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[ Overview [ ]

Hohenberg-Kohn theorem

Hellmann-Feynman theorem
Forces on atoms

Stresses on unit cell

Local-density approximation: density only

Thomas-Fermi theory and beyond

Local-density approximation: Kohn-Sham theory
Kohn-Sham equations
Variational conditions

Kohn-Sham eigenvalues

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS

Page 2



[ Overview II ]

e Exchange-correlation functionals
Local-density approximation (LDA)
Generalized gradient approximation (GGA), meta-GGA
Hybrid-functionals

e Limitations of DFT
Band-gap problem
Overbinding
Neglect of strong correlations

Neglect of van-der-Waals interactions

e Beyond LDA
LDA+U
GW, SIC, ...
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[Density-functional theory - HKS theorem ]

Hohenberg-Kohn-Sham theorem:

(1) The ground-state energy of a many-body system is a unique functional
of the particle density, Ey = E[(7)].

(2) The functional E[(7)] has its minimum relative to variations dn(7) of the
particle density at the equilibrium density r¢(7),

E = Elno(r)] = min {E|(¥)]}

OE[n(?
5,[1(;))] In(7)=n(» =10
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[ Proof - HKS theorem ]

Reductio ad absurdum:
H=T+V,,+V (2)

is the Hamiltonian of a many-electron system in an external potential V ()
and with an electron-electron interaction V... In the ground-state this system
has the energy Ey, with Ey = (Wo | H | W) and the particle density

no(7) =| {wo | 7) |
to a different ground-state yy, but to the same particle density:
o (7) =1 (v | 7) |2
that

. Let us assume that a different external potential V' leads

= no(7). According to the variational principle it follows

Ey<{(yo |H |wo) =(Wo|H+V =V)]|wyo)

| (3)
=Eo+(wo | (V' =V) [ wo)
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[ Proof - HKS theorem ]

E < Eo+ /no(7) V' (7) - V(
Starting from
Eo < {yo | H | )

and using ny(7) = no(7) it follows

Ey <Ey+[m@)V(F)—V'(F)]dr

6
=Ey+ [no(A)[V(7) = V' (7)ldr >

in direct contradiction to the results obtained above. Hence nj,(7) and ng(7)

must be different and V () is a unique functional of n(7).

The variational property of the Hohenberg-Kohn-Sham functional is a direct
consequence of the general variational principle of quantum mechanics.
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[HKS theorem - Variational principle ]

= (Y[ T+ Vee | W)
=F[n(@)]+ [n(F)V(F)d’r

it follows

E[(n'(F)] =W |T+Vee|Y)+ (W |V|\|f’>
= F[n'(P]+ [ (F)V (7)d’
> (Wo | T+ Vee | Wo) + <\Vo |V | Wo) = E[no(7)]
= Flno()] + [no(F)V (F)d’r

and hence

Ey = E[no(7)] = min {E[n(7)]}
OE [n(?#
S In()=no(m = O

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 7



[ Hellmann-Feynman theorem: Forces and stresses ]

The external potential V is created by the 1ons located at the positions R,
V(#) = Y v(¥— R;). The ground-state energy and wavefunction depend on
1

the ionic coordinates, R = {I_é]} as parameters. The force Fy acting on an
atom located at R; is given by

—F; =VE)(R) = %(LPO( ) | H(R) | Wo(R))
= (V,Wo | H | W)+ (o | VIH | ¥o) + (Po | H | V,V,)  (10)

0)
= (Po(R) | VIH(R) | o(R))

First and third terms in the derivative vanish due to variational property of

the ground-state — Forces acting on the 1ons are given by the expectation
value of the gradient of the electronic Hamiltonian in the ground-state. The
ground-state must be determined very accurately: errors in the total energy
are 2nd order, errors in the forces are 1st order !
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[ Hellmann-Feynman theorem: Forces and stresses J

The stress tensor o;; describes the variation of the total energy under an
infinitesimal distortion of the basis vectors d ;) under a strain 7;;:

_ 9 Bldy)
atij

Y(0ij +tij)ag, ;

J
—(Po | =-H (@) | o)

atij
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[ DFT functional ]

Total-energy functional
Eln] = T[n] +E"[n] + £ [n] + / V(#)n()dr

... kKinetic energy,
Ef[n]... Hartree energy (electron-electron repulsion),
E*“[n]... exchange and correlation energies,
V(7)... external potential
- the exact form of T'[n] and E,. is unknown !

Local density approximation - ’density only’:

- Approximate the functionals T'[n] and E,.|n| by the corresponding
energies of a homogeneous electron gas of the same local density
— Thomas-Fermi theory
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[ Thomas-Fermi theory ]

Kinetic energy:
= Jtn(7)dr

= BT @)

(13)

where ¢[n] is the kinetic energy of a noninteracting homogeneous electron
gas with the density n.

