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Finding representations of the symmetry group
of a square using its modes

There are 8 elements of the group of symmetry of the square:

• E – identity

• C4, C
3
4 – rotations by ±π/2

• C2 – rotation by π

• σx – reflection in the horizontal axis

• σy – reflection in the vertical axis

• ρ1 – reflection in the “main diagonal”

• ρ2 – reflection in the “other diagonal”

It turns out that these elements fall into five conjugacy classes like this:

{E}, {C2}, {C4, C
3
4}, {σx, σy}, {ρ1, ρ2}.

1 Modes
The modes of a unit square are ψmn(x, y) = sin(mπx) sin(nπy) (we do not worry about normalisation factors
now) and they can be seen in Fig. 1. Let us look at their representations.

2 Non-degenerate modes
The non-degenerate modes are ψnn. They can be separated into two categories.

2.1 Odd n

First consider the modes with an odd n:

Clearly, all group elements leave them completely identical, therefore we get the representation where all
elements are assigned the unit matrix, (1).

2.2 Even n

Second, consider the modes with even n:

We easily get the representation table:

E C4 C3
4 C2 σx σy ρ1 ρ2

(1) (−1) (−1) (1) (−1) (−1) (1) (1)
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3 Degenerate modes
The degenerate modes are ψmn and can be divided into four categories, depending on the parity of the
numbers m,n.

3.1 Both m,n odd
First consider the modes with both m,n odd:

Taking an example of m = 1, n = 3, we have the basis functions and . It is easy to work out
the representation as follows:
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We can also work in a different basis instead, namely ϕmn = (ψmn + ψnm)/

√
2, ξmn = (ψmn − ψnm)/

√
2,

which corresponds to the basis functions shown in Figs. 2 and 3. For the example of m = 1, n = 3, the

modes are and . Then all the representation matrices change too; the new matrices are related
to the original ones by a similarity transformation
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This leads to new representation matrices
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We see that all these matrices are now diagonal, with 1 at position 11 and ±1 at position 22. This means
that the mode ϕmn transforms always to itself and the mode ξmn transforms to itself up to a possible sign
flip. This also means that the representation is reducible and can be composed (written as a direct sum) of
1D representations. Clearly, the elements at positions 11 correspond to the trivial representation discussed
in Sec. 2.1. The elements at position 22 produce a new 1D representation:

E C4 C3
4 C2 σx σy ρ1 ρ2

(1) (−1) (−1) (1) (1) (1) (−1) (−1)

The fact that the 2D representation separates in two 1D representations means that if we modify the
Hamiltonian slightly, keeping the symmetry of the square, the degeneracy might be removed and the modes
would be separated. It is not hard to find the change needed for that. In particular, adding a Dirac δ
potential at the centre fo the square would change the energy of the mode ϕmn but not that of ξmn, so the
degeneracy would be removed.

3.2 Both m,n even
Next consider the modes with both m,n even:
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The representation using the basis functions and is as follows:

E C4 C3
4 C2 σx σy ρ1 ρ2(
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However, the representation using the alternative basis functions and is as follows:
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We see that again the representation is reducible, giving rise to two additional 1D representations. Again,

we can ask how to modify the Hamiltonian, keeping the symmetry of the square, to remove the degeneracy.
Imagine we add an infinitely high potential barrier in the form of a circle around the square centre. This
would influence the modes ϕmn more than ξmn, raising the energy, so the degeneracy would be removed.

3.3 One of the m,n odd, the other one even
Next consider the modes with one of the m,n odd, the other one even:

The representation using the basis functions and is as follows:
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Using a different basis does not help to reduce this representation, so it is irreducible.

4 Table of all irreducible representations
Putting everything together, we arrive at the table of all irreducible representations of the symmetry group
of the square. Four of them are 1D and one is 2D:
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E C4 C3
4 C2 σx σy ρ1 ρ2 examples
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Figure 1: Modes of the unit square with corners [0, 0] and [1, 1] in the form ψmn(x, y) = sin(mπx) sin(nπy)
for m,n ranging from 1 to 5.
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5 Characters
In the preceding text we saw that some of the two-dimensional representations (the ones shown in Secs. 3.1
and 3.2) were in fact reducible: they were made up of smaller representations. We managed to detect this
because of a fortunate change of basis. However, just trying different bases and hoping for the modes to
decouple is a terrible way of testing the reducibility. Obviously we would like to have a better tool for this,
and the tool should ideally be something that is independent of choice of a basis.

There are several such invariants in linear algebra, but the one that will turn out to be really useful
is the trace. First we need to realize that in a trace of a product, Tr[M1M2 · · ·Mn], we may permute the
factors cyclically (i. e. move the last one to the front, or the first one to the back) and the trace is not
changed. If we take a matrix M and use another matrix S to change to a different basis, we find that the
trace of the new matrix is

Tr[SMS−1] = Tr[S−1SM ] = TrM,

i. e. the trace is truly invariant with respect to the change of basis. These traces are so useful that they get
a special name: characters. They’re most often denoted by the Greek letter χ.

