Výzkumné centrum CEITEC a magnetické vrstvy a supermřížky

Osnova přednášky

 výzkumné centrum CEITEC a přehled jeho vybavení

 princip pulsní laserové depozice a růst SrTiO₃-LaFeO₃ supermřížek

• princip spektroskopické elipsometrie

 výzkum elektronových vlastností feromagnetických vrstev La_{1-x}Sr_xCoO₃ pomocí elipsometrie

CEITEC - nové vědecké centrum v Brně zaštiťované VUT a MU

- nové meziuniverzitní vědecké centrum v Brně, účast VUT a MU
- velké investice do vědecké infrastruktury díky EU (~ 2 mld. Kč)
- možnost přístupu studentů ke špičkovému vybavení a zapojení do výzkumu již od bakalářských prací

Depozice a analýza vzorků v ultravysokém vakuu (UHV klastr)

depoziční přístroje:

- pulsní laserová depozice (PLD)
- epitaxe molekulárních svazků (MBE)
- depozice organických a kovových materiálů (MBE organika)

analytické přístroje:

• PES fotoemisní spektroskopie: XPS, UPS

SPECS

- skenovací mikroskop (SPM)
- elektronový mikroskop na nízkých energiích (LEEM)
- spektr. s ionty na nízkých energiích (LEIS)

Špičkové vybavení ve výzkumné infrastruktuře CEITEC nano

nízkoteplotní IČ elipsometrie (7-400 K)

Magnetické a transportní měření 1.6 – 400 K, 9 T

nízkoteplotní elipsometrie ve VIS-UV

Špičkové vybavení ve výzkumné infrastruktuře CEITEC nano

Rentgenová analýza (5-1400 K)

Transmisní elektronový mikroskop Titan

Mikroskopie - AFM

Elektronová a UV litografie

Pulsní laserová depozice (PLD)

- PLD vybavené špičkovou současnou technologií
- tlak 5x10⁻¹⁰ mbar
- kontrola růstu s RHEED
- in situ ozonová atmosféra
- ultra homogenní růst se skenováním laserového svazku
- připojené na UHV klastr s analytickými metodami (XPS, ARPES, LEEM, LEED, STM

7

Princip pulsní laserové depozice

Možnost kombinovat až 5 materiálů a růst multivrstvy - supermřížky

V. K. Malik et al, PRB 2012

 kontrola růstu monovrstev pomocí RHEEDu:

vývoj RHEEDového signálu při růstu jedné monovrstvy

laskavé svolení C. Bernharda

Růst SrTiO₃ (diplomová práce M. Kiaby)

obraz RHEED před depozicí

4

2.0 nm

1.5

1.0

0.5

0.0

obraz RHEED po depozici

Současný projekt: elektronové stavy v LaFeO₃/SrTiO₃ supermřížkách

- Cíl: vytvořit supermřížky na atomární úrovni (1-2 monovrstvy) z antiferomagnetického izolátoru LaFeO₃ (T_{Neel} = 700 K) a izolantu SrTiO₃
- La_{0.5}Sr_{0.5}FeO₃ je vodivý kov, tedy rozhraní LaFeO₃ a SrTiO₃ můžou být vodivá

 systém bude vykazovat základní elementy vysokoteplotní supravodivosti v kuprátech: blízkost k antiferomagnetickému stavu a dvoudimenzionální vodivé roviny

elektronové stavy v LaFeO₃/SrTiO₃ supermřížkách: první výsledky

(včerejší) depozice LaFeO₃ M. Kiaby (univerzita Twente, Holandsko)

Princip elipsometrie

 Elipsometrie je de facto interferenční experiment s komponentou elektrického pole rovnoběžnou (p) a kolmou (s) k rovině dopadu.

Měřené veličiny v elipsometrii:

- úhel pootočení elipsy Ψ
- elipticita Δ

=>

Reálná a imag. část dielektrické funkce ε_1 , ε_2

Elipsometrické vybavení v institutu 🌮 🤇 🖛

Woollam VASE, (190nm-2.5 μm) He kryostat 7-400 K

P. Friš *et al.* Phys. Rev. B **97**, 045137 (2018).
P. Friš and A. Dubroka, Appl. Surf. Sci., **421**, 430 (2017).
C.N. Wang *et al.* Appl. Surf. Sci **421**, 859 (2017)
P. Friš and A. Dubroka, Appl. Surf. Sci., **421**, 430 (2017).
O. Caha *et al.* Appl. Phys. Lett. 103,202107 (2013)

