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Guiding Trojan light beams via Lagrange 
points

Haokun Luo    1,5, Yunxuan Wei    1,5, Fan O. Wu    2,3, Georgios G. Pyrialakos    1,2, 
Demetrios N. Christodoulides    1,4   & Mercedeh Khajavikhan    1,4 

The guided transmission of optical waves is critical for light-based 
applications in modern communication, information processing and 
energy generation systems. Traditionally, the guiding of light waves in 
structures such as optical fibres has been predominantly achieved through 
the use of total internal reflection. In periodic platforms, a variety of other 
physical mechanisms can also be deployed to transport optical waves. 
However, transversely confining light in fully dielectric, non-periodic 
and passive configurations remains a challenge in situations where total 
internal reflection is not supported. Here we present an approach to 
trapping light that utilizes the exotic features of Lagrange points—a special 
class of equilibrium positions akin to those responsible for capturing 
Trojan asteroids in celestial mechanics. This is achieved in twisted 
arrangements in which optical Coriolis forces induce guiding channels even 
at locations where the refractive index landscape is defocusing or entirely 
unremarkable. These findings may have implications beyond standard 
optical waveguiding schemes and could also apply to other physical systems 
such as acoustics, electron beams and ultracold atoms.

Moulding the flow of light is nowadays one of the cornerstones of mod-
ern photonic technologies1–6. In this respect, in recent years there has 
been a flurry of intense activities on several research fronts such as 
those associated with topological7–10 and non-Hermitian optics10,11, 
photonic crystals2–6,12, optical metamaterials13,14 and metasurfaces15,16. 
Of crucial importance are methodologies by means of which light can 
be transmitted in a guided format. Perhaps the most prominent of them 
is that offered by optical fibres that are known to rely on the process of 
total internal reflection1. Unlike in fibres where light waves are trapped 
in a high-index region, in periodic photonic settings, waveguiding 
can also be attained through other mechanisms such as Bragg reflec-
tion2–6,12,17,18, evanescent coupling19 and bound states in the continuum 
effects20. Similarly, light can propagate in a confined manner in plas-
monic21 or active arrangements that allow gain guidance22. At this point, 
the following questions naturally arise. Will it be possible to guide light 
in a fully dielectric and passive material system without making use of 

either total internal reflection or periodicity? In a wider context, can 
guiding occur in an open or bulk space environment, where trapping is 
achieved through a remote mechanism that can act and be manipulated 
from afar? If so, a new paradigm is established through which not only 
light, but also other types of waves such as acoustic or electron beams, 
can be trapped by utilizing altogether new strategies.

In celestial mechanics, Lagrange points represent equilibrium 
positions whereby the gravitational attraction from two orbiting mas-
sive bodies balances the centrifugal force23,24. In this situation, one can 
identify five Lagrange points designated as L1, L2, …, L5 with the first 
three (L1, L2 and L3) being by nature unstable, whereas the remaining 
two (L4 and L5) are stable23. As a result, a small mass can be forever 
trapped in the vicinity of these two latter points, like, for example, 
the Trojan asteroids in the Sun–Jupiter system (Fig. 1a). Although, at 
first glance, the two-dimensional potential distribution within the 
co-rotating frame appears to be unstable around the L4,5 points shown 
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potential remains static when viewed within the co-rotating frame, 
which is shown in Fig. 2b along with the corresponding iso-contour 
lines. In this frame, because of centrifugal effects, the effective poten-
tial is modified, which leads to two Lagrange points (designated as LA 
and LB) where the optical attraction or repulsion is balanced. In this 
case, it so happens that only LA is stable whereas LB is unstable. The 
position of LA is also marked in Fig. 2a for clarity. To showcase the trap-
ping potential of the Lagrange points, we begin our analysis by examin-
ing ray dynamics in the vicinity of LA (Supplementary Information 
Section 3). Figure 2c shows the calculated ray trajectories, from where 
one can conclude that light is captured around this Lagrange point. As 
in the case of Trojan asteroids, here stability is introduced because of 
Coriolis forces. Interestingly, this is possible even though the potential 
is defocusing (and hence, repulsive) and it is produced by only one 
source, unlike the Sun–Jupiter system23. As indicated previously, the 
index landscape around the LA point, when viewed within the stationary 
(x, y) system (Fig. 2a), happens to be completely ordinary, with no 
special features that could ever foretell that light can be trapped. The 
stability criteria for these optical Lagrange points are provided in Sup-
plementary Information Section 4.

