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1.4.2 Laue Equations

A slightly more elegant discussion of diffraction from a crystal can be obtained
as follows:

(i) let ŝ0 be a unit vector in the direction of the incident wave, and ŝ be a
unit vector in the direction of the scattered wave.

(ii) let R1 and R2 be the position vectors of a pair of atoms in a Bravais
lattice, and let r12 = R1 −R2.

Let us consider the waves scattered by R1 and by R2 and traveling different
path lengths as shown in Figure 1.18. The difference in path length is | R2A−
BR1 |. But this is clearly equal to |r12 · ŝ− r12 · ŝ0|. We define S as S = ŝ− ŝ0;
then the difference in path length for the two rays is given by

∆ = |r12 · S| . (1.11)

For constructive interference, this must be equal to an integral number of
wave length. Thus we obtain

r12 · S = mλ, (1.12)

where m is an integer and λ is the wave length. To obtain constructive in-
terference from every atom in the Bravais lattice, this must be true for every
lattice vector Rn. Constructive interference will occur only if

Rn · S = integer× λ (1.13)

for every lattice vector Rn in the crystal. Of course there will be different
integers for different Rn in general. Recall that

Rn = n1a1 + n2a2 + n3a3. (1.14)

The condition Eq.(1.13) is obviously satisfied if

ai · S = phiλ, (1.15)
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Fig. 1.18. Scattering of X-rays by a pair of atoms in a crystal
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where hi is the smallest set of integers and p is a common multiplier. We can
obviously express S as

S = (S · a1)b1 + (S · a2)b2 + (S · a3)b3. (1.16)

Therefore condition Eq.(1.13) is satisfied and constructive interference from
every lattice site occurs if

S = p (h1b1 + h2b2 + h3b3) λ, (1.17)

or
S
λ

= pGh, (1.18)

where Gh is a vector of the reciprocal lattice. Equation (1.18) is called the
Laue equation.
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Fig. 1.19. Relation between the scattering vector S = ŝ− ŝ0 and the Bragg angle θ

Connection of Laue Equations and Bragg’s Law

From Eq.(1.18) S must be perpendicular to the planes with Miller indices
(h1h2h3). The distance between two planes of this set is

d(h1h2h3) =
2π

|Gh| = p
λ

|S| . (1.19)

We know that S is normal to the reflection plane PP′ with Miller indices
(h1h2h3). From Figure 1.19, it is apparent that |S| = 2 sin θ. Therefore,
Eq.(1.19) can be written by

2d(h1h2h3) sin θ = pλ,

where p is an integer. According to Laue’s equation, associated with any
reciprocal lattice vector Gh = h1b1+h2b2+h3b3, there is an X-ray reflection
satisfying the equation λ−1S = pGh, where p is an integer.
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1.4.3 Ewald Construction

This is a geometric construction that illustrates how the Laue equation works.
The construction goes as follows: See Figure 1.20.

1. from the origin O of the reciprocal lattice draw the vector AO of length
λ−1 parallel to ŝ0 and terminating on O.

2. construct a sphere of radius λ−1 centered at A.

If this sphere intersects a point B of the reciprocal lattice, then AB = ŝ
λ is

in a direction in which a diffraction maximum occurs. Since A1O = ŝ0
λ1

and
A1B1 = ŝ

λ1
, S

λ1
= ŝ−ŝ0

λ1
= OB1 is a reciprocal lattice vector and satisfies the

Laue equation. If a higher frequency X-ray is used, λ2, A2, and B2 replace λ1,
A1, and B1. For a continuous spectrum with λ1 ≥ λ ≥ λ2, all reciprocal lattice
points between the two sphere (of radii λ−1

1 and λ−1
2 ) satisfy Laue equation

for some frequency in the incident beam.
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Fig. 1.20. Ewald construction for diffraction peaks

Wave vector

It is often convenient to use the set of vectors Kh = 2πGh. Then, the Ewald
construction gives

q0 + Kh = q, (1.20)

where q0 = 2π
λ ŝ0 and q = 2π

λ ŝ are the wave vectors of the incident and
scattered waves. Equation (1.20) says that wave vector is conserved up to 2π
times a vector of the reciprocal lattice.
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1.4.4 Atomic Scattering Factor

It is the electrons of an atom that scatter the X-rays since the nucleus is so
heavy that it hardly moves in response to the rapidly varying electric field of
the X-ray. So far, we have treated all of the electrons as if they were localized
at the lattice point. In fact, the electrons are distributed about the nucleus
of the atom (at position r = 0, the lattice point) with a density ρ(r). If you
know the wave function Ψ (r1, r2, · · · , rz) describing the z electrons of the
atom, ρ(r) is given by

ρ(r) =

〈
z∑

i=1

δ (r− ri)

〉
=

〈
Ψ(r1, · · · , rz)

∣∣∣∣∣
z∑

i=1

δ(r− ri)

∣∣∣∣∣ Ψ(r1, · · · , rz)

〉
.

(1.21)
Now consider the difference in path length ∆ between waves scattered at O
and those scattered at r.(Figure 1.21)

∆ = r · (ŝ− ŝ0) = r · S. (1.22)
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Fig. 1.21. Path difference between waves scattered at O and those at r

The phase difference is simply 2π
λ times ∆, the difference in path length.