Woollam IR-VASE, (2.5-30 μ m)

Ellipsometer do vzdálené IČ oblasti (50-700 cm⁻¹)

Opticky aktivní excitace mezi terahetzovým a ultrafialovým oborem

16

Optická vodivost feromagnetických kobaltátů

 $La_{0.7}Sr_{0.3}CoO_3, T_c \sim 205 K$ Reálná část optické vodivosti, $\sigma_1(\omega) = \omega \varepsilon_0 \varepsilon_2(\omega)$, je přímo úměná absorpci záření na jednotku frekvence (a) 8000 8000 a) *T*=7 K b) *T*=220 K ----- data 6000 6000 fit \odot Drude 1 ⁰_1 [O_1 cm⁻¹] — Drude 2 $σ_1 [\Omega^{-1} cm^{-1}]$ Drude 3 4000 Lorentzian 2000 La,Sr • 2000 Со \bigcirc Ο 0 3 0 2 3 0 Photon Energy [eV] Photon Energy [eV] $\epsilon(\omega) = 1 - \sum_{i} \frac{\omega_{D,j}^{2}}{\omega(\omega + i\gamma_{D,j})} + \sum_{k} \frac{\omega_{L,k}^{2}}{\omega_{0k}^{2} - \omega^{2} - i\omega\gamma_{L,k}}$ Modelování vodivosti Drude-Lorentzovým modelem:

nutno použít vícero Drudeho členů:- pravděpodobně znak vícepásové vodivosti¹⁷

Optické znaky feromagnetického stavu

18

Optické znaky feromagnetického stavu

La_{0.7}Sr_{0.3}CoO₃, *T*_c ~205 K

• Spektrální váhy (integrál z σ_1) od Drudeho píku a pásu na 1.5 eV sledují magnetizaci vzorku - jsou teda spojeni s feromagnetickým přechodem

Konkrétněji přesuny odpovídají tzv. dvojné výměnné interakci

19 P. Friš *et al.*, PRB **97**, 045137 (2018)

Přechody elektronů mezi kobalty

přeskoky mezy kobalty s antiparalelním spinem (přechod se "špatným spinem")
tento přechod porušuje Hundova pravidla a je potřeba na něho energii (v tomto případě ~1.5 eV)

20

Současný výzkum: elektronové vlastnosti feromagnetu La_{1-x}Sr_xCoO₃ v závislosti na dopování Sr

• elektronová struktura (Drude a "wrong spin transition") feromagnetického stavu v $La_{1-x}Sr_xCoO_3$ v závislosti na koncentraci děr x. Evoluce z izolujícího stavu (x=0) do feromagnetu (x>0)

• dopování x=0.5, 0.7, a 0.2

Děkuji za pozornost

dodatky

P. Klenovský, výpočty elektronových stavů kvantových teček: Ukázka: kvantové tečky GaAs/InAs/GaAs_{1-v}Sb_v

P. Klenovský et al, PRB 100 115424 (2019)
P. Klenovský et al, PRB 97 542 (2018)
P. Klenovský et al, PRB 96 045414 (2017)

Optická vodivost

Optická vodivost se pojí s dielektrickou funkcí: $\sigma(\omega) = -i\omega\varepsilon_0(\varepsilon(\omega) - 1)$

Je to komplexní funkce podobně jako diel. funckce: $\sigma(\omega) = \sigma_1(\omega) + i\sigma_2(\omega)$

• Reálná část vodivosti, $\sigma_1(\omega) = \omega \epsilon_0 \epsilon_2(\omega)$, je přímo úměná absorpci záření na jednotku frekvence

• $\sigma_1 (\omega=0) = \sigma_{DC}$

• pro σ_1 existuje sumační praviedlo

$$\int_{0}^{\infty} \sigma_{1}(\omega) \mathrm{d}\omega = \frac{\pi n q^{2}}{2\varepsilon_{0} m} = \text{constant}$$

- Integrál z $\sigma_1(\omega)$ přes určitý frekvenční obor je úměrný koncentraci náboje způsobující absorpci

základní rovnice elipsometrie

Definice elipsometrických úhlů
$$\Psi$$
 a Δ : $\rho = \frac{r_{\rm p}}{r_{\rm s}} = \, {\rm tan} \, \Psi \, {\rm e}^{{\rm i}\Delta}$