Although the ray dynamics do suggest that light can be guided at 
a Lagrange point, it is still imperative to formally assert this possibility 
within the framework of wave optics. To do so, we use the paraxial wave 
equation, which is a reduced form of the Helmholtz electromagnetic 
problem in weakly guiding arrangements and so happens to be isomor-
phic to the Schrödinger equation. In normalized units, this is given by 
i∂zψ = ̂Hψ  where ̂H = −(∂xx + ∂yy)/2 + V(x, y, z)  is the Hamiltonian 
operator and ψ is the slowly varying electric field amplitude. The poten-
tial V(x, y, z) that appears in the Hamiltonian is directly proportional to 
the refractive index profile (Supplementary Information Section 5). 
The paraxial equation can be more conveniently studied within the 
co-rotating frame (u, v, ξ) after a ‘magnetic’ vector potential A is intro-
duced by means of A = Ω × r to account for optical Coriolis effects8,28, 
where Ω = 2π/Λ is the rotation rate. In this case, by keeping in mind 
that ξ = z, the optical beam evolution equation takes the form

i ∂ψ
∂z

= [ 12 (
p−A)2 + VΩ,eff (u, v)]ψ, (1)

where p = −i ̂u∂/∂u − i ̂v∂/∂v  and VΩ,eff (u, v) = V(u, v) −Ω
2r2/2  (Sup-

plementary Information Section 6). Equation (1) is solved numerically 
to identify bound modes in the form of ψ = eiσzR (u, v) eiΨ(u,v) centred 

in Fig. 1a (given that it is concave downwards, as shown in Fig. 1a),  
counterintuitively, the motion of a third body can be dynamically 
stabilized because of the Coriolis force. In essence, as this body starts 
to roll down from the L4,5 potential hill, the Coriolis force tends to con-
tinuously pull it back, which thus results in a bounded orbit (inset in 
Fig. 1a). In recent years, the analogue of this process has also been used 
in atomic physics to produce non-dispersive wavepackets25–27, which is 
a prospect enabled by the isomorphism between the Coulomb force 
and the gravitational attraction.

In this work, we demonstrate a new approach for guiding light 
in transparent dielectric systems. This is achieved by exploiting the 
intriguing characteristics of the Lagrange points and the equivalence 
between the paraxial wave equation for light and the non-relativistic 
Schrödinger equation. The resulting optical Trojan beams can be cap-
tured even in defocusing environments at points where the refractive 
index profile (within the stationary frame) is totally ordinary—with no 
features that could foretell a guiding behaviour. We show that, in the 
optical domain, this mechanism can be established in a versatile man-
ner through a variety of attractive and/or repulsive index potentials. 
Given that Newton’s third law governing the dynamics of celestial 
bodies is, in our optical set-up, inconsequential in establishing a rotat-
ing potential, multiple Lagrange points can now be simultaneously 
generated at will in ‘many-body’ configurations, which is an aspect 
that is impossible in other settings.

Figure 1b depicts a schematic of the experimental arrangement 
used to observe optical Trojan beams. These beams are excited in 
~30 cm long glass cylinders with a radius of b = 1.18 cm that are filled 
with cured polydimethylsiloxane (PDMS) of refractive index n0 = 1.46. 
To produce optical Lagrange points, we exploit the large thermo-optic 
effect offered by PDMS (dn/dT = −4.5 × 10−4 K−1). This is achieved by 
inserting a twisted iron wire (of radius a = 275 μm) in the tube before 
the PDMS is cured. An electric current is then passed through this wire 
which, in turn, heats the PDMS to induce a logarithmic defocusing spiral 
index potential (Supplementary Information Sections 1 and 2) through 
the thermo-optic process (Fig. 2a).

In addressing the prospect of trapping light at a Lagrange point, 
we consider, in the stationary coordinate system (x, y), the logarithmic 
defocusing index profile depicted in Fig. 2a, which is typical of that 
thermally produced in our experiments. This long-range potential is 
spiralling around the centre C with a pitch of Λ = 8 cm. In this example, 
the index contrast induced (with respect to the surface of the metallic 
wire) is approximately 2.25 × 10−2. On the other hand, the same index 
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Fig. 1 | Celestial and optical beam dynamics in the vicinity of a stable 
Lagrange point. a, Lagrange points in the Sun–Jupiter system. In the co-rotating 
frame, the potentials associated with the three unstable colinear Lagrange points 
(L1, L2 and L3) are saddle shaped, whereas those of L4 and L5 are stable, being 
maxima. The inset in a shows the stable trajectory of an asteroid when captured 
around an L4 Lagrange point because of the Coriolis force. b, Experimental set-up 