Electron-electron interaction: Coulomb repulsion only

2 — —/
Hi1_ ¢ n(F)n(F) 3 3,
E" [n] = ) // 77| drd’r (14)

Add exchange-correlation term in modern versions. Variation of E[n| with
leads to the Thomas-Fermi equation

5 N12/3 | 2 n(rf) s, o
gC[n(r)] +e /|?_?,|d r+V(#) =0 (15)
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[ Kohn-Sham theory J

[n@)V @+ [ [ 12D a3
+T [n(7)] + E*[n(7)]

(1) Parametrize the particle density in terms of a set of one-eclectron orbitals

(16)

representing a non-interacting reference system
_ = 12
= 1:(7) (17)
i

(2) Calculate non-interacting kinetic energy in terms of the ¢;(7)’s, i.e.

Tln] ~ Tofn],
A=Y [ oi( ( V) i)'
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[ Kohn-Sham theory 11 ]

(3) Local-density approximation for exchange-correlation energy

EX[n(7)] = / n(Pewcn(P]dr,

where €,.[n(7)] is the exchange-correlation energy of a homogeneous
electron gas with the local density n(7). For the exchange-part, a
Hartree-Fock calculation for a homogeneous electron gas with the density n

leads to

e.[n(F)] = —%(37: n(7)!/3 20)

(4) Determine the optimal one-electron orbitals using the variational

condition under the orthonormality constraint (¢; | 0;) = &;;

o{E|(n 281] (0i | 9;) —0i5)} =0
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[ Kohn-Sham theory 111 ]

— Kohn-Sham equations (after diagonalizing €;;):

h2
|

2m F—T

—

with the exchange-correlation potential py [n(7

Total energy:

{ eiv@re [ P n@)] }w = &0

.. sum of "one-electron energies”

.. “double-counting corrections”
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[ Kohn-Sham theory I V]

Variational conditions

e Total energy E [n]

[)]

|n(7)=no (1) = O

(
dn(7)

e Kohn-Sham eigenvalues €;

8{(0; | H** [ 0;)} =0 with (¢; [9;) =0 V & <¢g;

e Norm of residual vector | R;)

| R(9;)) = (H® —&/PP) | 0i), €77 =(0: | H* | 03)
o{(R(9:) | R(:))} =0

No orthogonality constraint !
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[ Kohn-Sham theory V]

Interpretation of the ”one-electron energies” €;

e Hartree-Fock theory - Koopman’s theorem

SH = EHF(n,- = 1) —EHF(ni = O)

l

HF

.7 = Ionisation energy if relaxation of the one-electron orbitals is

€
neglected.

e Kohn-Sham theory:

Total energy is a nonlinear functional of the density — Koopmans theorem

not valid.
(28)
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[ Exchange-correlation functionals | J

Definition of the exchange-correlation functional:

E*¢[n] accounts for the difference between the exact ground-state energy
and the energy calculated in a Hartree approximation and using the
non-interacting kinetic energy Ty|n|,

E*[n] = T[n| — To|n] + U™ |n] (29)

T|n], To[n]... exact and non-interacting kinetic energy functional
U*[n]... interaction of the electrons with their own exchange-correlation
hole n,. defined as (p, 1s the two-particle density matrix)

P2(7,5:7,5") = s (F) (ny (7) + e (7, 537, 57)) (30)
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[ Exchange-correlation functionals I ]

Properties of the exchange-correlation hole

Locality

lim n,.(7,5;7,5) =0

77|
Pauli principle for electrons with parallel spin

Ny (P, 8;7,5) — —ng(7)
Antisymmetric non-interacting wavefunction

/nx(?’,s;?',s')d3r’ = —d;y

Normalization of two-particle density matrix

/nc(7,s;?’,s’)d3 '=0

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 18



[ Exchange-correlation functionals 111 ]

Properties of the exchange-correlation functional

e Adiabatic connection formula

E[n /d3m /d“/dk e (757)
|7 —7 |

e [ieb-Oxford bound

E*[n] > —D/n4/3(?)d3r, 1.44 < D < 1.68

plus scaling relations,
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[ Local (spin-)density approximation - L(S)DA J

EX[n(7)] = / n(P)ecn(R]dr,
Exchange-functional (for spin-polarized systems,

n(7,1) #n(#,1), n=ny+ny)

2 = > n(F N340 (7, )43
(7 1)n(7, 1)) = =3 (3n2)1A { AEET

n(7)

f (n4 /n)*3+(ny [n)*3—(1/2)1/3
(& — &)= 1—(i1/2)1/3

(38)

with €X = €,(ny = ny = n/2) for the paramagnetic (non-spinpolarized) and
el = €x(ny = n,n; = 0) for the ferromagnetic (completely spin-polarized)
limits of the functional.