Fresnelovy koeficienty:

$$r_{\rm p} = \frac{N_2 \cos \theta_1 - N_1 \cos \theta_2}{N_1 \cos \theta_2 + N_2 \cos \theta_1} \quad r_{\rm s} = \frac{N_1 \cos \theta_1 - N_2 \cos \theta_2}{N_1 \cos \theta_1 + N_2 \cos \theta_2}$$

Snellůlv zákon: $N_1 \sin \theta_1 = N_2 \sin \theta_2$

Index lomu okolí: $N_1=\sqrt{\epsilon_{
m a}}$ Index lomu vzorku: $N_2=\sqrt{\epsilon_{
m s}}$

Inverzí výše uvedených rovnic obdržíme v případě polonekonečného izotropního vzorku explicitní analytický výraz pro dielektrickou funkci (jak její reálnou tak i imaginární část):

$$\epsilon_{\rm s}(\Psi, \Delta) = \epsilon_{\rm a} \sin^2 \theta_1 \left(1 + \tan^2 \theta_1 \left(\frac{1 - \rho(\Psi, \Delta)}{1 + \rho(\Psi, \Delta)} \right)^2 \right)$$

shrnuto: ze dvou měřených veličin Ψ a Δ určíme dvě veličiny ϵ_1 a ϵ_2

Lorentzův oscilátor

Newtonova rovnice harmonicky buzeného mechanického oscilátoru:

$$m\frac{\mathrm{d}^{2}x(t)}{\mathrm{d}t^{2}} = -k\,x(t) - m\gamma\frac{\mathrm{d}x(t)}{\mathrm{d}t} + qE_{0}\mathrm{e}^{-\mathrm{i}\omega \mathrm{t}}$$

$$\mathbf{\check{R}e\check{s}eni:} \qquad x_{0}(\omega) = \frac{F}{\omega_{0}^{2} - \omega^{2} - \mathrm{i}\omega\gamma}$$

$$(1 - \omega)\sqrt{k} = \frac{qE_{0}}{\omega_{0}}$$

$$\omega_0 = \sqrt{\frac{k}{m}} , \quad F = \frac{qE_0}{m}$$

polarizace je hustota dipólového momentu

$$P(\omega) = \sum_{j} nqx_{0,j}(\omega)$$
 n: koncentrace

z definice dielektrické funkce:

$$\varepsilon(\omega) = 1 + \frac{P(\omega)}{\varepsilon_0 E(\omega)} = 1 + \sum_j \frac{\omega_{pl,j}^2}{\omega_{0,j}^2 - \omega^2 - i\omega\gamma_j}$$

příspěvek vysokofrekvenčních přechodů lze nejhruběji aproximovat konstantou:

$$\epsilon(\omega) = \epsilon_{\infty} + \sum_{j} \frac{\omega_{\mathrm{pl},j}^2}{\omega_{0,j}^2 - \omega^2 - \mathrm{i}\omega\gamma_j}$$

 dielektrická fukce nezávislých Lorentzových oscilátorů. Typicky dobře funguje pro fonony. Drudeův model kozvů dostaneme dosazením $\omega_0=0$

plasmová frekvence:

 $\omega_{\mathrm{pl},j} = \sqrt{\frac{q_j^2 n_j}{\epsilon_0 m_j}}$

ukázka: IČ Reflektivita LiF

Drudeova formule

• odezvu volných nosičů náboje získáme pro ω_0 =0

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_{pl}^2}{\omega(\omega + i\gamma)}$$

plasmová frekvence

$$\omega_{pl} = \sqrt{\frac{q^2 n}{\varepsilon_0 m^*}}$$

závisí na koncentraci nositelů n a na jejich efektivní hmotnosti m^*

 ε_1 prochází nulou (pro $\gamma \sim 0$) pro

$$\omega = \frac{\omega_{pl}}{\sqrt{\varepsilon_{\infty}}}$$

pro $\varepsilon_{\infty} = 1$ je to přímo ω_{pl} . Na této frekvenci se v látce propaguje longitudinální plasmon, proto se této frekvenci říká plasmová.

Ukázka dielektrické funkce n-dopovaného křemíku

Drude model

A classical model of dielectric response of free and *mutually non-interacting* charge carriers

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_{\rm pl}^2}{\omega(\omega + i\gamma)}$$

where
$$\omega_{pl}$$
 is the plasma frequency $\omega_{pl} = \sqrt{\frac{q^2 n}{\varepsilon_0 m^*}}$

Example on n-doped silicon:

