
General tools for the analysis of geodesic lenses

Tomáš Tyc
Masaryk University, Brno, Czech Republic

ESoA 2024 Metalenses for Antenna Applications, 27 February 2024, Sevilla



Outline

What is a geodesic lens (GL)?
Types and basic properties of GL
Ray description, role of angular momentum
Solving inverse problem to design GLs
Relation to absolute optical instruments
Raytracing on GL, equation for geodesics
Conclusion

2



What is geodesic lens?

A curved surface that is able to shape light rays
Light rays follow geodesics – the most straight lines on the surface
Geodesic turns neither left nor right

Usually a 2D surface embedded in 3D space, but more general concepts are possible
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Practical realization
Usually 2D waveguides

4



Example: sphere

Geodesics are great circles
(the red circle is not a geodesic)

All rays emerging from one point
meet at the opposite point – imaging
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Example: cylinder

Cylinder can be unfolded into a plane
We get geodesics from straight lines by folding the plane into a cylinder – helix lines
A similar procedure can be done for a cone (experiment)
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Open geodesic lenses

Luneburg GL Eaton GL Invisible GL

Open GLs emerge above the “equator” just on one side, then continue into a plane
Ususally they image points at infinity
They are important for antenna design – the plane corresponds to the environment
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Closed geodesic lenses
Rays form closed loops, every point has its image
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Designing rotationally-symmetric geodesic lenses
[M. Šarbort and T. Tyc, J. Opt. 14, 075705 (2012)]

Close relation to absolute optical instruments and transformation optics
Rotationally-symmetric GLs can be described and designed analytically
Crucial role: conservation of angular momentum
Inverse Abel transformation can be used for their design
GL without rotational symmetry – a much harder problem
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GL parametrisation
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We use the following coordinates:

cylindrical coordinates ρ, φ

length measured along the meridian s(ρ)
we could use the cylindrical coordinate z, but s is more useful
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Angular momentum

z-component of the angular momentum is
conserved due to rotational symmetry

Lz = (⃗r × v⃗)z = const.

We could express r⃗ and v⃗ explicitly, it is a bit
complicated
A simpler argument: for α = 0 we have Lz = 0, for
α = π/2 we have Lz = ρ

For a general α we decompose velocity into the two
directions and have

Lz = ρ sinα = const. ≡ L
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Angle swept by the ray on GL
From the small triangle we see

ρ
dφ
dl = sinα =

L
ρ

ds
dl = − cosα = ∓

√
1 − L2

ρ2

From this it follows

dφ
dρ =

dφ
dl
ds
dl

ds
dρ = ± L s′(ρ)

ρ
√
ρ2 − L2

,

The angle swept by the ray

∆φGL = 2
∫ 1
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Closed (double-sided) GLs

Closed GLs have two parts, above and below the
equator
The total swept angle for a single cycle in s is

∆φGL(L) = 2
∫ 1

L

L [s′1(ρ)− s′2(ρ)] dρ
ρ
√

ρ2 − L2

(minus sign because s′2(ρ) ≡ ds2/ dρ < 0)
Example: for a sphere, ∆φGL(L) = 2π
If for some GL ∆φGL(L) is a rational multiple of
2π for all L, rays form closed loops and we get
focusing
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Transforming a closed GL

Would it be possible to deform the GL without
changing ∆φGL(L)?