used to observe optical Trojan bound states (bright yellow beam). A stable 
Lagrange point is established by means of the thermo-optic effect by passing 
current I  through a helical iron wire (shown in green) embedded in a cured PDMS 
cylinder. The inset in b displays in a schematic manner the trapping of a Trojan 
beam (depicted in bright yellow) at a Lagrange point induced by a helicoidal 
index potential (blue line).
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at a stable Lagrange point, where σ  denotes their corresponding eigen-
value. Figure 2d depicts the intensity profile of the ground state asso-
ciated with the LA point in Fig. 2b. In this case, the intensity of the 
fundamental Trojan mode is elliptical, as one would expect given that 
the index potential around LA has approximately an elliptic paraboloi-
dal dependence. The propagation characteristics of the Trojan beam 
are then numerically investigated within the stationary (x, y) frame 
(Fig. 2e). Evidently, being a mode, the Trojan beam remains invariant 
during propagation while twisting around the centre point C. In other 
words, because of Coriolis forces, the beam is stably trapped around 
the Lagrange point, and thus overcomes any diffraction and attraction 
and/or repulsion effects. These results are in accordance with those 
obtained from ray dynamics. The correspondence between wave and 
ray optics can be directly established through the Ehrenfest theorem 
(Supplementary Information Section 7).

To observe Trojan beams, experiments were conducted in PDMS 
filled cylinders (Fig. 1b). The optical dynamics of these beams were 
monitored both at the output facet of the cylinder as well as from the 
side using an imaging camera. To enable side-view observations, the 
PDMS was mixed with a small amount of titanium dioxide (TiO2) nano-
particles (165 nm in diameter). In this experiment, the spiral iron wire 
was positioned at 1.85 mm from the centre C, having a pitch Λ = 8 cm. 
The Trojan mode was then excited by a Gaussian beam with a spot size 
of w0 ≃ 110 μm from a He–Ne laser (λ0 = 632.8 nm), right at the Lagrange 
point of this arrangement. A direct current I = 4.0 A was passed through 
the wire to heat the sample. In this case, the surface of the wire was 
estimated to be at 50 K above the outer surface temperature of the 
cylinder and the resulting temperature distribution led to a spiralling 
logarithmic index potential Δn ≃ −2.25 × 10−2[1 − ln(ρ/a)/ln(b/a)], 
where ρ is the distance from the wire centre (Supplementary Informa-
tion Section 2). In this configuration, the Lagrange point LA was 

positioned ~430 μm away from the centre C. Experiments demonstrat-
ing that the Trojan beam was captured around LA are shown in Fig. 3a,b, 
which demonstrate that, indeed, the beam retained its spot size both 
at the output facet (Fig. 3b) and during propagation (Fig. 3b). At the 
output, the mean value of the spot size radius was ~112 μm with an 
ellipticity of 0.49. The variation of the average beam spot size as a func-
tion of distance and current is depicted in Fig. 3c,d. If the current was 
turned off, the beam was no longer trapped and finally expanded after 
~30 cm of propagation to w ≃ 385 μm because of diffraction (Fig. 3e,f). 
Next, we kept the wire straight while conveying the same current 
I = 4.0 A. Interestingly, in this scenario, not only was the beam diffracted 
but it was also strongly repelled by the defocusing (repulsive) index 
potential and forced into a self-bouncing trajectory at the boundary of 
the cylinder (Fig. 3g). This response confirms that the Lagrange point 
was responsible for the behaviour displayed in Fig. 3a,b.

To demonstrate in a definitive manner that what is observed in 
our set-up is a Trojan beam, we experimentally detected its phase 
structure that so happens to be quite unique to this trapped state. To 
explain the origin and importance of this phase Ψ (u, v), we approxi-
mately represent the effective potential landscape in the vicinity of a 
Lagrange point (ui, vi) where it is maximum by means of a Taylor series. 
In this case, one can obtain closed form solutions for the bound states 
of equation (1) (Supplementary Information Section 8), from which 
we find that Ψ (u, v) = αu + βv + γuv. The first two terms (α,β) are 
associated with the tilt of the Trojan beam when traversing its helical 
path and the last term γuv governs the internal energy flow that allows 
this elliptical state to reorient itself during propagation. We would like 
to emphasize that the γuv  phase is unique to these Trojan entities, 
given that it does not appear in standard dielectric waveguide settings 
or gain-guiding systems. Numerical simulations carried out for the 
index profiles used in our experiments (Fig. 2b), lead to similar results 
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Fig. 2 | Light propagation dynamics around a stable Lagrange point. a, An 
induced logarithmic defocusing spiralling index potential when viewed within 
the stationary frame (x, y). This index profile rotates along z  at a constant 
angular velocity Ω around the centre C. The corresponding iso-contour lines are 
also shown. b, In the co-rotating frame (u, v), the effective index potential now 
involves centrifugal effects and exhibits two Lagrange points, LA and LB. LB is a 
saddle point and hence is unstable. On the other hand, LA exhibits a minimum 
where the dynamics can be stabilized through the optical Coriolis force. Note 
that, in optics, the effective index distribution in the co-rotating coordinate 