Therefore, the scattering amplitude will be reduced from the value obtained
by assuming all the electrons were localized at the origin O by a factor z−1f ,
where f is given by

f =
∫

d3r ρ(r) e
2πi
λ r·S. (1.23)

This factor is called the atomic scattering factor. If ρ(r) is spherically
symmetric we have

f =
∫ ∞

0

∫ 1

−1

2πr2dr d(cos φ)ρ(r)e
2πi
λ Sr cos φ. (1.24)
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Recall that S = 2 sin θ, where θ is the angle between ŝ0 and the reflecting
plane PP′ of Figure 1.19. Define µ as 4π

λ sin θ; then f can be expressed as

f =
∫ ∞

0

dr4πr2ρ(r)
sin µr

µr
. (1.25)

If λ is much larger than the atomic radius, µr is much smaller than unity
wherever ρ(r) is finite. In that case sin µr

µr ' 1 and f → z, the number of
electrons.

1.4.5 Geometric Structure Factor

So far we have considered only a Bravais lattice. For a non-Bravais lattice the
scattered amplitude depends on the locations and atomic scattering factors
of all the atoms in the unit cell. Suppose a crystal structure contains atoms
at positions rj with atomic scattering factors fj . It is not difficult to see that
this changes the scattered amplitude by a factor

F (h1, h2, h3) =
∑

j

fje
2πi
λ rj ·S(h1h2h3) (1.26)

for the scattering from a plane with Miller indices (h1h2h3). In Eq.(1.26) the
position vector rj of the jth atom can be expressed in terms of the primitive
translation vectors ai

rj =
∑

i

µjiai. (1.27)

For example, in a hcp lattice r1 = (0, 0, 0) and r2 = ( 1
3 , 2

3 , 1
2 ) when expressed

in terms of the primitive translation vectors. Of course, S(h1h2h3) equal to
λ

∑
i hibi, where bi are primitive translation vectors in the reciprocal lattice.

Therefore, 2πi
λ rj · S(h1h2h3) is equal to 2πi (µj1h1 + µj2h2 + µj3h3), and the

structure amplitude F (h1, h2, h3) can be expressed as

F (h1, h2, h3) =
∑

j

fje2πi
∑

i µjihi . (1.28)

If all of the atoms in the unit cell are identical (as in diamond, Si, Ge, etc.)
all of the atomic scattering factors fj are equal, and we can write

F (h1, h2, h3) = fS(h1h2h3). (1.29)

The S(h1h2h3) is called the geometric structure amplitude. It depends
only on crystal structure, not on the atomic constituents, so it is the same for
all hcp lattices or for all diamond lattices, etc.
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EXAMPLE

A useful demonstration of the geometric structure factor can be obtained by
considering a bcc lattice as a simple cubic lattice with two atoms in the simple
cubic unit cell located at (0,0,0) and ( 1

2 , 1
2 , 1

2 ). Then

S(h1h2h3) = 1 + e2πi( 1
2 h1+

1
2 h2+

1
2 h3). (1.30)

If h1+h2+h3 is odd, eiπ(h1+h2+h3) = −1 and S(h1h2h3) vanishes. If h1+h2+
h3 is even, S(h1h2h3) = 2. The reason for this effect is that the additional
planes (associated with the body centered atoms) exactly cancel the scattering
amplitude from the planes made up of corner atoms when h1 +h2 +h3 is odd,
but they add constructively when h1 + h2 + h3 is even.

The scattering amplitude depends on other factors (e.g. thermal motion
and zero point vibrations of the atoms) which we have neglected by assuming
a perfect and stationary lattice.

1.4.6 Experimental Techniques

We know that constructive interference from a set of lattice planes separated
by a distance d will occur when

2d sin θ = nλ, (1.31)

where θ is the angle between the incident beam and the planes that are scat-
tering, λ is the X-ray wave length, and n is an integer. For a given crystal the
possible values of d are fixed by the atomic spacing, and to satisfy Eq.(1.31),
one must vary either θ or λ over a range of values. Different experimental
methods satisfy Eq.(1.31) in different ways. The common techniques are (i)
the Laue method, (ii) the rotating crystal method, and (iii) the powder
method.
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Fig. 1.22. Experimental arrangement of the Laue method

Laue Method

In this method a single crystal is held stationary in a beam of continuous wave
length X-ray radiation. (Figure 1.22) Various crystal planes select the appro-
priate wave length for constructive interference, and a geometric arrangement
of bright spots is obtained on a film.
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Rotating Crystal method

In this method a monochromatic beam of X-ray is incident on a rotating
single crystal sample. Diffraction maxima occur when the sample orientation
relative to the incident beam satisfies Bragg’s law. (Figure 1.23)
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Fig. 1.23. Experimental arrangement of the rotating crystal method

Powder Method

Here a monochromatic beam is incident on a finely powdered specimen. The
small crystallites are randomly oriented with respect to the incident beam,
so that the reciprocal lattice structure used in the Ewald construction must
be rotated about the origin of reciprocal space through all possible angles.
This gives a series of spheres in reciprocal space of radii K1, K2, . . . (we
include the factor 2π in these reciprical lattice vectors) equal to the smallest,
next smallest, etc. reciprocal lattice vectors. The sequence of values sin(φi/2)

sin(φ1/2)

give the ratios of Ki

K1
for the crystal structure. This sequence is determined

by the crystal structure. Knowledge of the X-ray wave length λ = 2π
k allows

determination of the lattice spacing. (Figure 1.24)
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Fig. 1.24. Experimental arrangement of the powder method




