Advanced Surface Science

2) Surface symmetry

For MChem, Spring, 2009

Dr. Qiao Chen (room 3R506)

http://www.sussex.ac.uk/Users/qc25/

University of Sussex

Last lecture: Fundamental aspects of surface science

Challenges in surface science

Why UHV?

Pumps (rotary pump, diffusion pump, ion pump, TSP pump)

Vacuum gauges (Pirani gauge, Penning Gauge and ion gauge)

2. Fundamental aspects of surface science Surface Miller index and surface symmetry

Miller index of a surface is the reciprocals of the fractional intercepts

Fractional intercepts: h*, k*, l* h=1/h* k=1/k* l=1/l*

So, no ∞ or fractions, but all integers

Unit cell of low index crystal surfaces

A unit cell has to contain at least one atom.

Type of bulk crystals: 14 bulk Bravais lattices

3D bulk possible crystal structures

Five Surface Bravais Lattice

Symmetry operation

The symmetry elements and related operations that we will find in molecules are:

Element	Operation	
Rotation axis, C _n	n-fold rotation	
Improper rotation axis, S _n	n-fold improper rotation	
Plane of symmetry, σ	Reflection	
Center of symmetry, <i>i</i>	Inversion	
	Identity, E	

@Wiki

Common point groups

The following table contains a list of point groups with representative molecules. The description of structure includes common shapes of molecules based on VSEPR theory.

Point group	symmetry elements	Description of structure	Examples
C ₁	E	No symmetry	CFCIBrH, lysergic acid
Cs	Εσh	Planar, no other symmetry	thionyl chloride, hypochlorous acid
Ci	Ei	Inversion center, no other symmetry	anti-1,2-dichloro-1,2-dibromoethane
Cev	E 2C _* σ _v	linear, no other symmetry	hydrochloric acid, dicarbon monoxide
D∞h	E2C _* ∞σ _i i2S _* ∞C ₂	linear with inversion center	dihydrogen, azide anion, carbon dioxide
C ₂	E C ₂	"open book geometry"	hydrogen peroxide
C _{2h}	Ε C ₂ iσ _h	Planar with inversion center	trans-1,2-dichloroethylene
C _{2v}	$E C_2 \sigma_v(xz) \sigma_v'(yz)$	angular (H ₂ O) or see-saw (SF ₄)	water, sulfur tetrafluoride, sulfuryl fluoride
С _{Зv}	Ε 2C ₃ 3σ _ν	trigonal pyramidal	ammonia, phosphorus oxychloride
C _{4v}	Ε 2C ₄ C ₂ 2σ _v 2σ _d	square pyramidal	xenon oxytetrafluoride
D _{2h}	E C ₂ (z) C ₂ (y) C ₂ (x) <i>i</i> σ(xy) σ(xz) σ(yz)	planar with inversion center	ethylene, dinitrogen tetroxide, diborane
D _{3h}	Ε 2C ₃ 3C ₂ σ _h 2S ₃ 3σ _v	trigonal planar or trigonal bipyramidal	boron trifluoride, phosphorus pentachloride, sulfur trioxide
D _{4h}	$E 2C_4 C_2 2C_2' 2C_2 i 2S_4 \sigma_h 2\sigma_v 2\sigma_d$	square planar	xenon tetrafluoride
D _{5h}	E 2C ₅ 2C ₅ ² 5C ₂ σ _h 2S ₅ 2S ₅ ³ 5σ _v	pentagonal planar	eclipsed ferrocene, ^[7] C ₇₀ fullerene
D _{6h}	Ε 2C ₆ 2C ₃ C ₂ 3C ₂ '3C ₂ /3S ₃ 2S ₆ ³ σ _h 3σ _d 3σ _v	hexagonal planar	benzene, bis(benzene)chromium
D _{2d}	$E 2S_4 C_2 2C_h 2C_2' 2\sigma_d$	90° twist	allene, tetrasulfur tetranitride
D _{3d}	E 2C ₃ 3C ₂ /2S ₆ 3σ _d	60° twist	ethane or disilane (staggered rotamer)
D _{4d}	E 2S ₈ 2C ₄ 2S ₈ ³ C ₂ 4C ₂ ' 4σ _d	45° twist	dimanganese decacarbonyl (staggered rotamer)
D _{5d}	E 2C ₅ 2C ₅ ² 5C ₂ / 3S ₁₀ ³ 2S ₁₀ 5σ _d	36° twist	ferrocene (staggered rotamer)
Td	E 8C ₃ 3C ₂ 6S ₄ 6σ _d	tetrahedral	methane, germanium tetrachloride, phosphorus pentoxide, adamantane
O _h	Ε 8C ₃ 6C ₂ 6C ₄ 3C ₂ / 6S ₄ 8S ₆ 3σ _h 6σ _d	octahedral	cubane, sulfur hexafluoride
l _h	E 12C ₅ 12C ₅ ² 20C ₃ 15C ₂ <i>i</i> 12S ₁₀ 12S ₁₀ ³ 20S ₆ 15σ	icosahedral	fullerene

2D 17 space group

Hexagonal

Hexagonal

Square

In 3 dimensions

32 crystallographic point groups 230 space groups 14 Bravais lattices 7 crystal structures

In 2 dimensions

10 crystallographic point groups

no centre of symmetry, i no improper rotations, Sn rotations \perp to surface mirror planes \perp to surface

17 space groups

no screw axes glide planes \perp to surface

5 Bravais lattices 4 (5) crystal structures

Examples of Bravais lattices in 2D

Square - fcc{100}

Hexagonal- hcp{0001}

Rectangular primitive: fcc{110}

Oblique:fcc{531}

Rectangular centred:bcc{110}

Surface geometry: truncated bulk

hcp{0001}

Surface geometry: truncated bulk, relaxation, defects, reconstruction, super-structures Surface relaxation and reconstruction

Side view

Side view

 $d_1 < d_{bulk} < d_2$

 $a_1 = 2a_{bulk}$

Surface defects:

Surface adsorption sites:

Overlayer structures:

Commensurate vs incommensurate

Examples of adlayer super structures:

A more general description of the surface structure is the so-called matrix notation.

 $b_1 = m_{11}a_1 + m_{12}a_2$

 $b_2 = m_{21}a_1 + m_{22}a_2$

 a_1 and a_2 are the substrate unit cell vectors, b_1 and b_2 are overlayer unit cell vectors.

In summary:

- 1.Surface crystal index, define crystal plane
- 2. Surface Bravais lattice
- 3.Surface symmetry, unit cell symmetry, 2D space group
- 4.Surface defects and sites
- 5. Surface relaxation
- 6.Superstuctures