system is ΔnΩ,eff ∝ −VΩ,eff  (Supplementary Information Section 4). For 
comparison, the positions of LA and LB are also marked in a. c, Stable ray dynamics 
unfolding around LA in the index landscape depicted in a and b as viewed within 
in the co-rotating frame. d, Numerically obtained normalized intensity 
distribution in arbitrary units (a.u.) for the fundamental Trojan optical mode 
centred at LA, corresponding to a and b. In this case, the mode is elliptical in the 
(u, v) system. e, Stable propagation of the optical Trojan ground state shown in  
d, as obtained from numerically solving equation (1) along z. The beam remains 
invariant along its helical path. The helix pitch in a–e is Λ = 8 cm.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | January 2024 | 95–100 98

Article https://doi.org/10.1038/s41567-023-02270-6

(Fig. 3h). To detect the γuv  phase, we performed interferometric 
measurements using a Mach–Zehnder arrangement where the Trojan 
beam in one of the arms was appropriately tilted to remove the effects 
from the (αu + βv) contributions. The resulting X-shaped interfero-
gram (produced by the γuv  term) is shown in Fig. 3i. This provides 
irrefutable evidence that what was observed in our set-up was a Trojan 
beam. In optical arrangements, it is possible to excite multiple 
Lagrange points from several potential sources, which is something 
that is not feasible in celestial mechanics because many-body systems 
are chaotic (Supplementary Information Section 9). We would like to 
emphasize that what is discussed here is fundamentally different from 
results previously obtained in transversely periodic arrangements 
whereby diffraction effects can be arrested even in defocusing poten-
tials by exploiting the effective diffraction properties (effective mass) 
of Bloch modes within the Brillouin zone29,30. On the other hand, in 
bulk media where the magnitude and sign of the diffraction cannot 
be altered, there is no other mechanism known (apart from the one 

presented in this work) by means of which light trapping is possible 
even in defocusing environments.

We next conducted experiments in a double-helix wire configura-
tion when embedded in a cured PDMS cylinder. In this case, the Lagrange 
point was located right at the centre C. Each one of the two spiral wires 
was positioned at 1.8 mm from the centre C and the helix pitch used was 
Λ = 6.3 cm. When no current was flowing through the system, the opti-
cal beam diffracted to a spot size w ≃ 375 μm after ~30 cm of propaga-
tion (Fig. 4a,b). On the other hand, after a current I = 3.5 A was passed 
through the two wires (connected in series), an elliptical Trojan state 
was formed when excited with a Gaussian beam of spot size w0 ≃ 110 μm 
(Fig. 4c,d). Our results clearly indicate that the beam was trapped 
around the Lagrange point given that, at the output, its mean spot size 
radius was approximately 120 μm with an ellipticity of 0.9 (Fig. 4d). The 
dependence of the average beam spot size on distance is depicted in 
Fig. 4e. The X-shaped interferogram resulting from the corresponding 
γuv phase is depicted in Fig. 4f. Experiments were also performed when 
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Fig. 3 | Trojan beam guiding in the index potential produced by a single 
helical heat source. a, Side-view image of the trapped fundamental Trojan mode 
(red beam) when helicoidally traversing a PDMS filled tube. The spiralling wire, 
carrying a current I  = 4.0 A, is also shown in the background. The spot size of the 
Gaussian beam at the input is ~110 μm. b, Intensity profile of the Trojan mode  
at the output facet, after a distance of approximately 30 cm. The mean value of 
the spot size radius is ~112 μm with an ellipticity of 0.49 (minor/major axis).  
c, Variation of the beam’s mean spot size as a function of distance for I  = 4.0 A.  
d, Dependence of the Trojan mode’s output mean spot size and ellipticity versus 
current I2. e, Side-view image of the diffraction dynamics of the input Gaussian 

