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Overview I
� Hohenberg-Kohn theorem

� Hellmann-Feynman theorem

Forces on atoms

Stresses on unit cell

� Local-density approximation: density only

Thomas-Fermi theory and beyond

� Local-density approximation: Kohn-Sham theory

Kohn-Sham equations

Variational conditions

Kohn-Sham eigenvalues
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Overview II

� Exchange-correlation functionals

Local-density approximation (LDA)

Generalized gradient approximation (GGA), meta-GGA

Hybrid-functionals

� Limitations of DFT

Band-gap problem

Overbinding

Neglect of strong correlations

Neglect of van-der-Waals interactions

� Beyond LDA

LDA+U

GW, SIC, � � �
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Density-functional theory - HKS theorem

Hohenberg-Kohn-Sham theorem:

(1) The ground-state energy of a many-body system is a unique functional
of the particle density, E0 � E ��� r � � .
(2) The functional E ��� r � � has its minimum relative to variations δn�� r � of the
particle density at the equilibrium density n0�� r � ,

E � E � n0�� r � � � min � E ��� r � �	

δE 
 n �
� r ��

δn �� r � � n �
� r ��� no �� r � � 0
(1)

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 4



Proof - HKS theorem

Reductio ad absurdum:
H � T � Vee � V (2)

is the Hamiltonian of a many-electron system in an external potential V�� r �

and with an electron-electron interaction Vee. In the ground-state this system
has the energy E0, with E0 � � ψ0 � H � ψ0 � and the particle density
n0�� r � � � � ψ0 �� r � � 2. Let us assume that a different external potential V� leads
to a different ground-state ψ� 0, but to the same particle density:
n� 0�� r � � � � ψ� 0 �� r � � 2 � n0�� r � . According to the variational principle it follows
that

E� 0� � ψ0 � H� � ψ0 � � � ψ0 � � H � V� � V � � ψ0 �

� E0 � � ψ0 � � V� � V � � ψ0 �

(3)
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Proof - HKS theorem

E� 0� E0 � n0�� r � �V� �� r � � V�� r � � d3r (4)

Starting from
E0� � ψ� 0 � H � ψ� 0 � (5)

and using n� 0�� r � � n0�� r � it follows

E0 � E� 0 � � n� 0�� r � �V�� r � � V� �� r � � d3r

� E� 0 � � n0�� r � �V�� r � � V� �� r � � d3r
(6)

in direct contradiction to the results obtained above. Hence n� 0�� r � and n0�� r �

must be different and V�� r � is a unique functional of n�� r � .
The variational property of the Hohenberg-Kohn-Sham functional is a direct
consequence of the general variational principle of quantum mechanics.
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HKS theorem - Variational principle

With
F � n�� r � � � � ψ � T � Vee � ψ �

E � n�� r � � � F � n�� r � � � � n�� r � V�� r � d3r
(7)

it follows

E �� n� �� r � � � � ψ� � T � Vee � ψ� � � � ψ� � V � ψ� �

� F � n� �� r � � � � n� �� r � V�� r � d3r

� � ψ0 � T � Vee � ψ0 � � � ψ0 � V � ψ0 � � E � n0�� r � �

� F � n0�� r � � � � n0�� r � V�� r � d3r

(8)

and hence
E0 � E � n0�� r � � � min � E � n�� r � �	

δE 
 n �
� r ��

δn �� r � � n �
� r ��� n0 �� r � � 0
(9)
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Hellmann-Feynman theorem: Forces and stresses

The external potential V is created by the ions located at the positions

�

RI ,
V�� r � � ∑

I
v�� r � � RI � . The ground-state energy and wavefunction depend on

the ionic coordinates,

�

R � �
�

RI	 as parameters. The force

�

FI acting on an
atom located at

�
RI is given by

� � FI � ∇IE0�
�

R � � ∂
∂

�
RI

� Ψ0�
�

R � � H�
�

R � � Ψ0�
�

R � �

� � ∇IΨ0 � H � Ψ0 � � � Ψ0 � ∇IH � Ψ0 � � � Ψ0 � H � ∇IΨ0 �

� � Ψ0�
�

R � � ∇IH�
�

R � � Ψ0�
�

R � �

(10)

