ORDER IN ATOMIC ARRANGEMENTS

- No order (e.g., monatomic gases)
- No regular spatial relationship between atoms
- Short-range order (e.g., inorganic glasses, noncrystalline polymers, molecular liquids)
- Nearest neighbors may have fixed orientations and separations
- Long-range order (crystals)
- Identical structural units repeating continuously in three dimensions over hundreds of atomic spacings - periodicity

Q: How many atoms in a tiny crystal, $1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m} \times$ $1 \mu \mathrm{~m}$?

A: Assume a monatomic solid, $10 \mathrm{~g} / \mathrm{cm}^{3}, 60 \mathrm{~g} / \mathrm{mol}$:

$$
\begin{aligned}
& \frac{6.0 \times 10^{23} \frac{\text { atoms }}{\mathrm{mol}} \times 10 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times 10^{-12} \mathrm{~cm}^{3}}{60 \frac{\mathrm{~g}}{\mathrm{~mol}}} \\
& =10^{11} \text { (i.e., } 100 \text { billion) atoms! }
\end{aligned}
$$

LATTICES and CRYSTAL STRUCTURES

- Lattice (below left):
- A regular, periodic configuration of points - the lattice points - in space
- A mathematical construct that describes the symmetry of spatially periodic arrangements
- Translation vectors between nearest-neighbor lattice points describe the periodicity of the lattice
- The translation vectors define the lattice's unit cell
- Lattices can describe the symmetry of ...
- floor tiling • brickwork • wallpaper
- fabrics • crystal structures
- Crystal structure (below right):
- An arrangement of atoms in space, whose symmetry can be described by a lattice

A cinder-block wall (solid lines) with superimposed 2D lattice (dashed lines)

wurtzite structure

UNIT CELL of a lattice

- Polyhedron bounded by the three translation vectors that describe the periodicity of the lattice
- Smallest grouping of lattice points which describes the...

Structure 1 unit cell 1 unit cell

- Structure
- Symmetry
\ldots of the entire solid ${ }^{\bullet}{ }^{\bullet}{ }^{\bullet}{ }^{\bullet}$ •
"monatomic" 2D lattice

- Described by lattice parameters:
- Cell dimensions a, b, c (lengths of cell edges)
- Angles α, β, γ between cell edges

PRIMITIVE vs. NON-PRIMITIVE UNIT CELLS

- Primitive unit cell: one (net) lattice point per cell
- Non-primitive unit cells: additional lattice points per cell, within a given crystal class

2-D example:*

- Every lattice point lies at the intersection of a vertical mirror line and a horizontal mirror line
- The primitive cell (left) can replicate the lattice, ...
- ... but the non-primitive cell (right), though larger, is preferred because it possesses the full horizontal and vertical mirror symmetry of the lattice
- Similar logic extends to 3-D lattices - the Bravais lattices

[^0]
THE BRAVAIS LATTICES (start)

Only unit cells with certain geometries will continuously fill three-dimensional space - the Bravais lattices

Class (a.k.a. System)	Type	Minimum lattice points occupied $a=b=c$ $\beta=\gamma=\gamma=90^{\circ}$	Simple (a.k.a. primitive")
	Body- centered	$0000 \quad \frac{1}{2} \frac{1}{2} \frac{1}{2}$	
	Face- centered	$000 \quad \frac{1}{2} \frac{1}{2} 0$	
$\frac{1}{2} 0 \frac{1}{2} \quad 0 \frac{1}{2} \frac{1}{2}$			

THE BRAVAIS LATTICES (end)

Class (a.k.a. System)	Type	Minimum lattice points occupied $\alpha=\beta=b \neq c$ $\beta=90^{\circ}$ (orthogonal axes)	Simple

From a LATTICE to a CRYSTAL STRUCTURE
Given the lattice that corresponds to a particular crystal, describing the crystal structure involves listing the locations of atoms in the unit cell, which may be at:

- vertices (corners)
- faces
- edges
- interior positions
- There may be >1 atom per lattice point:

Example: perovskite $\left(\mathrm{CaTiO}_{3}\right)$ is ...