∆φGL(L) =
∫ 1

L

L [s′1(ρ)− s′2(ρ)] dρ
ρ
√

ρ2 − L2

If we change s′1(ρ) and s′2(ρ), keeping the difference
s′1(ρ)− s′2(ρ) fixed, then ∆φGL(L) is preserved

s̃′2(ρ)− s̃′1(ρ) = s′2(ρ)− s′1(ρ) ⇒
s̃2(ρ)− s̃1(ρ) = s2(ρ)− s1(ρ)

This way, we can transform any double-sided GL
into infinitely many GLs with a similar functionality
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Example: transforming the sphere
For a sphere, ρ(s) = sin s, therefore

s1(ρ) = arcsin ρ, s2(ρ) = π − arcsin ρ

Could we make the upper part flat? This requires

s1(ρ) = ρ , s2(ρ) = π + ρ− 2 arcsin ρ
ds2

ds1

dρ
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Rays on the transformed sphere
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Rays on the transformed sphere

Each point has just one image – itself Each point has just two images –
the opposite point and itself
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Transmutation
We can also transform a GL differently
We cut the surface along the meridian and wind it, multiplying the angle φ by some
N ∈ N, which gives

ρ̃(s) = ρ(s)
N

To keep the equator radius 1, we enlarge the whole surface by the factor N, which gives
ρ̃(s) = ρ(s/N)

N = 1 N = 2 N = 3 N = 4
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Rays on a transmuted sphere
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Transmuting the transformed sphere

We can transmute an arbitrary GL, e.g. the transformed sphere

N = 1 N = 2 N = 3
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Rays on the transmuted transformed sphere
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Designing open geodesic lenses

Single-sided GLs emerge above equator just on one side, then continue into a plane
We return to the formula

∆φGL(L) = 2
∫ 1

L

L s′(ρ) dρ
ρ
√
ρ2 − L2

≡ 2g(L)

We can invert this equation to find s(ρ) from the known function g(L) by the inverse Abel
transform
We can then design GL with some required properties, e.g. focusing
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We require that the GL focuses light rays emerging from the point Ps to the point Pi

We denote the total azimuthal angle swept by the ray by ∆φ = Mπ

Angles swept from point Ps to GL and from GL to Pi are

∆φs,i =

∫ rs,i

1

L dρ
ρ
√
ρ2 − L2

= − arcsin
L
ρ

∣∣∣∣rs,i

1
= arcsin L − arcsin

L
rs,i
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Then it holds

∆φ = Mπ = ∆φs +∆φi +∆φGL = ∆φs +∆φi + 2g(L)

and therefore∫ 1

L

L s′(ρ) dρ
ρ
√
ρ2 − L2

= g(L) = 1
2

(
Mπ − 2 arcsin L + arcsin

L
rs

+ arcsin
L
ri

)
If we can find s(ρ) from this, we can find the shape of GL that performs imaging between
points Ps and Pi
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Inverse Abel transform
In the formula ∫ 1

L

L s′(ρ) dρ
ρ
√
ρ2 − L2

= g(L)

we relabel ρ to η, divide by
√

L2 − ρ2 and integrate with respect to L from ρ to 1:∫ 1

ρ

(∫ 1

L

L s′1(η) dη
η
√
η2 − L2

)
dL√

L2 − ρ2
=

∫ 1

ρ

g(L) dL√
L2 − ρ2

.

We change the integration order

hr

r

L

0
0

1

1

∫ 1

ρ

s′(η)
η

(∫ η

ρ

L dL√
(η2 − L2)(L2 − ρ2)

)
dη =

∫ 1

ρ

g(L) dL√
L2 − ρ2
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The integral with respect to L on the left-hand side is π
2 , so

π

2

∫ 1

ρ

s′(η) dη
η

=

∫ 1

ρ

g(L) dL√
L2 − ρ2

Differentiating with respect to ρ we find the function s′(ρ):

s′(ρ) = −2ρ
π

d
dρ

(∫ 1

ρ

g(L) dL√
L2 − ρ2

)