First and third terms in the derivative vanish due to variational property of
the ground-state � Forces acting on the ions are given by the expectation
value of the gradient of the electronic Hamiltonian in the ground-state. The
ground-state must be determined very accurately: errors in the total energy
are 2nd order, errors in the forces are 1st order !
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Hellmann-Feynman theorem: Forces and stresses

The stress tensor σi j describes the variation of the total energy under an
infinitesimal distortion of the basis vectors� a � k � under a strain ti j:

σi j � � ∂ E � � a� � k � �

∂ti j

a� � k �� i

� ∑
j

� δi j � ti j � a � k �� j

σi j � � � Ψ0 � ∂
∂ti j

H� � a� � k � � � Ψ0 �

(11)
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DFT functional

Total-energy functional

E � n � � T � n � � EH � n � � Exc � n � � V�� r � n�� r � d3r (12)

T � n � � � � kinetic energy,
EH � n � � � � Hartree energy (electron-electron repulsion),
Exc � n � � � � exchange and correlation energies,
V�� r � � � � external potential
- the exact form of T � n � and Exc is unknown !

Local density approximation - ”density only”:
- Approximate the functionals T � n � and Exc � n � by the corresponding
energies of a homogeneous electron gas of the same local density

� � Thomas-Fermi theory
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Thomas-Fermi theory

Kinetic energy:

T � n � � � t � n�� r � � d3r

t � n � � 3h̄2

10m� 3π2 � 2  3 � n�� r � � 5  3
(13)

where t � n � is the kinetic energy of a noninteracting homogeneous electron
gas with the density n.

Electron-electron interaction: Coulomb repulsion only

EH � n � �
e2

2
n�� r � n�� r� �

�� r � � r� �

d3rd3r� (14)

Add exchange-correlation term in modern versions. Variation of E � n � with
leads to the Thomas-Fermi equation

5
3

C � n�� r � � 2  3 � e2 n�� r �
�� r � � r� �

d3r� � V�� r � � 0 (15)
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Kohn-Sham theory

E � n�� r � � � � n�� r � V�� r � d3r � e2

2 � � n �� r � n �� r� �!� r" � r� ! d3rd3r�

� T � n�� r � � � Exc � n�� r � �

(16)

(1) Parametrize the particle density in terms of a set of one-electron orbitals
representing a non-interacting reference system

n�� r � � ∑
i

� φi�� r � � 2 (17)

(2) Calculate non-interacting kinetic energy in terms of the φi�� r � ’s, i.e.
T � n �$# T0 � n � ,

T0 � n � � ∑
i

φ% i �� r � � h̄2

2m
∇2 φi�� r � d3r (18)
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Kohn-Sham theory II

(3) Local-density approximation for exchange-correlation energy

Exc � n�� r � � � n�� r � εxc � n�� r � � d3r & (19)

where εxc � n�� r � � is the exchange-correlation energy of a homogeneous
electron gas with the local density n�� r � . For the exchange-part, a
Hartree-Fock calculation for a homogeneous electron gas with the density n
leads to

εx � n�� r � � � � 3e2

4π � 3π2n�� r � � 1  3 (20)

(4) Determine the optimal one-electron orbitals using the variational
condition under the orthonormality constraint � φi � φ j � � δi j

δ � E �� n�� r � � � ∑
i� j

εi j� � φi � φ j � � δi j � 	 � 0 (21)
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Kohn-Sham theory III
� Kohn-Sham equations (after diagonalizing εi j):

� h̄2

2m
∇2 � V�� r � � e2 n�� r� �

�� r � � r� �

d3r � µxc � n�� r � � φi�� r � � εiφi�� r � (22)

with the exchange-correlation potential µxc � n�� r � � � δExc 
 n �� r ��

δn �� r �

Total energy:

E � ∑
i

εi

' ()*
� 1 �

� 1
2

n�� r � n�� r� �

�� r � � r� �
d3rd3r� � n�� r � � εxc � n�� r � � � µxc � n�� r � �	 d3r

' () *

� 2 �
(23)

(1) � � � sum of ”one-electron energies”
(2) � � � ”double-counting corrections”
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Kohn-Sham theory IV