The characters have another important property: if an element g has a character χ(g), then any element
conjugate to it, let’s say hgh−1, has the character equal to Tr[D(hgh−1)] (D is the representation matrix
for the given element). The representation matrices must still obey the same laws of multiplication as the
group elements, so we get that

χ(hgh−1) = Tr[D(hgh−1)] = Tr[D(h)D(g)D(h)−1] = Tr[D(h)−1D(h)D(g)] = TrD(g) = χ(g),

and all elements in the same conjugation class have the same character.
Now we can assemble a table similar to the table in Sec. 4. The only differences will be that instead of

8 columns, one for each element, only five will suffice (one for each conjugacy class — see the beginning),
and instead of the matrices, we write their traces. We obtain the following result:

No. E 2C4 C2
4 2σ 2ρ

I 1 1 1 1 1
II 1 −1 1 −1 1
III 1 −1 1 1 −1
IV 1 1 1 −1 −1
V 2 0 −2 0 0

For our purposes, I just denoted the irreducible representations by some Roman numerals, although it
is customary to give them other names. As for the column headings: for instance, the column 2C4 means
that it gives the character for the whole conjugacy class of C4 rotations, and the 2 in front means there are
two elements in that class. Some tables prefer to write C4 (2) or something similar.

So what use will those characters be to us? They have a very powerful property that we will not prove
right now: they are orthogonal. By that I mean the following: if we consider each row to be a vector with
8 components and perform the usual “dot product” with two different rows (i. e. if we add the products
of the corresponding components), we get a zero. For instance, making such a dot product between rows I
and II gives

χI · χII = 1 · 1 + 2 · 1 · (−1) + 1 · 1 + 2 · 1 · (−1) + 2 · 1 · 1 = 1− 2 + 1− 2 + 2 = 0.

Observe that we multiply the characters element-by-element, so for instance the product of the column
“2C4” must be taken twice — it actually shows characters for two elements at the same time.

On the other hand, if we make a dot product of characters of an irreducible representation with them-
selves, we get the order of the group (in our case, 8). In the case of rows I–IV, it is obvious (we add up 8
squares of ±1). For the row V, we calculate 22 + (−2)2 + some zeroes = 8.

What does that mean for a compound representation like the one in Sec. 3.1? We saw that such a
representation is given by block-diagonal matrices (in some appropriate basis), and the blocks are just the
matrices of the irreducible representations out of which the compound representation is made. Obviously
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the trace of such a matrix is just the sum of the traces of the blocks, and so the character of the compound
representation is just the sum of the irreducible characters.

Now let’s see what happens for a representation built out of two different irreducible representations
with characters χ1 and χ2. Its character will be simply χ1+χ2. What happens when we take a dot product
of this with itself? We get

(χ1 + χ2)
2 = χ2

1 + 2χ1 · χ2 + χ2
2.

Both squares equal to 8, and if the two representations are different, their characters are orthogonal, which
means that the cross-term in the middle vanishes. Hence the result will be 16. On the other hand: what
happens if the representation is built out of two copies of the same representation χ1? Then the dot product
of the character 2χ1 with itself will be 4χ2

1 = 32.
Considerations like that show the following: if a representation is built out of n1 copies of one irreducible

representation, n2 copies of another, and so on, the dot product of its character with itself will be (n2
1 +

n2
2 + · · · ) · |G|.

So now let’s look at the two-dimensional representations in Sec. 3.1 and 3.2. Let’s take the traces of the
matrices. We find the following:

E 2C4 C2
4 2σ 2ρ

both odd 2 0 2 2 0
both even 2 0 2 −2 0

Taking the dot product of each row with itself, we find that the result is 16 in both cases. How can we write
16 as a product of 8 and a sum of squares of some positive integers? There is only one way: 16 = 8 ·(12+12).
We immediately see that both of these representations are made of two irreducible ones, each in one copy.

Can we find what irreducible representations they are, exactly? Yes! Orthogonality is still the key. If
we take the compound character χ1 + χ2 and take a dot product with, for instance, χ1, we find that the
result is χ2

1 +χ1 ·χ2 = 8+ 0 = 8, and we see there is one copy of it. If, on the other hand, we multiply the
compound character with another character not contained in it, we get 0 + 0 = 0.

Let’s try that with the “both odd” representation. Take a dot product of its characters with characters
of irreducible representation I. We get:

2 · 1 + 2 · 0 · 1 + 2 · 1 + 2 · 2 · 1 + 2 · 0 · 1 = 2 + 2 + 4 = 8.

So the representation I is present in one copy. Is there any copy of representation II? Let’s take the dot
product:

2 · 1 + 2 · 0 · (−1) + 2 · 1 + 2 · 2 · (−1) + 2 · 0 · 1 = 2 + 2− 4 = 0.

No, there is no copy of that. Is there any copy of III?

2 · 1 + 2 · 0 · (−1) + 2 · 1 + 2 · 2 · 1 + 2 · 0 · (−1) = 2 + 2 + 4 = 8.

Yes, there is one copy. In fact, we are done, because the representation in question was two-dimensional
and we already found two one-dimensional pieces contained in it. So there cannot be any more. If you go
back to Sec. 3.1, you will find that this is exactly what we found there.

The pattern should be quite clear now. I invite you to try the same with the “both even” representation.
You should find that it is made of irreducible representations II and IV, each in one copy.
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Figure 2: Modes of the unit square with corners [0, 0] and [1, 1] in the form ϕmn = (ψmn + ψnm)/
√
2.
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Figure 3: Modes of the unit square with corners [0, 0] and [1, 1] in the form ξmn = (ψmn − ψnm)/
√
2.
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