By integrating this equation we find s(ρ), which specifies the shape of GL
We substitute the function g(L):

s′(ρ) = −ρ

π

d
dρ

[∫ 1

ρ

(
Mπ + arcsin

L
rs

+ arcsin
L
ri
− 2 arcsin L

)
dL√

L2 − ρ2

]
.
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Analytic solution
After a long calculation we find a simple result

s′(ρ) = A(ρ) + B√
1 − ρ2

where

A(ρ) = 1 − 1
π

(
arcsin

√
1 − ρ2

r2
s − ρ2 + arcsin

√
1 − ρ2

r2
i − ρ2

)
,

B = (M − 1) + 1
π

(
arcsin

1
rs

+ arcsin
1
ri

)
This is the solution of the Luneburg inverse problem, which can be put into the form

s(ρ) = Aρ+ B arcsin ρ− 1
π

[
rs arcsin

(
ρ

√
r2
s − 1

r2
s − ρ2

)
+ ri arcsin

(
ρ

√
r2
i − 1

r2
i − ρ2

)

−
(√

r2
s − 1 +

√
r2
i − 1

)
arcsin ρ

]
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The case of rs, ri ∈ {1,∞}

If both rs and ri are restricted to be either 1 or ∞, the formulas get greatly simplified:

s(ρ) = Aρ+ B arcsin ρ , A + B = M

with both A and B constant
One can also express the total change of polar angle ∆φGL(L) swept on the geodesic lens:

∆φGL(L) = (A + B)π − 2A arcsin L

For L = 1 we have
∆φGL(1) = πB,

so the ray that hits the circle ρ = 1 tangentially sweeps on the GL the polar angle Bπ
Consequently, the polar angle swept by this ray in the plane around the GL is Aπ
This geometric interpretation of A and B enables to deduce the shape of the geodesic lens
quickly from the behavior of light rays
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The outermost ray that reaches the curved part sweeps:

polar angle Aπ in the planar part
polar angle Bπ on the curved part

Lens rs ri M A B Ref. index of corr. lens
Maxwell’s fish-eye lens 1 1 1 0 1 n(r) = 2

1+r2

Generalized Maxwell’s fish-eye lens 1 1 M 0 M n(r) = 2r1/M−1

1+r2/M

Luneburg lens 1 ∞ 1 1
2

1
2 n(r) =

√
2 − r2

Beam divider (point source) 1 ∞ M 1
2 M − 1

2
Homogeneous medium ∞ ∞ 1 1 0 n(r) = 1
90◦ rotating lens ∞ ∞ 3

2 1 1
2 rn4 − 2n + r = 0

Eaton lens ∞ ∞ 2 1 1 n(r) =
√

2
r − 1

Invisible sphere (lens) ∞ ∞ 3 1 2 rn3/2 + rn1/2 − 2 = 0
Beam divider (parallel ray source) ∞ ∞ M 1 M − 1
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Particular examples of GLs
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Maxwell’s fish-eye lens (rs = 1, ri = 1, M = 1, A = 0, B = 1)
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Luneburg lens (rs = ∞, ri = 1, M = 1, A = 1/2, B = 1/2)
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Eaton lens (rs = ∞, ri = ∞, M = 2, A = 1, B = 1)
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Invisible lens (rs = ∞, ri = ∞, M = 3, A = 1, B = 2)
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“Double Eaton lens” (rs = ∞, ri = ∞, M = 4, A = 1, B = 3)
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“Inverse Luneburg lens” (rs = ∞, ri = 1, M = 2, A = 1/2, B = 3/2)
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90 degree rotating lens (rs = ∞, ri = ∞, M = 3/2, A = 1, B = 1/2)
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Beam divider (rs = ∞, ri = ∞, M = 5/4, A = 1, B = 1/4)
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Transmuted Maxwell’s fish-eye lens (rs = 1, ri = 1, M = 3, A = 0, B = 3)
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Ray videos
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https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-anim-luneburg05.mp4
https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-anim-eaton02.mp4
https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-anim-invisible01.mp4
https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-anim-invisible02.mp4


Closed GL
A similar formalism can be applied to double-sided GLs
There is an freedom that we discussed, therefore there are many GLs that give closed ray
paths
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Ray videos for closed GL
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https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-modified_sphere01.mp4
https://physics.muni.cz/~tomtyc/tmp-nonpublic/geodesic_lenses-videos/geodlens-anim-transmuted2_sphere-04.mp4