Variational conditions

� Total energy E � n �

δE � n�� r � �

δn�� r � � n �
� r ��� n0 �
� r � � 0 (24)

� Kohn-Sham eigenvalues εi

δ � � φi � HKS � φi � 	 � 0 with � φi � φ j � � 0 + εi� ε j (25)

� Norm of residual vector � Ri �

� R� φi � � � � HKS � εapp
i � � φi � & εapp

i � � φi � HKS � φi �

δ � � R� φi � � R� φi � � 	 � 0
(26)

No orthogonality constraint !
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Kohn-Sham theory V

Interpretation of the ”one-electron energies” εi

� Hartree-Fock theory - Koopman’s theorem

εHF
i � EHF� ni � 1 � � EHF� ni � 0 � (27)

εHF
i = Ionisation energy if relaxation of the one-electron orbitals is

neglected.

� Kohn-Sham theory:
Total energy is a nonlinear functional of the density � � Koopmans theorem
not valid.

δE � n�� r � �

δni�� r �
� εi & ni�� r � � φ% i �� r � φ �
� r � (28)
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Exchange-correlation functionals I

Definition of the exchange-correlation functional:

Exc � n � accounts for the difference between the exact ground-state energy
and the energy calculated in a Hartree approximation and using the
non-interacting kinetic energy T0 � n � ,

Exc � n �-, T � n � � T0 � n � � Uxc � n � (29)

T � n � & T0 � n � � � � exact and non-interacting kinetic energy functional
Uxc � n � � � � interaction of the electrons with their own exchange-correlation
hole nxc defined as (ρ2 is the two-particle density matrix)

ρ2�� r & s;� r� & s� � , ns�� r � � ns� �� r� � � nxc�� r & s;� r� & s� � � (30)
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Exchange-correlation functionals II

Properties of the exchange-correlation hole
� Locality

lim

!� r" � r� !

nxc�� r & s;� r� & s� � � 0 (31)

� Pauli principle for electrons with parallel spin

nxc�� r & s;� r� & s � � � ns�� r � (32)

� Antisymmetric non-interacting wavefunction

nx�� r & s;� r� & s� � d3r� � � δs� s� (33)

� Normalization of two-particle density matrix

nc�� r & s;� r� & s� � d3r� � O (34)
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Exchange-correlation functionals III

Properties of the exchange-correlation functional

� Adiabatic connection formula

Exc � n � �
1
2

d3rn�� r � d3r�

1

0

dλ
nxc� λ�� r;� r� �

�� r � � r� �

(35)

� Lieb-Oxford bound

Exc � n �. � D n4  3�� r � d3r & 1 � 44 / D / 1 � 68 (36)

plus scaling relations,.......
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Local (spin-)density approximation - L(S)DA

Exc � n�� r � � � n�� r � εxc � n�� r � � d3r & (37)

Exchange-functional (for spin-polarized systems,
n�� r &0 �1 � n�� r &2 � & n � n 3 � n 4 )

εx � n�� r &0 � & n�� r &2 � � � � 3e2

4π � 3π2 � 1  3

5

n �� r� 3 � 4 6 3 7 n �
� r� 4 � 4 6 3
n �� r � 8

� εp
x � � ε f

x � εp
x � � n 9  n � 4 6 3 7 � n :  n � 4 6 3" � 1  2 � 1 6 3

1" � 1  2 � 1 6 3
(38)

with εp
x � εx� n 3 � n 4 � n ; 2 � for the paramagnetic (non-spinpolarized) and

ε f
x � εx� n 3 � n & n 4 � 0 � for the ferromagnetic (completely spin-polarized)

limits of the functional.
Correlation functional εc � n�� r & 0 � & n�� r & 2 � � fitted to the ground-state energy of
a homogeneous electron gas calculated using quantum Monte Carlo
simulations and similar spin-interpolations.
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Semilocal functionals

Generalized gradient approximation - GGA

Exc � n�� r &0 � & n�� r & 2 � � � f � n�� r & 0 � & n�� r & 2 � & ∇n�� r &0 � & ∇n�� r & 2 � � d3r& (39)

There are two different strategies for determining the function f :

(1) Adjust f such that it satisfies all (or most) known properties of the
exchange-correlation hole and energy.