Correlation functional €.[n(7,71),n(7,])] fitted to the ground-state energy of
a homogeneous electron gas calculated using quantum Monte Carlo

simulations and similar spin-interpolations.
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[ Semilocal functionals ]

Generalized gradient approximation - GGA

EX[n(7,1 / Fln ), Ve ), Va® D)ld s (39)
There are two different strategies for determining the function f:

(1) Adjust f such that it satisfies all (or most) known properties of the
exchange-correlation hole and energy.

(2) Fit f to a large data-set own exactly known binding energies of atoms
and molecules.

Strategy (1) is to be preferred, but many different variants: Perdew-Wang
(PW), Becke-Perdew (BP), Lee-Yang-Parr (LYP),
Perdew-Burke-Ernzernhof (PBE).
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[ Semilocal functionals ]

Meta-GGA

Include in addition a dependence on the kinetic energy density t(7) of the
electrons,

Nocc

(A=Y | V() | (40)
i=1

In the meta-GGA'’s, the exchange-correlation potential becomes
orbital-dependent !
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[ Hybrid functionals ]

General strategy: Mixing exact-exchange (1.e. Hartree-Fock) and
local-density energies, as suggested by the adiabatic connection formula

B[ / nldh~ S USTn]+ SUF 1)

U;i¢[n] ... nonlocal exchange energy of Kohn-Sham orbitals
U“[n] ... potential energy for exchange and correlation

Example: B3LYP functional
E*[n] = (1 —a)Efsps + aEgye +bEpgg + cEfyp+ (1 —c)Eyyy  (42)

where E7gqq stand for the exchange part of the Becke88 GGA functional,
E7y p for the correlation part of the Lee-Yound-Parr local and GGA
functional, and Ey,;,,; for the local Vosko-Wilk-Nusair correlation
functional. a, b, and c are adjustable parameters.
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[ Limitations of DFT I ]

e Band-gap problem:

- HKS theorem not valid for excited states — band-gaps in
semiconductors and insulators are always underestimated

- Possible solutions: - Hybrid-functionals lead to better gaps
- LDA+U, GW, SIC increase correlation gaps

e Overbinding:

- LSDA: too small lattice constants, too large cohesive energies, too high
bulk moduli

- Possible solutions: - GGA: overbinding largely corrected (tendency too
overshoot for the heaviest elements)

- The use of the GGA is mandatory for calculating adsorption energies, but
the choice of the ’correct” GGA 1is important.
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[ Limitations of DFT II ]

e Neglect of strong correlations

- Exchange-splitting underestimated for narrow d- and f-bands

- Many transition-metal compounds are Mott-Hubbard or charge-transfer
insulators, but DFT predicts metallic state

- Possible solutions: - Use LDA+U, GW, SIC, ...

e Neglect of van-der Waals interactions

- vdW forces arise from mutual dynamical polarization of the interacting
atoms — not included in any DFT functional

- Possible solution: - Approximate expression of dipole-dipole vdW forces
on the basis of local polarizabilities derived from DFT ??
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[ Beyond DFT ]

DFT+U

Describe on-site Coulomb-repulsion by Hubbard-Hamiltonian

U Uu-—-J
HZE Z nm,snm’,—s+( 7 ) Z N s/ s (43)

m,m’ s m#£m’ s
where n,, ; 18 the number operator for electrons with the magnetic quantum

number m and spin s, U = E(d"™! + E(d"~') — 2E(d") and J a screened
exchange energy.

The DFT+U Hamiltonian includes contributions already accounted for in
the DFT functional — subtract double-counting, adopt rotationally
invariant formulation —

Uu—-J
Eprr+v =Eprr+ —— Y Trlp® —p°p’]
A

on-site density matrix p;; of the d electrons
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[ Beyond DFT II ]

Calculate quasiparticle-excitation energies by low-order many-body
perturbation theory.
GW: Self-energy approximation approximated by

27, 750) = 5 / G 70 )W (7,70 )do (45)

where G is the full interacting Green’s function and W the dynamically

screend Coulomb intreraction, described by the inverse dielectric matrix £~

and the bare Coulomb potential v,
/ e~ (7,7 0)(7 — )" (46)

In practice, approximate forms of G and £~! have to be used.
SIC: Self-interaction corrections.

GW, SIC are not implemented in VASP. Results largely equivalent to
LDA+U.
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