basis vectors, a₁, a₂, a₃, and c as shown at right:
- Determine the *intercepts* of the plane of interest on the four basis vectors
- Take the *reciprocals* of the intercepts
- Multiply the reciprocals by the smallest common factor that will *clear all fractions*
- Enclose in parentheses (h k i l)

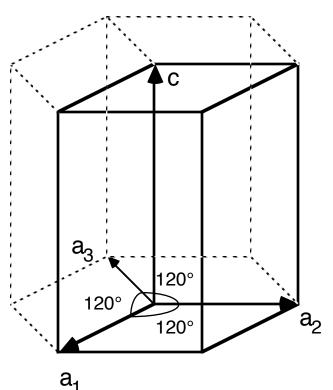
Examples:



Note: the relationship between a₁, a₂, and a₃ is such that

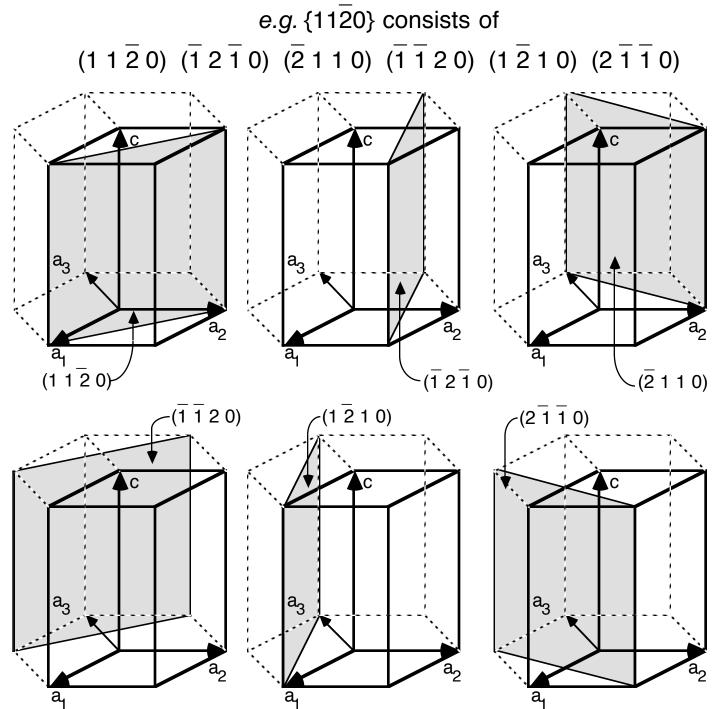
-i = h + k

EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06



MILLER-BRAVAIS INDICES (end)

- Q: Why bother with an extra index?
- A: Now planes in the same *family* are identified by *permutations* of the (first three) indices, as with Miller indices for the other systems:

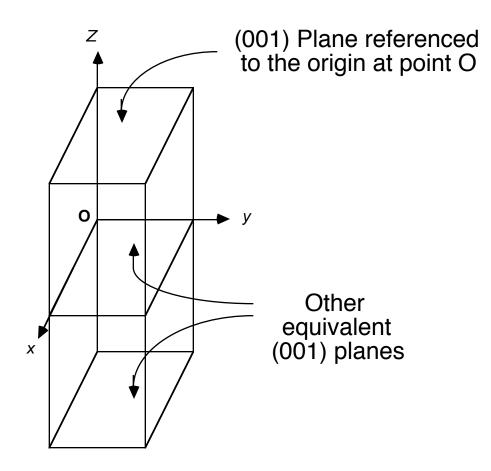


EMSE 201 – Introduction to Materials Science & Engineering © 2006 Mark R. De Guire rev. 08/31/06

EQUIVALENT PLANES

Callister, Figure 3.9

- *Equivalent planes:* planes that are identical to each other by virtue of the ordinary translational symmetry of the lattice;
- i.e., they can be generated by translating the unit cell along its base vectors by integral multiples of the respective lattice parameter



FAMILIES OF PLANES & DIRECTIONS

- Also called *planes of a form* and *directions of a form*
- Are identical to each other by the internal symmetry of the cell (vs. equivalent planes, which are related by the translational symmetry of the lattice):

e.g., in the cubic class,

the cell *faces* lie on planes of a form

the cell **edges** are along directions of a form