(2) Fit f to a large data-set own exactly known binding energies of atoms
and molecules.

Strategy (1) is to be preferred, but many different variants: Perdew-Wang
(PW), Becke-Perdew (BP), Lee-Yang-Parr (LYP),
Perdew-Burke-Ernzernhof (PBE).
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Semilocal functionals

Meta-GGA

Include in addition a dependence on the kinetic energy density τ�� r � of the
electrons,

τ�� r � �
nocc

∑
i� 1

� ∇φi�� r � � 2 (40)

In the meta-GGA’s, the exchange-correlation potential becomes
orbital-dependent !
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Hybrid functionals

General strategy: Mixing exact-exchange (i.e. Hartree-Fock) and
local-density energies, as suggested by the adiabatic connection formula

Exc � n � �

1

0
Uxc

λ � n � dλ# 1
2

Uxc
0 � n � �

1
2

Uxc
1 � n � (41)

Uxc
0 � n � � � � nonlocal exchange energy of Kohn-Sham orbitals

Uxc
1 � n � � � � potential energy for exchange and correlation

Example: B3LYP functional

Exc � n � � � 1 � a � Ex
LSDA � aEx

exact � bEx
B88 � cEc

LYP � � 1 � c � Ec
VW N (42)

where Ex
B88 stand for the exchange part of the Becke88 GGA functional,

Ec
LYP for the correlation part of the Lee-Yound-Parr local and GGA

functional, and Ec
VWN for the local Vosko-Wilk-Nusair correlation

functional. a & b & and c are adjustable parameters.
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Limitations of DFT I
� Band-gap problem:

- HKS theorem not valid for excited states � � band-gaps in
semiconductors and insulators are always underestimated
- Possible solutions: - Hybrid-functionals lead to better gaps
- LDA+U, GW, SIC increase correlation gaps

� Overbinding:
- LSDA: too small lattice constants, too large cohesive energies, too high
bulk moduli
- Possible solutions: - GGA: overbinding largely corrected (tendency too
overshoot for the heaviest elements)
- The use of the GGA is mandatory for calculating adsorption energies, but
the choice of the ”correct” GGA is important.
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Limitations of DFT II

� Neglect of strong correlations
- Exchange-splitting underestimated for narrow d- and f -bands
- Many transition-metal compounds are Mott-Hubbard or charge-transfer
insulators, but DFT predicts metallic state
- Possible solutions: - Use LDA+U, GW, SIC, � � �

� Neglect of van-der Waals interactions
- vdW forces arise from mutual dynamical polarization of the interacting
atoms � � not included in any DFT functional
- Possible solution: - Approximate expression of dipole-dipole vdW forces
on the basis of local polarizabilities derived from DFT ??
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Beyond DFT

DFT+U

Describe on-site Coulomb-repulsion by Hubbard-Hamiltonian

H � U
2 ∑

m� m� � s
nm� snm� � " s � � U � J �

2 ∑
m <� m� � s

nm� snm� � s (43)

where nm� s is the number operator for electrons with the magnetic quantum
number m and spin s, U � E� dn 7 1 � E� dn" 1 � � 2E� dn � and J a screened
exchange energy.

The DFT+U Hamiltonian includes contributions already accounted for in
the DFT functional � � subtract double-counting, adopt rotationally
invariant formulation � �

EDFT 7 U � EDFT � U � J
2 ∑

s
Tr � ρs � ρsρs � (44)

on-site density matrix ρs
i j of the d electrons
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Beyond DFT II

Calculate quasiparticle-excitation energies by low-order many-body
perturbation theory.
GW: Self-energy approximation approximated by

Σ�� r &� r� ;ω � � i
2π

G�� r &� r� ;ω� � W�� r &� r� ;ω� � dω (45)

where G is the full interacting Green’s function and W the dynamically
screend Coulomb intreraction, described by the inverse dielectric matrix ε" 1

and the bare Coulomb potential v,

W�� r &� r� ;ω� � � ε" 1�� r &� r� � ;ω � v�� r� � � � r � d3r� � (46)

In practice, approximate forms of G and ε" 1 have to be used.

SIC: Self-interaction corrections.

GW, SIC are not implemented in VASP. Results largely equivalent to
LDA+U.

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 27