beam when the current is turned off. f, For the case shown in e, the circular beam 
diffracts to a spot size of ~385 μm. g, When the wire is kept straight while carrying 
a current I  = 4.0 A, the light beam is strongly repelled by the defocusing index 
landscape, which leads to self-bouncing behaviour at the surface of the cylinder. 
h, Numerically obtained phase structure associated with the fundamental  
Trojan mode centred around LA (depicted as a white dot). The presence of the 
characteristic X-shaped γuv term is evident. i, Experimentally observed 
wavefront phase of the Trojan state corresponding to a and b detected by means 
of interferometry. The aspect ratio of a and e is 4.5:1 while that of g is 3.2:1.  
The dark stripe shown in a, e and g arises from the tube holder.
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the two wires were kept straight, in which case no Lagrange point was 
produced (Fig. 4g). To some extent, trapping light in this double-helix 
arrangement is reminiscent of charged particle confinement in Paul 
traps31,32 which is achieved by means of parametric interactions—a 
stabilization process that is nonetheless different from the one medi-
ated by the Coriolis force.

In conclusion, we have demonstrated a new methodology for 
trapping light by utilizing the unique features of Lagrange points. The 
resulting Trojan beams can be guided even in defocusing refractive 
index landscapes because of optical Coriolis effects. This is enabled 
through their unique phase distribution that allows their internal 
energy to be appropriately rearranged along their trajectory. Our 
work may open new avenues in guiding optical waves in settings where 
traditional approaches are not possible, for example, in liquid environ-
ments. Of interest would be to investigate the possibility of observing 
these Trojan states in amplifying configurations where optical gain 
can exert long-range attractive or repulsive forces on a signal that 
is not confined in a standard dielectric waveguide. The prospect of 
guiding and deflecting light at Lagrange points induced by orbiting 
ultra-massive bodies such as black holes or neutron stars can be another 
exciting direction in astrophysics.
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Methods
Experimental optical set-up
The experimental set-up comprised three main characterization com-
ponents. These included: (1) beam excitation; (2) side-view imaging; 
and (3) bottom-view imaging and interference. For exciting a beam, a 
linearly polarized He–Ne laser (Thorlabs HNL050LB) operating at a 
wavelength of 632.8 nm was used. Its output Gaussian beam was ×5 
expanded through a 4f system and then focused to a spot size of 
w0 ≃ 110 μm at the input facet through a convex focusing lens Cf having 
a focal length of FCf. To acquire a side view of the beam dynamics inside 
the tube, a complementary metal oxide semiconductor (CMOS) camera 
(EO-1312c, Edmund Inc.) was used in conjunction with a lens, and was 
attached to a vertically movable stage along the propagation direction. 
A microscope, involving a ×10 objective (numerical aperture = 0.28) 
and an F = 125 mm lens, was employed to image the transverse profile 
of the Trojan beam at the bottom facet. Interferometric measurements 
were performed by splitting the light after the microscope into two 
arms, the first one passing through a ×2.86 4f system to expand it into 
a flat wavefront whereas the other one was appropriately attenuated 
to perform the interferometric measurement. A linear polarizer was 
inserted into the reference arm to adjust the interference contrast. The 
interference pattern was finally projected with a magnification ×0.5 
on to a CMOS camera through a 4f system. The spatial frequency spec-
tra of the two interfering beams were matched at the focal plane of the 
F = 200 mm lens in this 4f system so that the tilt phase shift terms (α,β) 
were eliminated by tilting the reference beam. In imaging the optical 
beam profiles at the output facet (collected by a CMOS camera 
(BladeCam-HR, Dataray Inc.)), both the reference arm and the attenu-
ator were removed. The details are provided in Supplementary Infor-
mation Section 1.

In characterizing the phase structure of the Trojan beams, the focal 
length of the Cf lens was changed depending on the current I used. This 
was done to observe the phase structure by expanding the intensity 
distribution that further facilitated the interferometric measurements. 
The focal lengths of the Cf for different currents I are provided in Sup-
plementary Information Section 1.

In addition to the camera lens providing approximately ×0.4, the 
magnification of the side-view system was also affected by the circular 
interface between air and the PDMS filled glass tube. Given that the 
refractive indices of glass (nglass  = 1.457) and PDMS (n0 ≈ 1.46) are 
approximately the same, then, under paraxial conditions, the magni-
fication was exactly 1.46 when the object was placed at the centre of 
the tube (Supplementary Information Section 1). This inherent mag-
nification was taken into account when estimating the beam spot size 
from side-view imaging.