Relation to absolute optical instruments

Each GL is equivalent to some medium (lens) with radially-symmetric refractive index
n(r), we take the names from these lenses
AI image a 3D region stigmatically – [T. Tyc et al, New J. Phys. 13, 115004 (2011)]
What a GL achieves via the surface curvature, AI achieves via it refractive index profile
Optical path elements on GL and in the refractive medium must be the same:

n2(r)(dr2 + r2 dφ2) = ds2 + ρ2 dφ2

from which it follows the general relation

rn(r) = ρ , n dr = ds
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Maxwell’s fisheye mirror Luneburg Eaton
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Transmuted sphere 90-degree rotating invisible
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Multi-functional (or multifocal) geodesic lenses
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Closed GL

Maxwell’s fisheye Luneburg Eaton
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transformed sphere Tannery’s pear imaging cavity
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Raytracing on GL

Once we know the shape of GL (the function ρ(s)), we can find ray trajectories
They are the same as free particle trajectories on GL
Lagrangian for such a particle is simply its kinetic energy:

L =
1
2 [ṡ + ρ2(s)φ̇2]

Lagrange equations for s and φ then yield

s̈(t) = ρ[s(t)] ρ′[s(t)]φ̇2(t)
ρ[s(t)]φ̈(t) + 2ρ′[s(t)]ṡ(t)φ̇(t) = 0

– very useful for raytracing
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Geodesic equation approach
General equation for a geodesic parametrized by curve length ξ

d2xλ
dξ2 + Γλµν

dxµ
dξ

dxν
dξ = 0

Γλµν are Christoffel symbols of coordinate system {xλ;λ = 1, 2}
For coordinates (x1, x2) = (s, φ):

Γλµν =


(

0 0
0 −ρ(s)ρ′(s)

)
µν(

0 ρ′(s)
ρ(s)

ρ′(s)
ρ(s) 0

)
µν


λ

s′′(ξ)− ρ[s(ξ)] ρ′[s(ξ)]φ′2(ξ) = 0

φ′′(ξ) + 2ρ
′[s(ξ)]
ρ[s(ξ)] s′(ξ)φ′(ξ) = 0

The same equations as for the free particle! 50



51



52



GLs without rotational symmetry
It is much more difficult to describe and design them
Good starting point – conformal mapping between GL and a plane
Design refractive index profile in the plane with desired functionality
Then construct the GL surface from that

Problem – too much freedom
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The main problem: how to embed a 2D surface whose intrinsic geometry is known into
the 3D space
Need for additional constraints that have to be finely tuned
Still an open problem

54



Some useful references

R. K. Luneburg and Herzberger, M. Mathematical Theory of Optics (University of
California, 1964)
R. F. Rinehart, A solution of the problem of rapid scanning for radar antennae, J. Appl.
Phys. 19 (1948)
K. S. Kunz, Propagation of microwaves between a parallel pair of doubly curved
conducting surfaces, J. Appl. Phys. 25, 642–653 (1954)
S. Cornbleet and P. J. Rinous, Generalised formulas for equivalent geodesic and
nonuniform refractive lenses, IEE Proc. 128, 95–101 (1981)
M. Šarbort, PHD dissertation thesis, Masaryk University, Brno 2013, available here
M. Šarbort and T. Tyc, J. Opt. 14, 075705 (2012)
M. Šarbort and T. Tyc, J. Opt. 15, 125716 (2013)
R. C. Mitchell-Thomas, O. Quevedo-Teruel, T. M. McManus, S. A. R. Horsley and Y.
Hao, Lenses on curved surfaces, Opt. Lett. 39, 3551–3554 (2014)

55

https://is.muni.cz/th/jyq5i/text.pdf


Conclusion

GLs are fascinating
They have many potential applicatons
Can be described mathematically
Can be also understood intuitively
I hope you will like them
Thank you for your attention!
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