- ... primitive cubic
- Not body-centered, because the atom at the corners differs from that at the body center
- Not face-centered, for similar reasoning
- ... with five atoms per lattice point (one Ca , one Ti, and three O)

Callister, Fig. 12.6

COUNTING ATOMS in a UNIT CELL

- Atoms on corners are shared by eight unit cells

[After C. E. Mortimer, Chemistry - A Conceptual Approach, 3rd Ed., p. 213.
D. Van Nostrand, New York, 1975.
(Also: edge atoms are shared by four unit cells)
Q.: How many lattice points (atoms) does a single facecentered cubic cell contain?
A.: $8 \frac{\text { corners occupied }}{\text { cell }} \times \frac{1}{8} \frac{\text { atom }}{\text { corner }}=1$
$6 \frac{\text { faces occupied }}{\text { cell }} \times \frac{1}{2} \frac{\text { atom }}{\text { face }}=\underline{3}$
total of $\quad 4 \frac{\text { atoms }}{\text { cell }}$

How to specify DIRECTIONS in a lattice:

1) Draw a vector, through the origin, that is parallel to the direction of interest.
2) Determine the projections (components) of the vector along the three axes.

OR

Determine the coordinates of any point on the vector.
3) Multiply the resulting three numbers by a common factor to convert them to the smallest possible integers.
4) Enclose the resulting three integers in square brackets: [].

How to specify PLANES in a lattice:

1) Choose a plane that does not contain the origin.
2) Determine the intercepts of the plane on the three axes.
3) Take the reciprocals of the intercepts.
4) Multiply the reciprocals by the smallest common factor that will clear all fractions.
5) Enclose the resulting integers - the Miller indices - in parentheses: (hkl).

POINTS ON PLANES

Stated w/o proof: A point with coordinates x, y, z is on a plane with Miller indices ($h \mathrm{k} \ell$) if and only if

$$
h x+k y+\ell z=1
$$

(true for all crystal systems).

So, for example, of the following points,

$$
\begin{array}{ll}
\frac{1}{4}, \frac{1}{4}, \frac{1}{4} \text { is NOT on (111) } & \left(\Leftarrow h x+k y+\ell z=\frac{3}{4}\right) \\
\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \quad \text { IS } \text { on }(111) & (\Leftarrow h x+k y+\ell z=1) \\
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \text { is NOT on }(111) & \left(\Leftarrow h x+k y+\ell z=\frac{3}{2}\right)
\end{array}
$$

MILLER-BRAVAIS INDICES for planes in hexagonal lattices (start)

- Define a set of four basis vectors, a_{1}, a_{2}, a_{3}, and c as shown at right:
- Determine the intercepts of the plane of interest on the four basis vectors
- Take the reciprocals of the intercepts
- Multiply the reciprocals by the smallest common factor that will clear all fractions

- Enclose in parentheses
a_{1} (h kil)

Examples:

- Note: the relationship between a_{1}, a_{2}, and a_{3} is such that

$$
-i=h+k
$$

MILLER-BRAVAIS INDICES (end)

Q: Why bother with an extra index?
A: Now planes in the same family are identified by permutations of the (first three) indices, as with Miller indices for the other systems:
e.g. $\{11 \overline{2} 0\}$ consists of
(11 $\overline{2} 0)(\overline{1} 2 \overline{1} 0)(\overline{2} 110)(\overline{1} 120)(1 \overline{2} 10)(2 \overline{1} \overline{1} 0)$

EQUIVALENT PLANES

Callister, Figure 3.9

Equivalent planes: planes that are identical to each other by virtue of the ordinary translational symmetry of the lattice;
i.e., they can be generated by translating the unit cell along its base vectors by integral multiples of the respective lattice parameter

FAMILIES OF PLANES \& DIRECTIONS

- Also called planes of a form and directions of a form
- Are identical to each other by the internal symmetry of the cell (vs. equivalent planes, which are related by the translational symmetry of the lattice):
e.g., in the cubic class,
the cell faces lie on planes of a form
the cell edges are along directions of a form

Cube faces -
(100), (010), (001) belong to the family of $\{100\}$ planes

Cube edges -
[100], [010], [001] — belong to the family of <100> directions

But note: in the tetragonal class,
[100] and [010] belong to the $<100>$ family, but [001] doesn't
(100) and (010) belong to the \{100\} family, but (001) doesn't

[^0]: *) After D. W. Oxtoby, H. P. Gillis, and N, H. Nachtrieb, Principles of Modern Chemistry, 5th ed., p. 752. Thomson Learning, 2002.