Sample preparation
Our sample involved a spiralling iron wire surrounded by cured PDMS 
in an ~30-cm-long glass tube. The tube was covered by two transparent 
acrylic discs to avoid dealing with curved surfaces arising from surface 
tension and any other distortion effects from thermal expansion. The 
radius of the iron wire was a = 0.275 mm, and the outer and inner radii 
of the glass tube were bouter = 15.0 mm and b = 11.8 mm, respectively. A 
direct current source was connected to the helical iron wire embedded 
in the cured PDMS, for heating and generating the required logarithmic 
twisted refractive index potential. To image the optical beams from 
the side, a small amount of TiO2 nanoparticles (165 nm in diameter 
(Nanomaterials Inc.)) were uniformly distributed in PDMS (Microlubrol 
Sylcap 284-F) as scatterers. Typical samples used in single- and 
double-helix wire configurations are provided in Supplementary Infor-
mation Section 1.

Ray stability analysis around a Lagrange point
The stability of ray dynamics around a stable Lagrange point  
located at (ui, vi)  was analysed. In the co-rotating (u, v) system,  

the potential landscape in the vicinity of this point was locally a  
maximum: that is, to first order, its Taylor series was given by  
VΩ,eff = −ΔnΩ,eff (u, v) /n0 = Vmax − (ω2

1 (u − ui)
2 + ω2

2(v − vi)
2)/2 . If we let 

ũ = u − ui, ṽ = v − vi, the equations governing the ray dynamics (Sup-
plementary Information Section 4) are given

̈̃u = 2Ω ̇ṽ + ω2
1 ũ, (2-1)

̈ṽ = −2Ω ̇ũ + ω2
2ṽ. (2-2)

By solving the corresponding eigenvalue problem (Supplementary 
Information Section 4), one finds that the ray trajectories around the 
Lagrange point are stable only when

2Ω > ω1 + ω2 (3)

Equation (3) provides the stability criterion required to trap an 
optical ray around a stable Lagrange point.

Analytical solution for the fundamental Trojan mode in a 
twisted parabolic potential
Here we provide an analytical solution for the fundamental Trojan 
mode in a twisted parabolic elliptical potential. The Lagrange point 
was located at (ui, vi) within the (u, v) system. To do so, we first obtained 
this solution when the potential was shifted to the centre, in which case, 
to first order, VΩ,eff = Vmax − (ω2

1u
2 + ω2

2v
2) /2 . In this case, the optical 

envelope obeys

i ∂ψ
∂z

= − 1
2
( ∂2ψ
∂u2

+ ∂2ψ
∂v2

) + iΩ (u ∂ψ
∂v
− v

∂ψ
∂u
)

+ 1
2
Ω

2 (u2 + v2)ψ + (Vmax −
(ω2

1 u
2+ω2

2v
2)

2
)ψ.

(4)

The ground state of equation (4) has the form of an elliptical Gauss-
ian function33

ψ = Ne−pu2 e−qv2 eiγuveiσze−iVmaxz, (5)

where p,q > 0 (p,q ∈ ℛ+) and N  is a normalization factor. The param-
eters involved in this solution are given in (Supplementary Information 
Section 8)

γ = ω2 − ω1
ω2 + ω1

Ω, (6)

p =
[4Ω2 − (ω1 + ω2)

2]
1
2

2 (ω1 + ω2)
ω1, (7)

q =
[4Ω2 − (ω1 + ω2)

2]
1
2

2 (ω1 + ω2)
ω2. (8)

σ = −
[4Ω2 − (ω1 + ω2)

2]
1
2

2 (9)

Note that this solution is only possible if 2Ω > ω1 + ω2 , which  
is identical to equation (3). This solution can be translated to (ui, vi) 
using a gauge phase34, that is, ψui ,vi = ψ (u − ui, v − vi) eiΦ(u,v), where 
Φ (u, v) = Ω (uiv − viu).

The dynamics of the Trojan mode can be solved numerically under 
any arbitrary initial conditions using a beam propagation method that 
relies on fast Fourier transforms. The Trojan modes supported by the 
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actual effective potential around a stable Lagrange point (such the one 
depicted in Fig. 2b) are obtained by numerically solving equation (1). 
In this case, the eigenvalue problem is solved using finite-difference 
methods.

Data availability
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